1
Introduction

1.1
Carbon Nanotubes

Graphite and diamond are both made of carbons. They have different lattice struc-
tures and different properties. Diamond is brilliant and it is an insulator while
graphite is black and it is a good conductor.

In 1991 Iijima [1] discovered carbon nanotubes (CNT5) in the soot created in
an electric discharge between two carbon electrodes. These nanotubes ranging
from 4 to 30 nm in diameter were found to have helical multiwalled structures
as shown in Figures 1.1 and 1.2 after electron diffraction analysis. The tube length
is about 1 pm.

The scroll-type tube shown in Figure 1.2 is called a multiwalled carbon nanotube
(MWNT). A single-wall nanotube (SWNT) was fabricated by lijima and Ichihashi [2]
and by Bethune et al. [3] in 1993. Their structures are shown in Figure 1.3.

The tube is about 1 nm in diameter and a few micrometers in length. The tube
ends are closed as shown. Because of their small radius and length-to-diameter
ratio > 10, they provide an important system for studying two-dimensional (2D)
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Figure 1.1 Schematic diagram showing (a) a helical arrangement of graphitic carbons and (b)
its unrolled plane. The helical line is indicated by the heavy line passing through the centers of
the hexagons.
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Figure 1.2 A multiwalled nanotube. The tube diameter ranges
from 4 to 30 nm and its length is about 1 um. (Original figure,
lijima [1])

physics, both theoretically and experimentally. Unrolled carbon sheets are called
graphene.” They have a honeycomb lattice structure as shown in Figure 1.1b.

A SWNT can be constructed from a slice of graphene (that s a single planar layer
of the honeycomb lattice of graphite) rolled into a circular cylinder.

Carbon nanotubes are light since they are entirely made of the light element car-
bon (C). They are strong and have excellent elasticity and flexibility. In fact, carbon
fibers are used to make tennis rackets, for example. Their main advantages in this
regard are their high chemical stability as well as their strong mechanical proper-
ties.

Today’s semiconductor technology is based mainly on silicon (Si). It is said that
carbon-based devices are expected to be as important or even more important in the
future. To achieve this purpose we must know the electrical transport properties of
CNTs, which are very puzzling, as is explained below. The principal topics in this
book are the remarkable electrical transport properties in CNTs and graphene on
which we will mainly focus in the text.

The conductivity o in individual CNT5 varies, depending on the tube radius and
the pitch of the sample. In many cases the resistance decreases with increasing
temperature. In contrast the resistance increases in the normal metal such as cop-
per (Cu). The electrical conduction properties in SWNTS separates samples into two
classes: semiconducting or metallic. The room-temperature conductivities are higher
for the latter class by two or more orders of magnitude. Saito et al. [6] proposed a
model based on the different arrangements of C-hexagons around the circumfer-
ence, called the chiralities. Figure 1.3a—c show an armchair, zigzag, and a general
chiral CNT, respectively. After statistical analysis, they concluded that semiconduct-
ing SWNTs should be generated three times more often than metallic SWNTs.
Moriyama et al. [7] fabricated 12 SWNT devices from one chip, and observed that

1) Graphene is the basic structural element of graphite which contains many layers of
some carbon allotropes including graphite, carbon hexagons. Two-dimensional graphene
CNTs, and fullerenes. The name comes from can exist in nature as the spacing between
graphite + -ene; graphite itself is composed layers (3.35 A) is longer than the distance to
of many graphene sheets stacked together. neighboring atoms ac ¢ (1.42 A) within the
Graphene as a name indicates a single, same plane. It has been challenging to isolate

two-dimensional layer of three-dimensional one layer from bulk graphite.
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Figure 1.3 SWNTs with different chiralities the C-hexagon in the honeycomb lattice rel-
and possible caps at each end: (a) shows a so-  ative to the tube axis can be taken arbitrarily.
called armchair carbon nanotube (CNT), (b) a  The terms “armchair” and “zigzag” refer to
zigzag CNT, and (c) a general chiral CNT. One  the arrangement of C-hexagons around the
can see from the figure that the orientation of  circumference. (From [4, 5]).

two of the SWNT samples were semiconducting and the other ten were metallic,
a clear discrepancy between theory and experiment. We propose a new classifica-
tion. The electrical conduction in SWNT5 is either semiconducting or metallic de-
pending on whether each pitch of the helical line connecting the nearest-neighbor
C-hexagon contains an integral number of hexagons or not. The second alterna-
tive (metallic SWNT) occurs more often since the helical angle between the helical
line and the tube axis is not controlled in the fabrication process. In the former
case the system (semiconducting SWNT) is periodic along the tube length and the
“holes” (and not “electrons”) can travel along the wall. Here and in the text “elec-
trons” (“holes”), by definition, are quasielectrons which are excited above (below)
the Fermi energy and which circulate clockwise (counterclockwise) when viewed
from the tip of the external magnetic field vector. “Electrons” (“holes”) are generat-
ed in the negative (positive) side of the Fermi surface which contains the negative
(positive) normal vector, with the convention that the positive normal points in the
energy-increasing direction. In the Wigner—Seitz (WS) cell model [7] the primitive
cell for the honeycomb lattice is a rhombus. This model is suited to the study of
the ground state of graphene. For the development of the electron dynamics it is
necessary to choose a rectangular unit cell which allows one to define the effective
masses associated with the motion of “electrons” and “holes” in the lattice.
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Silicon (Si) (germanium (Ge)) forms a diamond lattice which is obtained from
the zinc sulfide (ZnS) lattice by disregarding the species. The electron dynamics of
Si are usually discussed in terms of cubic lattice languages. Graphene and graphite
have hexagonal lattice structures. Silicon and carbon are both quadrivalent materi-
als but because of their lattice structures, they have quite different physical proper-
ties.

1.2
Theoretical Background

1.2.1
Metals and Conduction Electrons

A metal is a conducting crystal in which electrical current can flow with little re-
sistance. This electrical current is generated by moving electrons. The electron has
mass m and charge —e, which is negative by convention. Their numerical values
arem = 9.1x1072gand e = 4.8 x 107 %esu = 1.6 x 1071? C. The electron
mass is about 1837 times smaller than the least-massive (hydrogen) atom. This
makes the electron extremely mobile. It also makes the electron’s quantum nature
more pronounced. The electrons participating in the transport of charge are called
conduction electrons. The conduction electrons would have orbited in the outermost
shells surrounding the atomic nuclei if the nuclei were separated from each other.
Core electrons which are more tightly bound with the nuclei form part of the metal-
lic ions. In a pure crystalline metal, these metallic ions form a relatively immobile
array of regular spacing, called a lattice. Thus, a metal can be pictured as a system
of two components: mobil electrons and relatively immobile lattice ions.

1.2.2
Quantum Mechanics

Electrons move following the quantum laws of motion. A thorough understanding
of quantum theory is essential. Dirac’s formulation of quantum theory in his book,
Principles of Quantum Mechanics [9], is unsurpassed. Dirac’s rules that the quantum
states are represented by bra or ket vectors and physical observables by Hermitian
operators are used in the text. There are two distinct quantum effects, the first of
which concerns a single particle and the second a system of identical particles.

1.2.3
Heisenberg Uncertainty Principle

Let us consider a simple harmonic oscillator characterized by the Hamiltonian

pz kxz
t=omt -
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where m is the mass, k the force constant, p the momentum, and x the position.
The corresponding energy eigenvalues are

1/2
1 k
&, = hwy n—i—i , wo=|— , n=0,1,2,... (1.2)

m

The energies are quantized in (1.2). In contrast the classical energy can be any
positive value. The lowest quantum energy ¢y = hwy/2, called the energy of zero-
point motion, is not zero. The most stable state of any quantum system is not a
state of static equilibrium in the configuration of lowest potential energy, it is rather
a dynamic equilibrium for the zero-point motion [10, 11]. Dynamic equilibrium may
be characterized by the minimum total (potential + kinetic) energy under the con-
dition that each coordinate g has a range A g and the corresponding momentum p
has a range Ap, so that the product AqAp satisfies the Heisenberg uncertainty rela-
tion:

AqAp > h . (1.3)

The most remarkable example of a macroscopic body in dynamic equilibrium is
liquid helium (He). This liquid with a boiling point at 4.2 K is known to remain
liquid down to 0 K. The zero-point motion of He atoms precludes solidification.

1.2.4
Bosons and Fermions

Electrons are fermions. That is, they are indistinguishable quantum particles sub-
ject to the Pauli exclusion principle. Indistinguishability of the particles is defined
by using the permutation symmetry. According to Pauli’s principle no two elec-
trons can occupy the same state. Indistinguishable quantum particles not subject
to the Pauli exclusion principle are called bosons. Bosons can occupy the same
state with no restriction. Every elementary particle is either a boson or a fermion.
This is known as the quantum statistical postulate. Whether an elementary particle
is a boson or a fermion is related to the magnitude of its spin angular momentum
in units of %. Particles with integer spins are bosons, while those with half-integer
spins are fermions [12]. This is known as Paulf’s spin-statistics theorem. According to
this theorem and in agreement with all experimental evidence, electrons, protons,
neutrons, and u-mesons, all of which have spin of magnitude #/2, are fermions,
while photons (quanta of electromagnetic radiation) with spin of magnitude #, are
bosons.

1.2.5
Fermi and Bose Distribution Functions

The average occupation number at state k, denoted by (ny), for a system of free
fermions in equilibrium at temperature T and chemical potential u is given by the
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Fermi distribution function:

1 .
(nk) = fr(ex) = explcr — )/ (b T) + 1 for fermions, (1.4)

where ¢, is the single-particle energy associated with the state k. The average oc-
cupation number at state k for a system of free bosons in equilibrium is given by
the Bose distribution function:

1

(ny) = foler) = p((r— @) nT)) =1 for bosons. (1.5)

1.2.6
Composite Particles

Atomic nuclei are composed of nucleons (protons, neutrons), while atoms are
composed of nuclei and electrons. It has been experimentally demonstrated that
these composite particles are indistinguishable quantum particles. According to
Ehrenfest—Oppenheimer—Bethe’s rule [12, 13], the center of mass (CM) of a composite
moves as a fermion (boson) if it contains an odd (even) number of elementary
fermions. Thus, He* atoms (four nucleons, two electrons) move as bosons while
He? atoms (three nucleons, two electrons) move as fermions. Cooper pairs (two
electrons) move as bosons.

1.2.7
Quasifree Electron Model

In a metal at the lowest temperatures conduction electrons move in a nearly sta-
tionary periodic lattice. Because of the Coulomb interaction among the electrons,
the motion of the electrons is correlated. However, each electron in a crystal moves
in an extremely weak self-consistent periodic field. Combining this result with the
Pauli exclusion principle, which applies to electrons with no regard to the interac-
tion, we obtain the quasifree electron model. The quasifree electron moves with the
effective mass m™ which is different from the gravitational mass m.. In this model
the quantum states for the electron in a crystal are characterized by wave vector
(k vector: k) and energy

e = E(k). (1.6)

At 0K, all of the lowest energy states are filled with electrons, and there exists a
sharp Fermi surface represented by

E(k) = e, (1.7)

where ¢5 is the Fermi energy. Experimentally, the electrons in alkali metals, which
form body-centered cubic (bcc) lattices, including lithium (Li), sodium (Na), and
potassium (K), behave like quasifree electrons.



1.2 Theoretical Background |7

1.2.8
“Electrons” and “Holes”

“Electrons” (“holes”) in the text are defined as quasiparticles possessing charge e
(magnitude) that circulate counterclockwise (clockwise) when viewed from the tip
of the applied magnetic field vector B. This definition is used routinely in semicon-
ductor physics. We use the quotation-marked “electron” to distinguish it from the
generic electron having the gravitational mass me. A “hole” can be regarded as a
particle having positive charge, positive mass, and positive energy. The “hole” does
not, however, have the same effective mass m™ (magnitude) as the “electron,” so
that “holes” are not true antiparticles like positrons. We will see that “electrons” and
“holes” are thermally excited particles and they are closely related to the curvature
of the Fermi surface (see Chapter 3).

1.2.9
The Gate Field Effect

Graphene and nanotubes are often subjected to the so-called gate voltage in experi-
ments. We will show here that the gate voltage polarizes the conductor and hence
the surface charges (“electrons,” “holes”) are induced. The actual conductor may
have a shape and a particular Fermi surface. But in all cases surface charges are
induced by electric fields. If a bias voltage is applied, then some charges can move
and generate currents.

A.
Let us take a rectangular metallic plate and place it under an external electric field
E, see Figure 1.4.

When the upper and lower sides are parallel to the field E, then the remaining
two side surfaces are polarized so as to reduce the total electric field energy. If the
plate is rotated, then all side surfaces are polarized.

B.

Let us now look at the electric field effect in k-space. Assume a quasifree electron
system which has a spherical Fermi surface at zero field. Upon the application of
a static field E, the Fermi surface will be shifted towards the right by gEz/m*,
where 7 is the mean free time and m™ the effective mass, as shown in Figure 1.5.
There is a steady current since the sphere is off from the center O. We may assume

conductor

E —>»

bt

Figure 1.4 The surface charges are induced in the conductor under an external electric field E.
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Figure 1.5 The Fermi surface is shifted by eE7/m™ due to the electric field E.

that the ionic lattice is stationary. Then, there is an unbalanced charge distribution
as shown, where we assumed g = —e < 0. This effect will appear only on the
surface of the metal. We used the fermionic nature of electrons in B.

1.3
Book Layout

In Chapters 2 and 3 kinetic theory and Bloch electron dynamics are developed,
respectively. Phonon and electron—phonon interaction are discussed in Chapter 4.
These chapters are preliminaries for the theory of the conductivity of carbon nan-
otubes, which is discussed in Chapters 5 and 6. Semiconducting SWNTs are dis-
cussed in Chapter 6. A quantum statistical theory of superconductivity is summa-
rized in Chapter 7. Chapter 8 deals with the supercurrents in metallic SWNTSs,
starting with the BCS-like Hamiltonian and deriving expressions for a linear dis-
persion relation, and a critical (superconducting) temperature. Metallic SWNTs ex-
hibit non-Ohmic behavior, and charged particles appear to run through the tube
length with no scattering. We interpret this in terms of the condensed Cooper pairs
(pairons).

An applied static magnetic field induces a profound change in the electron states.
Pauli’s paramagnetic and Landau’s diamagnetism are described in Chapter 9. Lan-
dau states generate an oscillatory density of states that induces de Haas—van Alphen
oscillation which is discussed in Chapter 10. The Quantum Hall Effect (QHE) in
GaAs/AlGaAs is summarized in Chapter 11. The QHE in graphene observed at
room temperature is discussed in Chapter 12. The QHE occurs where the “hole”
(“electron”) density becomes high near the neck Fermi surface, which develops
by charging the graphene through the gate voltage. The different temperatures
generate different carrier densities and the resulting carrier diffusion generates a
thermal electromotive force. A new formula for the Seebeck coefficient is obtained
and is applied to multiwalled carbon nanotubes in Chapter 13. In Chapter 14, we
discuss miscellaneous topics.



1.4 Suggestions for Readers |9

1.4
Suggestions for Readers

Graphene and CNTs are composed entirely of carbons but their lattice structures
are distinct from each other. The simple free electron model does not work. To de-
scribe the electrical conduction of graphene and CNT5 it is necessary to understand
a number of advanced topics including superconductivity and Fermi surfaces.

1.4.1
Second Quantization

Reading Chapter 7 Superconductivity requires a knowledge of second quantization.
The authors suggest that the readers learn the second quantization in two steps.

1. Dirac solved the energy-eigenvalue problem for a simple harmonic oscillator in
the Heisenberg picture, using creation and annihilation operators (a', a), see
Chapter 4, Section 4.3. We follow Dirac [9] and obtain the eigenvalues, (n’ +
1/2)hw, where n’ is the eigenvalues of n = a¥a, n’ = 0,1,2,...

2. Read Appendix A.1, where a general theory for a quantum many-boson and
fermion system is presented.

1.4.2
Semiclassical Theory of Electron Dynamics

Electrons and phonons are regarded as waves packets in solids. Dirac showed that
the wave packets move, following classical equations of motion [9]. The conduc-
tion electron (“electron,” “hole”) size is equal to the orthogonal unit cell size. The
phonon size is about two orders of magnitude greater at room temperature. The
“electron” and “hole” move with effective masses m™* which are distinct from the
gravitational effective mass me.. Bloch electron dynamics are described in Chap-
ter 3.

143
Fermi Surface

The time-honored WS cell model can be used for cubic lattice systems including
a diamond lattice. For hexagonal systems including graphene and graphite an or-
thogonal unit cell model must be used to establish the k-space. Read Sections 5.2
and 5.4. The same orthogonal unit cell model must be used for the discussion of
phonons.

In our quantum statistical theory we do not jump to conclusions. We make argu-
ments backed up by step-by-step calculations. This is the surest way of doing and
learning physics for ordinary men and women.
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