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Modeling Quantum-Dot-Based Devices
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1.1
Introduction

During the past decades, the performance of semiconductor lasers has been dra-
matically improved from a laboratory curiosity to a broadly used light source.
Owing to their small size and low costs, they can be found in many commercial
applications ranging from their use in DVD players to optical communication net-
works. The rapid progress in epitaxial growth techniques allows to design complex
semiconductor laser devices with nanostructured active regions and, therefore,
interesting dynamical properties. Future high-speed data communication applica-
tions demand devices that are insensitive to temperature variations and optical
feedback effects, and provide features such as high modulation bandwidth and
low chirp, as well as error-free operation. Currently, self-organized semiconductor
quantum dot (QD) lasers are promising candidates for telecommunication applica-
tions [1]. For an introduction to QD-based devices, their growth process, and their
optical properties, see, for example, [2, 3].

This review focuses on the modeling of these QD laser devices and on the
discussion of their dynamic properties. It uses a microscopically based rate equation
model that assumes a classical light field but includes microscopically calculated
scattering rates for the collision terms in the carrier rate equations, as introduced
in [4–8]. Following the hierarchy of different semiconductor modeling approaches
(for an overview, see [9]), this model aims to be sophisticated enough to permit
a quantitative modeling of the QD laser dynamics but still allows an analytic
treatment of the dynamics. Different levels of complexity will be explored to enable
comprehensive insights into the underlying processes.

In order to reduce the numeric effort and still allow for analytic insights, a variety
of effects have been neglected. This way, a different approach has to be chosen
if, for example, the photon statistics of the emitted light [10] or changes in the
emission wavelength due to Coulomb enhancement effects [11, 12] are to be of
interest. For the analysis of ultrafast phenomena, as, for example, the gain recovery
in QD-based optical amplifiers [13], coherent effects resulting from the dynamics of
the microscopic polarization become important, and the model has to be extended
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4 1 Modeling Quantum-Dot-Based Devices

to semiconductor Bloch equations. This has been intensively studied in [14, 15]
in good agreement with experimental results [16], but it will not be discussed in
this review. Note that later on in this book, the experimental results obtained with
QD lasers under optical injection are presented in Chapter 3 (by Sciamanna [17]),
and the results regarding the sensitivity of QD lasers to optical feedback [18] are
discussed in Chapter 6 by Erneux et al. [19].

After a detailed introduction to the microscopical modeling aspects in Section
1.2, the turn-on and switching dynamics of a QD laser with two confined levels is
discussed in Sections 1.3 and 1.4, and temperature effects are analyzed in Section
3.1. In Section 1.5, the results of an asymptotic analysis of the rate equation systems
are presented, which allows to give analytic expression to relaxation oscillation (RO)
frequency and damping of the turn-on dynamics, and thus allows to predict the
modulation properties of the laser. Resulting from the analytic predictions, the
effect of using a doped carrier reservoir on the laser dynamics is investigated in
Section 1.6. At the end, in Section 1.7, the results are discussed and compared to
quantum well (QW) laser devices.

1.2
Microscopic Coulomb Scattering Rates

A schematic view of the QD laser structure is shown in Figure 1.1a. The active
area of the p–n heterojunction is a dot-in-a-well (DWELL) structure that consists of
several InGaAs QW layers that have a height of about 4 nm, and contain embedded
QDs that are confined in all three dimensions having a size of approximately
4 nm × 18 nm × 18 nm. During laser operation, an electric current is injected into
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Figure 1.1 (a) Schematic illustration of
the QD laser. (b) Energy diagram of the
band structure across two QDs in the
electron–hole picture. hνGS labels the ground
state (GS) lasing energy. �Ee and �Eh mark
the distance of the GS from the band edge
of the 2D carrier reservoir (QW) for elec-
trons and holes, respectively. �e and �h de-
note the distance to the bottom of the QD,

which is equal to the energetic distances be-
tween the GS and the excited state (ES) in
the QD. FQW

e and FQW
h are the quasi-Fermi

levels for electrons and holes in the QW, re-
spectively. The different processes of direct
electron and hole capture (Sin,cap), as well
as relaxation (Sin,rel) into the QD states, are
indicated with gray arrows.
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the QW layers. They form the carrier reservoir where carrier–carrier scattering
events take place because of Coulomb interaction and lead to a filling (or depletion)
of the confined QD levels. As a result, carrier inversion is reached first between the
lowest confined QD levels in the conduction band and its counterpart in the valence
band. Since the size and the composition of the zero-dimensional QD structures
determine the energetic position of the QD levels, it is possible to design lasers
with different emission wavelengths. The lasers discussed here have a ground state
(GS) emission wavelength of 1.3 µm, as needed for optical data communication.

For high carrier densities in the reservoir, that is, during electrical pumping, the
Coulomb interaction (carrier–carrier Auger scattering) will dominate the scattering
rate into (and out of) the QDs, whereas the scattering events resulting from
carrier–phonon interaction are negligible [20]. Inside the QD, two confined energy
levels are modeled. Thus, direct capture processes for electrons (b = e) and holes
(b = h) into or out of the GS labeled as Scap

b,G , into or out of the excited state (ES) labeled
as Scap

b,E , and relaxation processes between GSs and ESs named Srel
b are considered

as depicted in Figure 1.1b, where gray arrows indicate the in-scattering events.
Section 1.2.1 systematically describes and quantifies the different Auger processes

before they are incorporated into the dynamic rate equation model in Section 1.3.
Note that although phonon scattering between the carrier reservoir (QW) and the
QDs is neglected, the fast phonon- assisted carrier relaxation processes within the
QW states are taken into account by assuming a quasi-Fermi distribution with
quasi-Fermi levels FQW

e and FQW
h for electrons in the conduction band and holes in

the valence band of the QW, respectively.

1.2.1
Carrier–Carrier Scattering

If the Coulomb interaction is treated in the second-order Born approximation in
the Markov limit up to second order in the screened Coulomb potential [21, 22],
a Boltzmann equation for the collision terms, which describe the change in the
occupation probability in the QD states, can be derived, and subsequently easily
incorporated into laser rate equation models (for details, see also [15]). The striking
difference from the standard rate equation models is that there are no constant
relaxation times. Instead, the detailed modeling of the scattering events inside the
reservoir leads to scattering times that are nonlinearly dependent on the carrier
densities in the reservoir.

Figure 1.2 gives a systematic overview of all processes leading to in-scattering into
the QD electron levels. The gray arrows denote electron transitions of the scattering
partners. Panels I and III show pure e–e processes, while panels II and IV display
mixed e–h processes. The corresponding processes for in-scattering into the QD
hole levels are obtained by exchanging all electron and hole states. The out-scattering
processes are obtained by inverting all arrows of the electron transitions. The
exchange processes of pure e–e capture processes contributing to the scattering
rates are not shown, since there is no qualitative difference from that of the direct
processes. In case of mixed e–h processes (II, IV), the exchange processes lead to
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Figure 1.2 Electron transitions during
Auger scattering processes (gray arrows de-
note electron transitions): (a) direct electron
capture from the 2D carrier reservoir to the
QD ground state (I, II) and first excited state

(III, IV). Panels I and III and panels II and
IV show pure e–e and mixed e–h scattering
processes, respectively. (b) QW-assisted in-
tradot electron relaxation to the QD ground
state.

transitions across the band gap, which are neglected since they are unlikely to occur.
Note that the process shown in panel III of Figure 1.2b is the exchange process
of the one in panel I. In the following, the scattering events shown in Figure 1.2
are decomposed into contributions originating from direct carrier capture from
the QW into the QD levels Rcap

m (Figure 1.2a) and relaxation processes between
the QD states with one and two intra-QD transitions Rrel′ and Rrel′′ , respectively
(Figure 1.2b). Processes involving three QD states are neglected. Thus, the collision
term in the Boltzmann equation for the carrier occupation probability in the QD
states ρm

b , where m labels the quantum number of the 2D angular momentum of
the confined QD states (m = E for the first ES; m = G for the GS) reads:

∂ρm
b

∂t
|col = Rcap

b,m + Rrel′
b + Rrel′′

b (1.1)

The contribution to Eq. (1.1) from direct capture processes (Figure 1.2a) can be
expressed as

Rcap
b,m = Sin,cap

b,m (1 − ρm
b ) − Sout,cap

b,m ρm
b (1.2)

where the direct capture Coulomb scattering rates for in-
(

Sin,cap
b,m

)
and

out-scattering
(

Sout,cap
b,m

)
are defined as

Sin,cap
b,m =

∑
k1k2k3,b′

Wb

kb
1kb′

3 kb′
2 m

f
kb
1
f
kb′
3

(
1 − f

kb′
2

)
(k1→m, k3→k2), (1.3)

Sout,cap
b,m =

∑
k1k2k3,b′

Wb

m kb′
2 kb′

3 kb
1

(
1 − f

kb
1

)(
1 − f

kb′
3

)
f
kb′
2

(m→k1, k2→k3). (1.4)

States in the QW are labeled by the in-plane carrier momentum kb
i (b = e and

b = h indicate conduction and valence band states, respectively). For both bands
in the QW, f

kb
i

indicates the electron occupation probability. The transition

probability Wb
k1k2k3m′ for a process where two carriers scatter from initial states k1

and k3 to the final states m and k2, respectively, (k1 → m, k3 → k2) contains the
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screened Coulomb matrix elements for direct and exchange interactions, and the
energy-conserving δ-function [6, 15]. Owing to the microscopic reversibility of the
Coulomb matrix elements, the transition probability is equal for reversed direction
Wb

kb
1kb′

3 kb′
2 m

= Wb

mkb′
2 kb′

3 kb
1

.

The relaxation processes shown in Figure 1.2b describe a redistribution of
carriers within the intra-QD levels. The contribution from processes I and II to Eq.
(1.1) is given by

Rrel′
b = Sin,rel′

b ρEb (1 − ρGb ) − Sout,rel′
b (1 − ρEb )ρGb . (1.5)

The relaxation in-scattering rate is given by

Sin,rel′
b =

∑
k2k3,b′

Wb

E kb′
3 kb′

2 G

(
1 − f

kb′
2

)
f
kb′
3

(E→G, k3→k2). (1.6)

The dynamical equations for the processes III and IV (Rrel′′ ) in Figure 1.2b can be
obtained in a similar manner as in Eq. (1.5).

For the calculation of the Coulomb scattering rates, a quasiequilibrium within the
QW states (fast phonon scattering inside one band) but nonequilibrium between the
QW electrons and the QD electrons, the QW holes, and the QD holes is assumed.
As a result, the electron occupation probability fkb in the conduction (b = e) and
valence band (b = h) of the QW can be expressed by a quasi-Fermi distribution
given by

fkb =
[

exp

(
Ek − FQW

b

kT

)
+ 1

]−1

(b = e, h). (1.7)

The quasi-Fermi levels FQW
b are determined by the total carrier density in the

respective band via the relation given in Eq. (1.8), as shown in [7, 23],

FQW
b (wb) = EQW

b ± kT ln
[

exp
(

wb

DbkT

)
− 1

]
(1.8)

where the + and − signs correspond to electrons and holes, respectively. Further-
more, Db = mb/(π�

2) is the 2D density of states, with the effective masses mb of
electrons (b = e) and holes (b = h), respectively. EQW

b are the QW band edges of
conduction and the valence band, respectively. Note that the analytic expression
Eq. (1.8) is only valid for a 2D electron gas, where the integrals

we =
∫ ∞

E
QW
e

dEkDe fke and wh =
∫ E

QW
h

−∞
dEkDh(1 − fkh ) (1.9)

can be solved. As a result, the quasi-Fermi distributions fke and fkh are determined
by the QW carrier densities we and wh, and thus, the scattering rates given in Eqs.
(1.3) and (1.6) are calculated as functions of we and wh. Besides that, the scattering
rates parametrically depend on the effective masses of the carriers in the QW bands
and on the band structure given by the energetic distances �Eb and �b, as indicated
in Figure 1.1b. The resulting rates are shown in Figure 1.3 as a function of we along
the line wh/we = 1.5. For the relaxation rates, the sum of all relaxation processes
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Figure 1.3 Coulomb scattering rates of
the QDs-in-a-well system versus QW elec-
tron density we (wh/we = 1.5). (a) Intra-QD
relaxation rates for electrons (gray) and
holes (black); (b) and (c) direct capture

rates into the GS (dashed line) and ES (dot-
ted line) for holes and electrons, respec-
tively. Top and bottom panels show in- and
out-scattering rates, respectively. Parameters
as in Table 1.1.

is plotted but note that the rates involving a transition within the QD accompanied
by a QW transition (rel′) are much larger than the rates involving two QW–QD
transitions (rel′′). The relaxation rates are characterized first by a sharp increase and
later by a decrease in higher carrier densities because of the effect of Pauli blocking.
These relaxation scattering events are on a ps time scale, whereas the direct capture
rates plotted in Figure 1.3b,c for holes and electrons are an order of magnitude
smaller for small carrier densities. Owing to their small effective mass, the rate
for electron capture is much smaller, although the dependence on we is similar to
that of the hole rate. For small electron densities inside the QW, the capture rates
increase quadratically with we, which is expected from mass action kinetics.

1.2.2
Detailed Balance

In thermodynamic equilibrium, there is a detailed balance between the in- and
out-scattering rates of the QD level. This allows one to relate the rate coefficients of
in- and out-scattering even for nonequilibrium carrier densities [24].

For a single scattering process between two carriers of type b and b′, the
in-scattering rate for capture into the GS (m = G) or ES (m = E) is defined in Eq.
(1.3), and can be rewritten as

Wb

kb
1kb′

3 kb′
2 m

f
kb
1
f
kb′
3

(1 − f
kb′
2

) (1.10)

= Wb

kb
1kb′

3 kb′
2 m

(1 − f
kb
1
)(1 − f

kb′
3

)f
kb′
2

f
kb
1

1 − f
kb
1

f
kb′
3

1 − f
kb′
3

1 − f
kb′
2

f
kb′
2

(1.11)

= Wb

kb
1kb′

3 kb′
2 m

(1 − f
kb
1
)(1 − f

kb′
3

)f
kb′
2

exp


FQW

e − E
kb
1

− E
kb′
3

+ E
kb′
2

kT


 (1.12)
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if the quasi-Fermi distribution given in Eq. (1.7) is used, which leads to fk/(1 − fk) =
exp

[
(FQW

e − Ek)/(kT)
]
. Inserting the energy conservation of final and initial states,

E
kb′
2

− E
kb′
3

− E
kb
1

+ EQD
b,m = 0, where EQD

b,m is the confined QD energy (m = G,E) for

electrons (b = e) or holes (b = h), and summing overall initial and final states in
k-space gives

Sin,cap
b,m = Sout,cap

b,m e

±
(

F
QW
b −E

QD
b,m

)
kT = Sout,cap

b,m e
�Eb,m

kT

[
e

wb
DbkT − 1

]
(1.13)

where �Eb,G = ±(EQW
b − EQD

b,G ) and �Eb,E = ±(EQW
b − EQD

b,E ) are the energetic dis-
tances from the QW band edge to the GS and the ES of the QD, respectively, and
the + and − signs correspond to electrons and holes, respectively.

Note that Eq. (1.13) holds for the mixed e–h Auger capture process (b �= b′) as

well as for the e–e and h–h processes. Thus, besides the Boltzmann factor e
�E
kT

that is valid for a discrete two-level system with energy difference �E, the ratio
(Sin

b /Sout
b ) for Auger scattering between the 2D electron gas of the QW and the

discrete QD level also depends on the quasi-Fermi levels FQW
b , and thereby on

the carrier density in the QW. As a result of this carrier-density-dependent factor in
the detailed balance relation, the out-scattering rates show a pronounced maximum
around the degeneracy concentration DbkT , as can be seen in the bottom panel of
Figure 1.3b,c.

In contrast to that, the ratio between the in- and out-scattering relaxation rates is
a constant factor since both involved levels are indeed localized. For the positively
defined energy difference �b (b = e, h) between ES and GS (Figure 1.1b), the
relation reads:

Sin,rel
b = Sout,rel

b e
�b
kT (1.14)

1.3
Laser Model with Ground and Excited States in the QDs

Using the microscopic scattering rates defined in the last section, an eight-variable
rate equation system can be formulated, which contains the Boltzmann collision
terms for the direct capture processes, Rcap

b,m, defined in Eq. (1.2), and those
for relaxation into the GS, Rrel

b , defined in Eq. (1.5). As used earlier for the
scattering contributions in Section 1.2, carrier densities in the GS and ES have
the index G and E, respectively, and the index b labels the carrier type. Further,
the photon densities nGph and nEph are introduced, which result from the GS and
ES transition in the QD, respectively. Starting from the occupation probability
of the confined QD levels ρ

G,E
b , the carrier densities in the QD are defined

by nG,E
b = NQDνG,Eρ

G,E
b . NQD denotes twice the QD density of the lasing subgroup

(the factor of 2 accounts for spin degeneracy), and νG,E is the degeneracy of the states
(νG = 1, νE = 2).
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The induced processes of absorption and emission at the GS wavelength are
modeled by a linear gain RG

ind = WA(nGe + nGh − NQD) nGph, where W is the Einstein
coefficient that can be determined from a full quantum mechanical approach of
the light matter interaction [9], and A is the in-plane area of the QW. Analogous
to the simple two-level system, the model introduced above yields positive gains
if the occupation probability of electrons in the localized conduction band level
f C
e = ρGe = nGe /NQD of the QDs is higher than the occupation probability of electrons

in their localized valence band level f V
e = 1 − ρGh . Thus, the linear gain term

Rind = WANQD(f C
e − f V

e ) nph = WANQD(f C
e (1 − f V

e ) − f V
e (1 − f C

e )) nph corresponds
to the standard net rate of stimulated emission minus absorption [25]. The rate of
induced emission at the ES wavelength is obtained analogously, but by assuming a
different Einstein coefficient W; thus, RE

ind = WA(nEe + nEh − 2NQD) nEph. As a result
of the size distribution and material composition fluctuations of the QDs, only
a subgroup (QD density NQD) of all QDs (Nsum) matches the mode energies for
lasing. The QD density Nsum is twice the total QD density as given by experimental
surface imaging (again, the factor of 2 accounts for spin degeneracy). As discussed
below, NQD is not a constant but can increase with increasing pump current if the
number of longitudinal modes in the laser output is increased (see Figure 1.9a for
experimental lasing spectra).

The nonlinear rate equations (Eqs. (1.15)–(1.19)) describe the dynamics of the
charge carrier densities in the GS and ES of the QDs, nGb and nEb , respectively, the
carrier densities in the QW, wb, and the photon density emitted from the GS and
the ES, nGph and nEph, respectively.

ṅEb = NQD(2Rcap
b,E − Rrel

b ) − WA(nEe + nEh − 2NQD)nEph − WnEe ρEh , (1.15)

ṅGb = NQD(Rcap
b,G + Rrel

b ) − WA(nGe + nGh − NQD)nGph − WnGe ρGh (1.16)

ẇb = η
J(t)

e0
− Nsum

[
Rcap

b,G + 2Rcap
b,E

]
− Bwewh, (1.17)

ṅGph = −2κnGph + 	WA(nGe + nGh − NQD)nGph + βWnGe ρGh (1.18)

ṅEph = −2κnEph + 	WA(nEe + nEh − 2NQD)nEph + βWnEe ρEh (1.19)

The spontaneous emission in each level of the QDs is approximated by bimolecular
recombination using RG

sp(nGe , nGh ) = WnGe nGh/NQD and RE
sp(nEe , nEh ) = WnEe nEh/(2NQD).

The loss rate Rb
loss = Bwewh, accounting for carrier losses in the QW, is a sum

of the spontaneous band–band recombination and Auger-related losses inside
the QW [26]. This loss rate determines the lifetime τ b

w of carriers in the QW
(Rb

loss ≡ wb/τ
b
w), which is on the order of several nanoseconds and decreases

with the carrier densities wb. β is the spontaneous emission coefficient, and
	 = 	gNQD/Nsum is the optical confinement factor. 	 is the product of the
geometric confinement factor 	g (i.e., the ratio of the volume of all QDs and the
mode volume), and the ratio NQD/Nsum (accounting for reduced gain since only
a subgroup of all QDs matches the mode energy for lasing because of the size
distribution and material composition fluctuations of the QDs). The coefficient
2κ = (c/√εbg)[κint − ln(R1R2)/2L] expresses the total cavity loss [2], where L is
the cavity length, and R1 and R2 are the facet reflectivities, and κint are the
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internal losses [6]. J is the injection current density, eo is the elementary charge,
and η = 1 − we/NQW is the current injection efficiency that accounts for the fact
that the injection into the QW is blocked if the QW is already filled (maximum
density inside the QW: we = NQW). Note that within the model the carriers are
directly injected into the QW, leading, of course, to an underestimation of the
experimentally realized current densities. Therefore, only current densities relative
to the threshold value Jth are considered for comparisons between theory and
experiment. The values of parameters used for the simulations are listed in
Table 1.1, if not stated otherwise.

The steady-state characteristics and the turn-on dynamics for the QD laser
as resulting from the nonlinear rate equations (Eqs. (1.15)–(1.19)) are depicted in
Figure 1.4. The input–output curves in Figure 1.4b show that with increasing pump
current, the GS first reaches inversion and starts lasing at the GS threshold current
JGth. By further increasing the pump current, the ES reaches its lasing threshold JEth
and the laser emits light at both wavelengths. As can be seen in Figure 1.4b, the
GS efficiency is reduced as soon as the ES lasing sets in. The turn-on dynamics
observed before reaching the steady states is shown in Figure 1.4a,c. For currents
above JGth but far below JEth, highly damped ROs are found for the GS turn-on
trajectories (Figure 1.4a) in accordance with experimental results [26]. Above JEth,
the ES turns on with very short turn-on delay times and damped ROs (gray line
in Figure 1.4c), while the GS shows overdamped turn-on behavior (black line in
Figure 1.4c). The overdamped behavior is due to the high current needed to invert
the ES levels, which is accompanied by high carrier densities in the reservoir and
thus by high scattering rates into the GS (see Section 1.5 for analytic discussions
of the damping rate, which depends on the carrier lifetimes).

The ratio of the threshold currents of the two modes, JEth/JGth, depends on the
values of the carrier capture and relaxation rates and can be changed by varying
the band structure of the QD–QW system. A system where the QW band edge
is very close to the ES leads to a faster filling of the ES and thus to a smaller
JEth (compare Figure 1.4b and Figure 1.6c that show the input–output curves for
different confinement energies). Besides this microscopic effects, the ratio JEth/JGth
also depends on the device length. Length-dependent measurements of this ratio

Table 1.1 Numerical parameters used in the simulation, unless stated otherwise.

Symbol Value Symbol Value Symbol Value

W 0.7 ns−1 A 4 × 10−5cm2 �Ee 210 meV
W 0.88 ns−1 NQD 0.6 × 1010cm−2 �Eh 50 meV
B 0.5 nm2 ps−1 Nsum 6 × 1010cm−2 �e 64 meV
	g 0.06 NQW 1 × 1012cm−2 �h 6 meV
2κ 0.16 ps−1 β 5 × 10−6 De/h me/h/(π�

2)
R1, R2 0.32 L 1 mm me 0.043 m0

εbg 14.2 κint 650 m−1 mh 0.45 m0
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JEth at J = 1.5JEth; (b) steady-state photon

output from the ES (gray) and GS (black)
transition. JEth = 1.95 × 108e0 cm−2 ps−1;
JGth = 1.5 × 1010e0 cm−2 ps−1. Parameters
as in Table 1.1 but �Ee = 134 meV, �Eh =
30 meV and B = 0.2 nm2 ps−1.

can be found in [27], showing that the shorter the device the smaller is JEth, while JGth
increases. This is in good agreement with our simulations.

The threshold current JGth can be obtained from Eqs. (1.15)–(1.19) by deriving the
steady-state characteristics of the laser. By neglecting spontaneous emission and
photons from the ES transition (β = 0; nEph = 0), this leads to

nGph
∗
(J) = JGth

	NQD

2κNsum

(
J

JGth
− 1

)
(1.20)

JGth = Bwe|thwh|th + Nsum

(NQD)2

(
WnGe |thnGh |th + WnEe |thnEh |th

)
. (1.21)

Eq. (1.21) shows that JGth depends upon the loss terms in the rate equations. Thus,
the parameters B, W, and Nsum, as well as the carrier densities at threshold, labeled
with the subscript |th in Eq. (1.21), determine JGth. The threshold carrier densities are
determined by the different scattering contributions (they do not depend on B and
Nsum). However, owing to the nonlinear dependence of the Auger scattering rates
upon the QW carrier densities, it is not possible to give closed analytic expression
(see [7] for approximations). The ES threshold current JEth also depends on the
photon density in the GS, which depends on the pump current and the differential
gain. The analytic expression reads:

JEth = JGth + 2κNsum

	NQD
nGph. (1.22)

Since the microscopic model allows for a separate treatment of electron and hole
dynamics, the transient behavior of both species will be investigated. Figure 1.5a,b
shows the trajectories of the turn-on process projected onto the (nGb , nGph)-planes.
The familiar anticlockwise rotation can be seen for the electron as well as for the
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hole density. Nonetheless, their shape is different. The black stars in Figure 1.5a,b
denote the steady state values of the electron and hole concentration in the GS
levels, nGe

∗ and nGh
∗, respectively, for increasing pump currents. It is interesting to

note that the value of nGe
∗ decreases with J. This is anomalous because the carrier

concentration for conventional lasers is clamped at the threshold value (saturation
of inversion). Nevertheless, the inversion of the QDs is saturated as the total
number of carriers, namely, the threshold density nGt = nGe

∗ + nGh
∗, is a constant

that depends only on the material parameters and not on the pump current. nG
t

can be obtained by neglecting spontaneous emission in Eq. (1.18) and setting
ṅGph = 0:

nGt = nGe
∗ + nGh

∗ = 2κ

	WA
+ NQD. (1.23)

Figure 1.5 also reveals that the steady-state values of nGe
∗ and nGh

∗ differ a lot. While
in the steady state most of the QDs are occupied by an electron, only every fifth hole
state is filled. This effect is due to the high out-scattering rates for the holes, which
inhibits effective filling of the states. As known from the microscopic scattering
rates plotted in Figure 1.3, the hole out-scattering rate decreases with the carrier
density in the reservoir and thus with the pump current. This leads to higher nGh

∗

for higher currents (see [7] for detailed steady-state analysis of a QD laser with one
confined level).

As can be seen in the phase portrait of Figure 1.5c, the turn-on process projected
onto the (ne, nh)-plane deviates from a straight line (which corresponds to the
synchronized behavior ne ∼ nh) and instead performs a spiral ending in the fixed
point (steady state). This desynchronization between electron and hole dynamics is
due to the different carrier lifetimes that stem from the different effective masses
and the resulting different energy separation between QW band edge and confined
QD level (�Ee and �Eh in Figure 1.1b).
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ters as in Table 1.1 but B = 0.2 nm2 ps−1,
�Ee = 134 meV and �Eh = 30 meV.
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1.3.1
Temperature Effects

So far, all simulations have been performed at a constant temperature of 300 K.
In this section, the model is refined to account for carrier heating during laser
operation. For the shift in the device temperature inside an electrically pumped
optical amplifier (with identical active region as the laser diode considered here)
Gomis-Bresco et al. [13] found values of �T = 60 K at a pump current of I =
150 mA, which is about 10 times JGth. Their measurement suggests a functional
relationship of �T(J) ∼ J2, which is adapted by implementing �T(we) ∼ (we)2

(see Eq. (1.24)). It is noted that the steady-state relation w∗
e (J) plotted for the

discussed model in Figure 1.6f depends on the microscopic details of the scattering
processes and is thus different for a QD laser with only one GS as in [26]. The
physical reason for the carrier heating lies first in the facts that the carriers are
injected into higher k-states during the electrical pumping. Second, the Auger
scattering processes between QD and QW lead to scattering into high energy states
inside the QW. Both effects change the carrier distribution and if the carriers in the
reservoir do not have time to cool down to the lattice temperature, their temperature
stays increased. (See [28] for a detailed kinetic modeling of the relaxation processes
that allow to determine the carrier temperature from their distribution in k-space
and [29] for microscopic calculations of the carrier heating in the low-density
limit.) Consequently, the temperature entering the scattering rates is actually not
the lattice temperature but the temperature of the carriers inside the QW that
surrounds the QDs.
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T = 300 K + ζ · (we/(we|th)
)2

(1.24)

Note that an approach to directly implement T(J), as in [30], suffers from the prob-
lem that a large signal modulation of the current leads to unphysical instantaneous
switching in the temperature. An alternative approach is to determine the carrier
heating from an additional rate equation for the energy density of the carriers in
the reservoir [31].

Since the temperature enters the quasi-Fermi distribution that is assumed inside
the QW, the microscopic scattering rates were calculated for several tempera-
tures and implemented into the numeric simulation by approximated analytic
expressions:

Sin
e (T , we, wh) = (1 + 0.22(T − 300 K)/100 K) · Sin

e (300 K, we, wh)

Sin
h (T , we, wh) = (1 + 0.26(T − 300 K)/100 K) · Sin

h (300 K, we, wh)

The out-scattering rates are related to the in-scattering rates by the detailed balance
relations derived in Eqs. (1.13) and (1.14). Figure 1.6c,d shows the changes in
the laser turn-on and steady-state dynamics if a dynamic temperature given by
Eq. (1.24) is implemented for different constants ζ . The carrier temperature T
and the carrier density in the reservoir we for the three cases are plotted in
Figure 1.6e,f, respectively, as a function of J. Below the ES threshold current, the
increasing temperature leads to a reduction in the differential efficiency of the GS
steady-state characteristics as can be seen in Figure 1.6d. Furthermore, it reduces
the ES threshold JEth, which results in two-state lasing at smaller pump currents
(Figure 1.6c). In contrast to the case with constant T , the GS lasing is reduced as
soon as the light is emitted from the ES. For high values of ζ , the GS lasing is
completely suppressed. The turn-on dynamics of the ES is also affected by the high
temperature (Figure 1.6a). Mainly due to the increased scattering rates at high T ,
the turn-on process becomes overdamped without a pronounced relaxation peak.
At low currents close to the GS threshold JGth, the temperature does not change
much and, thus, the turn-on process is also nearly unchanged (Figure 1.6b).

If these results are compared to two-state lasing experiments, a good agree-
ment can be found. The suppression of the GS emission is indeed observed in
experiments done by Wu et al. [32] on InP devices or by Ji et al. [30] on GaAs QD
devices.

1.3.2
Impact of Energy Confinement

The energy diagram of the QD laser structure along the in-plane direction is
shown in Figure 1.1. In principle, the sum �Eh + �Ee can be determined from
photoluminescence experiments that measure the energy of the GS emission of the
QD (hνGS) and the wavelength of the QW emission. However, for the devices used
here, there is a large uncertainty for the position of the QW band edge. Increasing
the distance to the QD confined levels reduces the capture rates but does not have
a large effect on the relaxation rates between the QD states. Simulations of the QD
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laser with larger confinement energies �Ee and �Eh show two major changes in
the dynamics. At first, the ratio between the threshold currents JEth/JGth increases,
as can be seen by comparing the steady-state characteristics shown in Figure 1.4b
with the simulations for larger confinement energies in Figure 1.6c. The effect can
be explained with the reduced capture rates into the ES, which inhibit an effective
filling of the ES.

Another change in the dynamics that results from changes in the confinement
energies is the reduced damping of the ROs. This can be seen if the GS turn-on in
Figure 1.6b for higher �Ee(�Eh) = 210(50) meV is compared to the turn-on with
smaller �Ee(�Eh) = 134(30) meV in Figure 1.4a. Similar to the case of a damped
harmonic oscillator, the damping of the turn-on dynamics determines the response
of the laser to a pump current that is modulated with a certain frequency and a small
modulation amplitude. Modulation response curves obtained for different pump
currents (close to the GS threshold) as a function of the modulating frequency are
plotted in Figure 1.7a,c for the two different confinement energies discussed so far.
Note that the parameter for the losses in the reservoir, B, is different in both cases to
yield equal threshold currents of Jth = 3.4 × 108e0 cm−2 ps−1 and thus, according
to Eq. (1.39), an RO frequency that is also observed in experiments (Figure 1.7b).
The modulation response for the less damped case shown in Figure 1.7a shows
a pronounced maximum at the frequency of the ROs, whereas it disappears for
the strongly damped case in Figure 1.7c. The explanation for the impact of the
confinement energies on the damping rate is given later on by using asymptotic
methods in Section 1.5. There it is shown that the scattering rates, that is, the
carrier lifetimes, determine the damping of the turn-on process, and increasing
the lifetimes (decreasing the rates) of the smaller species (electrons) reduces the
damping. The total lifetimes (including all capture and relaxation processes) of the
GS levels are plotted in Figure 1.8a as a function of J for the two different cases
discussed above. Obviously the lifetimes are decreased by decreasing �Eb but in
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both cases, the hole lifetimes are an order of magnitude smaller than those of the
electrons.

1.3.3
Eliminating the Excited State Population Dynamics

One way to simplify the eight-variable rate equation system for the case where light
is only emitted from the GS is to eliminate the ES carrier populations. This can be
done by adiabatic elimination, which assumes a fast relaxation of the ES variables
to their steady-state values and thus assumes ṅEb = 0. Using Eq. (1.15) gives

nEb (we ,wh ,nG
b
) = 2NQDS

cap,in
b,E +Srel,out

b
nG

b

S
cap,in
b,E +S

cap,out
b,E +(2NQD)

−1[
Srel,in

b
(NQD−nG

b
)+Srel,out

b
nG

b

] . (1.25)

Rewriting the remaining equations for wb and nGb leads to

ṅGb = (NQD − nGb )

[
nEb

Srel,in
b

2NQD
+ Scap,in

b,G

]
− RG

ind − RG
sp

−nGb

[
(2NQD − nEb )

Srel,out
b

2NQD
+ Scap,out

b,G

]
, (1.26)

ẇb = η
J(t)

e0
− NsumRcap

b,G −
[
Bwewh + 2NsumRcap

b,E

]
, (1.27)

Together with the unchanged equation for the photon density, Eq. (1.18), these
equations resemble the five-variable case of a QD laser with one confined level
if the terms in square brackets in Eq. (1.26) are interpreted as effective in- and
out-scattering rates. They are, of course, different if compared to the values resulting
from the pure GS scattering rates. The presence of the ES increases the scattering
rates because of the possibility of in- or out-scattering via the relaxation cascade.
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A comparison of the effective GS capture rates with the pure GS capture rates is
shown in Figure 1.8b,c.

As already expected from the analytic expression in Eq. (1.26), the rates increase
because of the relaxation rates that have to be added, but the overall nonlinear
dependence on the QW carrier densities stays unchanged. The electron in-scattering
rates increase by a factor of about 5, while a dramatic increase of 5 × 104 is
observed for the electron out-scattering. Nevertheless the out-scattering rates stay
an order of magnitude smaller than the in-scattering rates. For the holes the
situation is different. The much higher GS out-scattering rate is comparable to
the out-relaxation rate and for a large range of operation conditions the effective
out-scattering rate is higher than the effective in-scattering rate. The resulting
effective lifetimes of the GS levels for both carrier types, τ eff

b = (Sin,eff
b + Sout,eff

b )−1,
are plotted in Figure 1.8a.

Another effect that results from the presence of an ES in the QD laser system is
an increased loss rate in the equation for the QW carrier density (term in square
brackets in Eq. (1.27)). This leads to higher threshold currents and to a speedup of
the device.

To get a further insight into the correlations between the scattering rates and the
turn-on dynamics, Section 1.5 discusses the analytic approximation for frequency
and damping of the ROs of the QD laser. Before doing that, experimental results
of QD lasers will be compared to numeric results obtained with the reduced
five-variable rate-equation system.

1.4
Quantum Dot Switching Dynamics and Modulation Response

This section aims to discuss the modulation response and switching dynamics
in comparison with experimental results [26]. Because the experimental results
were obtained on a laser that showed only GS lasing, the reduced five-variable rate
equation system of Section 1.3.3 is used for the simulations. As all quantities now
refer to the GS, the superscript G is omitted in the following. The nonlinear rate
equations (Eqs. (1.28)–(1.32)) describe the dynamics of the charge carrier densities
in the QD GS, ne and nh, the carrier densities in the QW, we and wh (e and h
stand for electrons and holes, respectively), and the photon density nph of the GS
transition.

ṅe = Sin
e (NQD − ne) − Sout

e ne − WA(ne + nh − NQD)nph − Rsp, (1.28)

ṅh = Sin
h (NQD − nh) − Sout

h nh − WA(ne + nh − NQD)nph − Rsp, (1.29)

ẇe = η
J(t)

e0
− Nsum

NQD

[
Sin

e (NQD − ne) − Sout
e ne

] − B(we)wewh, (1.30)

ẇh = η
J(t)

e0
− Nsum

NQD

[
Sin

h (NQD − nh) − Sout
h nh

] − B(we)wewh, (1.31)

ṅph = −2κnph + 	WA(ne + nh − NQD)nph + βRsp. (1.32)
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Here, the scattering rates Sin
b and Sout

b (b = e, h) used for the following simulations
result from microscopic calculations that do not consider a second ES in the QDs.
Their values as a function of the carrier densities wb can be found in [8, 26].
Nevertheless, it is noted that similar results can been obtained with the full system
discussed in Section 1.3.

1.4.1
Inhomogeneous Broadening

The spectral properties of the laser output are not addressed in the model, as
the photon density is an average of all longitudinal modes inside the cavity.
However, changes in the number of longitudinal modes are taken into account
by changes in the active QD density NQD, which basically changes the gain of
the active medium. With a given QD size distribution pi (where i is the index
for a certain longitudinal mode frequency νi), the QD density participating in the
emission at a given frequency νi is NQD

i = piNsum. Thus, the density of all active
QDs is given by NQD = ∑

kpkNsum (the index k denotes the lasing longitudinal
modes). The mode spacing inside the cavity (L = 1 mm) is �hν = 0.17 meV(�λ =
0.22 nm), while the standard deviation of the QD size distribution [2] is about
σinh = 65 meV = 380 �hν. Thus, 70% of all QDs are active (NQD = 0.7 Nsum) if
the laser emits light at 380 longitudinal modes and only 3% (NQD = 0.03 Nsum)
for a laser linewidth of 3.5 nm. On the basis of the experimental lasing spectra
that show an increase in the lasing linewidth with increasing pump current
(Figure 1.9), the pump-current-dependent spectral properties of the active QDs are
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taken into account and NQD is implemented as a function of the QW carrier density
[26] (Eq. (1.33)).

NQD

10−4 nm−2
= 0.75 − 0.74 exp

(
− 106

1.75
w2

e

)
, (1.33)

A more rigorous way to implement inhomogeneous broadening, which occurs
in real devices because of fluctuations in QD size and material composition, and
directly affects the energy levels, is accounted for by assuming a Gaussian size
distribution around a central GS transition frequency ω0 with standard deviation

δω. The spectral QD density is then given by N(ω) = NQD√
2πδω

exp
[
− (ω−ω0)2

2δ2
ω

]
and

the total QD density NQD is approximated by a sum over a finite number of
subensembles NQD = ∑

jN
j = ∑

jN(ωj)�ω, where �ω denotes the spectral width
of the QD subgroups. Subsequently, a separate rate equation is used for each
subensemble. For details, see, for example, [15, 33].

1.4.2
Temperature-Dependent Losses in the Reservoir

In addition to the temperature dependence of the in- and out-scattering rates
discussed in Section 1.3.1, the carrier losses inside the reservoir will also be
modeled as a function of T . The effect of these T-dependent losses will be most
prominent for the large signal response of the laser while its effect on the turn-on
dynamics and modulation response is small. The rate Rloss = Bwewh that accounts
for these losses is a sum of the spontaneous bimolecular band–band recombination
and Auger-related losses inside the QW given by BAwewewh. The Auger coefficient
BA has been shown [34] to depend significantly on the temperature T , and is
therefore implemented such that it leads to a doubling of the rate for a temperature
change of 60 K (Eq. (1.24)) as found in [34]. Thus, BA = 305 nm4 ps−1

(
T

300 K

)4
is

used as given in [26]. Keep in mind that in this section a laser with only GS levels in
the QDs is modeled. Within the extended model described in Section 1.3, the Auger
scattering processes into the ES are already taken into account microscopically,
which results in a different BA for the remaining Auger processes within the QW.
An alternative approach to model temperature characteristics is described in [35]
by assuming nonradiative losses in the reservoir, which are modeled by capture
processes from the reservoir to a midgap defect level.

1.4.3
Comparison to Experimental Results

The laser diode used for the experiments was a ridge waveguide InAs/InGaAs
QD laser diode. The diode incorporates 15 stacks of QD layers having a DWELL
structure [36]. The ridge is etched through the active layer to reduce current
spreading [37] and to enhance wave guiding. The width of the ridge is 4 µm, while
the length is 1 mm. To use the diode in high-frequency modulation schemes, top
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p- and n-contacts in a ground-signal-ground (GSG) configuration, allowing the use
of high-speed, low-loss probe heads, have been processed. The threshold current
density Jexp

th at room temperature is 380 A cm−2 with an emission wavelength close
to 1.3 µm (Figure 1.9a). For pump currents, no ES lasing is found. Both facets
of the laser are as cleaved. The diode is mounted on a copper heat sink and
the light output is coupled to a standard single-mode fiber. A fiber-based isolator
is used to prevent any feedback from influencing the laser diode. Eye diagrams
have been obtained with an Agilent ParBert System, which creates an electrical
pseudorandom binary sequence (PRBS) in a nonreturn to zero configuration. Here,
a PRBS 5 (length: 25−1 bit) is used to make the results comparable to theoretical
calculations.

Figure 1.9b shows the optical response of the laser to an electrical PRBS 5 signal
switching between two levels (1.5 Jth and 3 Jth) of continuous wave (cw) operation.
Simulated and experimentally determined input signals (electrical words) are
shown in the upper panel of Figure 1.9b . Owing to the experimental setup (e.g.,
influence of cables and divider, oscilloscope noise), the measured pump-current
signal (black line) is not as flat as the simulated time trace (gray line). Despite this
small deviation, the measured optical response (black line, lower panel) matches the
simulated laser output (gray line, lower panel) very well. Note that this agreement
could only be achieved by including the dynamic parameters discussed in Section
1.4.1. For constant B, the relaxation peak that appears in the photon output after
switching to higher currents (Figure 1.9b lower panel at t = 4 ns) could not be
modeled because the long lifetime of the carriers in the QW inhibits fast changes
in the QW carrier densities.

By superposing every 3-bit sequences of the laser output shown in Figure 1.9b,
an eye diagram [38] is generated. These eye diagrams can be seen in Figure 1.10a,b,
which shows measured and simulated eye patterns, respectively, for switching
between two different current levels (left column: Jth 	→ 3 Jth and right column:
4 Jth 	→ 6 Jth) and for three different pulse repetition frequencies (2.5, 5 and
10 GHz). Exact agreement in the shape (overshoots, trace, and extinction ratio) of
the calculated and measured diagrams is found. Comparing the laser response for
the different current levels it can be concluded that in order to improve the eye
pattern diagrams, it is better to use higher current levels, as the relaxation peaks
are thereby suppressed. The cutoff frequency of this QD laser – which is related to
its RO frequency of 7 GHz – leads to a closing of the eyes already at 10 GHz. This
can be improved by using higher pump currents; however, the modeling predicts
that there is a trade-off since at the same time device heating results in further
reduction of the RO frequency.

1.5
Asymptotic Analysis

As discussed in the previous sections, the solution to the QD laser equations exhibits
different time scales that require accurate simulations. This section discusses an
alternative to computationally expensive studies by using asymptotic methods. They
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are motivated by the observation of quite different lifetimes between the carriers
and the photons in the cavity (γ = W/(2κ) ≈ 7 × 10−3). In order to simplify the
rate equations, it is recalled that semiconductor lasers admit the properties of class
B lasers. By applying approximation techniques appropriate for this class of lasers
[39], it is possible to expand the full rate equation system in orders of

√
γ . The

asymptotic techniques used for the analysis are described in detail in Chapter 6 [19],
while the main results, that is, the analytic expressions for damping and frequency
of the relaxation oscillations (ROs) of the laser, are discussed in the following. Note
that the asymptotic results are valid only for scattering lifetimes that are on the
order of several picoseconds or larger. For faster carriers the dynamics approaches
the one of QW lasers and different scalings have to be used for the asymptotic
analysis (see the limit large B in [46]).

The frequency ωRO of the ROs can be obtained from the leading order problem of
the expansion in powers of

√
γ (see [40] for details) and is also valid far away from

the fixed point. However, it is mathematically more convenient to determine the
damping of the RO from the linearized problem including both O(1) and O(

√
γ )

terms. Thus, the damping rate of the ROs equals the real part of the eigenvalue λ

of the characteristic polynomial of the linearized problem. To point out the effect
of the scattering lifetimes τe and τh on the damping rate, the eigenvalues λ are
computed as a function of the dimensionless parameter ae and ah defined as

a−1
e = (Sin

e + Sout
e )−1 · ωRO = τe · ωRO and a−1

h = τh · ωRO. (1.34)

The values of Re(λ) and Im(λ) are plotted in Figure 1.11a,b. It is striking that for
constant and small ae, the real part of λ first increases with ah before it starts
to decrease again. Thus, there is an optimal value for the carrier lifetimes if
large damping is required. The parameter space for the carrier lifetimes explored
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and linearized laser problem. The white area
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respectively.



24 1 Modeling Quantum-Dot-Based Devices

in Figure 1.11 can be separated into three different areas. The ‘‘overdamped
case’’ without ROs in the turn-on dynamics if both a parameters are large (small
lifetimes); ‘‘Case S’’ having equal lifetimes for both species and ‘‘Case D’’ showing
large timescale separation and, therefore, one large and one small parameter of ae

and ah.
For the QD laser modeled in Section 1.4, the microscopic calculations yield fast

hole scattering rates with lifetimes that are in the range of picoseconds. This leads
to high values of ah (ah > 5), while the slower electrons with their small scattering
rates are characterized by ae ≈ 0. Consequently, following the analytic approach for
‘‘case D,’’ the RO frequency and damping rate could be obtained, which are given
by Lüdge et al. [40]

ωDa
RO = 2π f Da

RO =
√

An∗
phW2κ , (1.35)

=
√

	WANQD

Nsum
JGth

(
J

JGth
− 1

)
(1.36)

	Da
RO = κAn∗

phWτh + 1
2τe

+ W

2
(An∗

ph + n∗
h

NQD
) (1.37)

≈ 1

2
(ωDa

RO)2 (
(2κ)−1 + τh

) + 1

2τe
(1.38)

where the superscript Da means case D with ah large. The analytic solutions
shown in Eqs. (1.35) and (1.37) for frequency and damping of the ROs have been
compared to numerically obtained data in Figure 1.12b,c. Note the good agreement
between the numeric values (symbols) and the analytic expressions (lines). The
numeric values for ωRO and 	RO have been obtained by fitting the function
nph(t) � C sin(ωROt + φ) exp(−	ROt) to the turn-on transients. Equation (1.37) for
the damping rate can be further simplified by omitting the smallest term (the one
containing n∗

h), leading to Eq. (1.38). This reveals that the K-factor (ratio between
damping rate and frequency squared [41, 42]) depends on three contributions.
The smallest results from the scattering processes of the fast species (τh), the
intermediate contribution is proportional to the cavity lifetime ((2κ)−1), while
the dominating effect scales with the scattering rates of the slow species. The
RO frequency instead does not explicitly depend on the scattering rates, but is
determined by JGth and the differential gain 	WA (Eq. (1.36) obtained by inserting
the steady-state relation n∗

ph from Eq. (1.20)).
A different scaling is found for ‘‘case S’’ (see [40]) with small scattering rates

for both carrier types (this can be achieved by changing the band structure and
increasing the hole confinement energy).

ωS
RO =

√
2An∗

phW2κ (1.39)

	S
RO = W

2
[2An∗

ph + 1] + κ

	ANQD + 1

4τe
+ 1

4τh
(1.40)

≈ 1

2
(ωS

RO)2(2κ)−1 + 1

4τe
+ 1

4τh
. (1.41)
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Figure 1.12 (a) Turn-on dynamics of the
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rate, respectively. (nph(t) � C sin(ωROt +
φ) exp(−	ROt) is used to extract ωRO and
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For this ‘‘case S,’’ the expression of the RO frequency in Eq. (1.39) is the same as
the one for the conventional semiconductor laser [39]. However, the expression of
the damping rate is different. It contains the familiar term W

2

[
2An∗

ph+1
]

that is
found for the damping rate of QW lasers [19], but as already known from ‘‘case D’’
the dominating contribution stems from the scattering rates between QD and the
reservoir.

By changing the confinement energy in the numeric calculations of the scattering
rates it is possible to obtain small scattering rates and thus a ‘‘case S’’ like behaviour
of the QD laser. The results of this simulation are plotted in Figure 1.12a showing
weakly damped ROs. The analytic expressions accurately predict this behavior (see
lines in Figure 1.12b,c), which makes them a powerful analytical tool for designing
QD laser devices with optimal operation conditions.

1.5.1
Consequences of Optimizing Device Performance

The analytical expressions for the RO frequency and RO damping rate for the
different parameter ranges show that the RO frequency ωRO does not explicitly
depend on the carrier–carrier scattering between QW and QD. It strongly depends
on the cavity lifetime (2κ)−1 and radiative recombination lifetime W−1 and on the
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threshold current of the QD laser, which are determined by the gain, the ratio
between in- and out-scattering rates, and the losses in the QW.

The damping rate 	RO, instead, is crucially affected by the carrier–carrier scat-
tering rates. For equal lifetimes of electrons and holes, the damping increases
with decreasing lifetimes τe and τh. If both carrier types have different lifetimes,
only the slowest species (for the chosen QD–QW system, these are the elec-
trons) determines the damping rate, whereas the effect of the fast species is
negligible.

In the next section, numeric simulations of QD lasers with doped carrier
reservoir are discussed. Owing to the density-dependent Coulomb scattering rates,
the doping modifies the carrier lifetimes in a controlled way and thus it is a good
tool on the one hand for testing the analytics and on the other hand to optimize the
device performance.

1.6
QD Laser with Doped Carrier Reservoir

A doped QW can be implemented by choosing different initial conditions for
electron and hole densities in the QW. Without doping, the following initial
conditions have been used, that is, n0

e = 0, n0
h = 0, w0

e = 10−2DekT , and w0
h =

10−2DekT . Note that charge conservation is contained in the five-variable rate
equation system Eqs. (1.28)–(1.32), thus leading to only four independent dynamic
variables that are related by

Nsum(ṅe − ṅh) − NQD(ẇh − ẇe) = 0 (1.42)

which can be integrated giving

Nsum(ne − nh) − NQD(wh − we) = NQD(w0
e − w0

h). (1.43)

By increasing w0
e or w0

h and keeping the other at the small value of 10−2DekT ,
it is possible to model n- or p-doping, respectively. Because the rate equation
system treats 2D densities, the doping concentrations n ≈ w0

e and p ≈ w0
h are also

given per area. To compare this to 3D doping densities, the areal densities have
to be divided by the QW height, which is h = 4 nm. Thus, n = 2 × 1011cm−2

corresponds to n3D = 5 × 1017cm−3. Figure 1.13c,d shows that changes in initial
conditions drastically modify the QD laser turn-on dynamics. For n-doping, the
damping of the ROs is increased, whereas the damping is drastically reduced
if p-doping is introduced. This behavior can be understood by discussing the
steady-state values for the QW carrier densities wb.

N-doping increases the QW electron density, which then leads to higher
in-scattering rates Sin

e (Figure 1.3) and, therefore, to higher carrier densities n∗
e . On

the contrary, p-doping leads to a higher QW hole concentration and thus to higher
occupation of the QD hole levels. Note, however, that the increased QW hole density
for p-doped samples also has an effect on the out-scattering rate, as this contains
a factor that exponentially decreases with we through the detailed balance relation
(Eq. (1.13)). The scattering time τh for holes decreases with increasing p-doping,
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correspond to doping of 0.1, 0.2, and 0.4
times the degeneracy concentration De/hkT,
respectively. (DekT = 4.7 × 1011 cm−2 and
DhkT = 48 × 1011 cm−2). Parameters as in
Table 1.1; pump current is J = 2.5 Jth.

while the scattering time for electrons increases as plotted in Figure 1.13b. The
ratio between the timescales of both carriers decreases from τh/τe = 5/100 for the
undoped case to a value of τh/τe = 3/500 for a p-doping of p = 20 × 1011 cm−2.
Using the analytic expression Eq. (1.37) for the damping rate explains that the
lower damping results from the longer lifetime of the small species, whereas the
changes in the hole lifetime only marginally affect the damping rate.

Figure 1.14a shows the steady-state characteristics of the QD laser projected onto
the (nh, ne)-phase space for two different n-doping densities (squares and triangles)
and two different p-doping densities (open circles and stars). Figure 1.14b,c
shows close-ups for very high p-doping. Going from high p-doping to n-doping,
the steady states n∗

e and n∗
h move up along an approximately straight line in

(nh, ne)-phase space that is given by Eq. (1.23), while the turn-on dynamics becomes
more strongly damped and synchronized between electrons and holes. This is
different from changing the steady-state values by varying the confinement energy
as the increased steady-state values n∗

e (induced by increasing �Ee) lead to a
desynchronization (separation of timescales) of electrons and holes.

Comparison with Analytic Results

The analytical approximations of Section 1.5 and the obtained predictions about
changes in the laser turn-on dynamics are in good agreement with the numerical
simulations of a laser with different doping densities discussed in the last section.
The increasing n-doping concentration in a QD laser with timescale separation of
the carriers (‘‘case D’’ in Section 1.5) leads to a decrease in the electron lifetime,
which was at the same time accompanied by an increased damping. With the
analytic formula given in Eq. (1.37), the increased damping can be explained with
the decreased lifetime (Sin

e + Sout
e = τ−1

e increases). On the other hand, p-doping
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of the same device did not yield a higher RO damping. The reason for this
counterintuitive result is the separation of timescales of electron and hole lifetimes
(which is the case for material with large differences in the effective masses of
electrons and holes). The slowest species determines the dynamics and, thus,
manipulating its lifetime has a drastic effect on the laser dynamics (Eq. (1.37)).
Instead, manipulating the lifetime of the fast species has only a minor effect.
The reduced damping for p-doping concentration is based on a reduction of the
electron lifetimes, which has its physical origin in the increased rate for mixed
electron–hole Coulomb scattering processes because of the excess holes in the
reservoir. It confirms that p-doping is beneficial for the modulation response of QD
lasers [43]. If a high RO damping rate is a desired property of QD lasers, n-doping
should be helpful.

1.7
Model Reduction

One way to simplify the discussed QD laser model is to neglect the density
dependence of the scattering rates and to use constant carrier lifetimes; see, for
example, [27, 33, 35]. If these lifetimes are chosen properly, they can lead to decent
results at a certain point of operation. Nevertheless, the uncertainty in the choice
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of proper simulation parameters, which is necessary for those models, will lead to
a large uncertainty regarding the results. Moreover, effects such as doping or the
effect of changing the QD size cannot be studied. There are also approaches that
take into account a phenomenological density dependence of the carrier lifetimes;
see, for example, [44], but again the problem of choosing the correct parameters
remains.

A simpler three-variable rate equation model was formulated by O’Brien et al. [45]
and is widely used for QD laser modeling (see [46] for detailed analytic discussions
of this model). This model does not distinguish between electrons and holes; it
assumes the same dynamics for both species, and it uses in-scattering rates into the
QDs that linearly increase with the reservoir carrier density, while the out-scattering
rates are constant. Following the analytic results of Section 1.5, a reduction in the
full microscopic five-variable model to a model that only assumes one carrier type
is possible, but two cases have to be distinguished. If electrons and holes relax on
a similar timescale (‘‘case S’’), the mean value of electron and hole rates needs to
be included; however, for timescale separation between the lifetimes of the species
(‘‘case D’’), the scattering rate of the slow species will be the important one that
determines the dynamics. If this is kept in mind, the (linearly fitted) microscopic
in-scattering rates can be used as input parameters for the three-variable rate
equation system. Nevertheless, it has to be noted that these parameters need to be
adjusted if large variations of the pump current or different doping densities are
modeled.

1.8
Comparison to Quantum Well Lasers

If a QD laser model is compared to a QW laser model [47, 48], one striking
difference is that the current is not injected directly into the active region, and
an additional reservoir has to be included. The relatively slow scattering processes
from the carrier reservoir into the QD levels are responsible for the high damping
of the turn-on process (Section 1.5) and thus also for the flat modulation response
curve of QD lasers if compared to the pronounced peak found for QW lasers. In the
limit of large and equal scattering rates for electrons and holes, the QD laser model
can be reduced to a QW laser model as shown in [46]. However, the modulation
bandwidth (and the cutoff frequency) of QD lasers is also much smaller because
of the smaller RO frequency. The reason for this lies in the fact that the threshold
currents needed to invert the localized two-level system is much smaller than the
current needed to invert a 2D electron gas.

If complex integrated structures, for example, QD lasers subjected to optical
feedback [18, 49] or lasers with saturable absorber are discussed (see Chapter 7 [50]
and Chapter 8 [51]), the high damping of the turn-on dynamics of the QD laser is one
crucial parameter when discussing differences with respect to QW lasers. Another
parameter that differs between QD and QW laser devices is the phase–amplitude
coupling (linewidth enhancement factor). It comes into play as soon as the phase
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of the electric field is important, for example, when modeling feedback problems
(see Chapter 6 [19]). For a discrete two-level system, the α-factor is zero because
of the symmetric gain spectrum. For an inhomogeneously broadened ensemble
of QDs inside the QD laser, α still remains small [52] and leads, for example,
to a smaller chirp and higher feedback sensitivity of QD lasers (see [18] for a
comparison of both laser models with feedback).

1.9
Summary

This chapter reviewed a microscopic rate equation approach that can be used
to model the dynamic response of electrically pumped edge emitting QD lasers.
Different levels of complexity have been explored. A detailed discussion of the
Coulomb scattering rates between localized QD levels and the 2D carrier reservoir
in the surrounding QW has underlined the importance of these nonlinear Auger
rates for a quantitative modeling of the QD laser device. Two-state lasing properties
as well as the effect of additional confined levels on the GS lasing properties have
been analyzed. It was shown that temperature, band structure, as well as doping
of the carrier reservoir can significantly alter the laser dynamics. Nevertheless, all
of these effects can be traced back to the values of the carrier–carrier scattering
rates and their nonlinear dependence on the carrier densities in the reservoir.
Furthermore, asymptotic analysis has allowed analytic insights into the relations
between frequency and damping of the turn-on dynamics and the carrier lifetimes
that finally permitted to predict the dynamics of the laser without tedious numeric
simulations, and provide insight into the governing physical mechanism.
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Dommers-Völkel, S., Gomis-Bresco,
J., Knorr, A., Woggon, U., and Schöll,
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