Contents

Preface to the Third Edition VII

- 1 Development of the Ideas and Instruments of Modern Solar Research 1
- 1.1 Early Telescopic Discoveries on the Sun 1
- 1.2 The Spectroscope and Photography 5
- 1.3 Solar-Terrestial Research and the New Astronomy 7
- 1.4 Solar Chemical Composition and Energy Generation 14
- 1.5 The Mt. Wilson Era of Large Telescopes 16
- 1.6 Advances in Coronal Physics and in the Theory of Solar Activity 21
- 1.7 Observations at Radio, Ultraviolet, and X-Ray Wavelengths 25
- 1.8 The Solar Wind and Heliosphere 27
- 1.9 Modern Solar Instrumentation 29

2 Radiative Transfer in the Sun's Atmosphere 39

- 2.1 Photometric Principles 40
- 2.1.1 The Radiative Intensity 40
- 2.1.2 The Net Outward Flux and the Solar Constant 42
- 2.2 The Radiative Transfer Equation 45
- 2.2.1 The Optical Depth and Source Function 45
- 2.2.2 Solution for Constant Source Function 47
- 2.2.3 Solution for a Linear Source Function: The Eddington-Barbier Relation 48
- 2.3 Thermodynamic Equilibrium 51
- 2.3.1 The Planck Function 51
- 2.3.2 Kirchhoff's Law 52
- 2.3.3 Local Thermodynamic Equilibrium (LTE) 53
- 2.3.4 The Brightness- and Effective Temperatures 54
- 2.4 The Gray Atmosphere 54
- 2.4.1 Formulation of the Problem 54
- 2.4.2 Gray Limb Darkening in the Eddington Approximation 56
- 2.4.3 The Photospheric Level Identified with Radiation at $T_{\rm eff}$ 57
- 2.4.4 Radiative Diffusion 58
- 2.5 Radiative Transfer in the Fraunhofer Lines 59

Solar Astrophysics. Peter V. Foukal

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

- Contents
 - 2.5.1 Formation of Fraunhofer Lines 59
 - 2.5.2 The Transfer Equation for Lines 60
 - 2.5.3 The Milne-Eddington Model 61
 - 2.5.4 Comparison with Observations of Line Depth near Disk Center 62
 - 2.5.5 Comparison with Observed Center-to-Limb Behavior 64
 - **3** Solar Spectroscopy 69
 - 3.1 A Survey of the Sun's Spectrum 69
 - 3.2 Atomic Structure 78
 - 3.3 Space Quantization and the Zeeman and Stark Effects 82
 - 3.3.1 The Zeeman Effect 83
 - 3.3.2 The Stark Effect 87
 - 3.4 Multiplet Rules for Transitions 90
 - 3.5 Atomic Transitions and their Excitation 91
 - 3.6 Rates for Radiative Transitions 94
 - 3.7 Boltzmann Equilibrium and the Saha Equation 95
 - 3.8 Rate Equations in Statistical Equilibrium 97
 - 3.9 Line Broadening 98
 - 3.9.1 Thermal and Turbulent Doppler Broadening 99
 - 3.9.2 Radiation Damping and Pressure Broadening 101
 - 3.9.3 Broadening by Self-Absorption 102
 - 3.9.4 Analysis of the Observed Profile of a Spectral Line 102
 - 3.10 Molecules on the Sun 104
 - 4 Dynamics of Solar Plasmas 107
 - 4.1 Hydrostatic Equilibrium 108
 - 4.1.1 Equilibrium in a Homogeneous Gravitational Field 108
 - 4.1.2 Self-Gravitating Atmospheres 109
 - 4.1.3 The Polytropic Approximation 109
 - 4.2 The Equations of Motion 111
 - 4.2.1 Euler's Equation 111
 - 4.2.2 Viscous Forces and the Navier-Stokes Equation 112
 - 4.2.3 The Equation of Continuity 114
 - 4.2.4 The Heat-Balance Equation 115
 - 4.2.5 Conservation of Total Energy 118
 - 4.3 The Influence of Magnetic Fields in Solar Plasma Dynamics 119
 - 4.3.1 The Lorentz Force 119
 - 4.3.2 The Importance of Self-induction 120
 - 4.3.3 The Diffusive and "Frozen-in" Approximations 121
 - 4.4 Wave Motions in the Sun 123
 - 4.4.1 Types of Waves Expected and Observed 123
 - 4.4.2 Sound Waves 123
 - 4.4.3 Simple Waves and Shock Formation 124
 - 4.4.4 Properties of Shock Waves 125
 - 4.4.5 Magnetohydrodynamic Waves 127

хI

- 4.4.6 Internal Gravity Waves 129
- 4.4.7 Plasma Oscillations 129
- 4.5 Charged Particle Dynamics 130
- 4.5.1 Validity of the Continuum Approximation and of Thermal
- Equilibrium 130
- 4.5.2 Charged Particle Motions 131

5 The Photosphere 137

- 5.1 Observations of the Quiet Photosphere 139
- 5.1.1 Limb Darkening 139
- 5.1.2 Observed Properties of Granulation 142
- 5.1.3 The Supergranulation and Photospheric Network 147
- 5.2 Construction of a Photospheric Model 149
- 5.2.1 Physical Assumptions 149
- 5.2.2 Determination of the Temperature Profile from Continuum Limb Darkening *151*
- 5.3 Determination of the Photospheric Opacity 151
- 5.3.1 The Empirical Technique 151
- 5.3.2 The Sources of Photospheric Opacity 153
- 5.4 Physical Structure and Energy Balance of the Photosphere 154
- 5.4.1 Models of Photospheric Structure 154
- 5.4.2 Energy Transport Mechanisms in the Photosphere 158
- 5.5 The Photospheric Chemical Composition and the Curve of Growth 159
- 5.5.1 The Theoretical Curve of Growth 159
- 5.5.2 Comparison with the Empirical Curve 162
- 5.6 The Sun's Chemical Composition 164

6 The Sun's Internal Structure and Energy Generation 171

- 6.1 Equations of Stellar Structure 172
- 6.1.1 Mechanical Equilibrium *172*
- 6.1.2 Energy Transport 173
- 6.1.3 Boundary Conditions 174
- 6.2 Physical Parameters Required for the Solution 175
- 6.2.1 Chemical Composition 175
- 6.2.2 The Mean Molecular Weight 176
- 6.2.3 The Ratio of Specific Heats 176
- 6.2.4 The Radiative Opacity 177
- 6.2.5 Energy Generation Processes 178
- 6.3 Nuclear Reactions in the Sun's Interior 178
- 6.3.1 Factors That Determine the Dominant Reactions 178
- 6.3.2 The Proton-Proton Chain 179
- 6.3.3 The Carbon-Nitrogen Cycle 181
- 6.3.4 Nuclear Energy Generation Rates 183
- 6.4 The Standard Model of Physical Conditions in the Solar Interior 184
- 6.5 Observational Tests of the Standard Model 187

XII Contents

6.5.1	Solar Neutrino Observations 187
6.5.2	Lithium and Beryllium Abundances 190
6.5.3	Stellar Structure and Evolution 191
6.5.4	Geological and Climatological Evidence 192
6.5.5	The Sun's Angular Momentum and Shape 193
6.5.6	Solar Oscillations 195
7	Rotation, Convection, and Oscillations in the Sun 199
7.1	Observations of Solar Rotation 200
7.1.1	Photospheric Doppler Measurements 200
7.1.2	Helioseismic Measurements of Rotation in the Solar Interior 201
7.1.3	Tracer Measurements 202
7.2	Measurements on Convection 204
7.2.1	Observations of Convection at the Photosphere 204
7.2.2	Comparison with Laboratory Measurements 205
7.3	Dynamics of Solar Convection and Rotation 206
7.3.1	Condition for Onset of Convection 206
7.3.2	Gravity Waves 208
7.3.3	Mixing Length Theory 209
7.3.4	Dynamics of Convection in a Plane Layer 211
7.3.5	Models of Granulation 212
7.3.6	Dynamics of Supergranulation 215
7.3.7	Dynamics of the Solar Interior 216
7.4	Observations of Solar Oscillations 218
7.4.1	The 5-min Oscillations 218
7.4.2	Oscillations of Longer and Shorter Periods 223
7.5	Interpretation of Solar Oscillations 223
7.5.1	Resonances in the Sun 223
7.5.2	Oscillation Modes of the Solar Interior 226
7.5.3	Excitation and Damping Mechanisms 229
7.5.4	Comparison of the Observed and Calculated Properties of the
	p-Modes 230
7.5.5	Oscillations as a Probe of the Solar Interior 231
_	
8	Observations of Photospheric Activity and Magnetism 237
8.1	Sunspot Observations 238
8.1.1	Structure of the Umbra and Penumbra 238
8.1.2	Birth and Evolution of Spot Groups 242
8.1.3	Photometry and Spectra of Umbrae 243
8.1.4	Mass Motions and Oscillations 246
8.2	Dynamics of Spots 249
8.2.1	Thermal Structure of the Umbra 249
8.2.2	Why Spots Are Cool 251
8.2.3	Why Spots Cause Dips in the Solar Luminosity 252
8.2.4	Dynamics of Sunspot Evolution 254

Dynamics of Sunspot Evolution 254 8.2.4

- 8.3 Faculae 256
- 8.3.1 Structure and Evolution 256
- 8.3.2 Physical Measurements 257
- 8.3.3 Why Faculae Are Bright 260
- 8.4 Observations of Solar Magnetism 262
- 8.4.1 The Sunspot Magnetic Field 262
- 8.4.2 Photospheric Fields in Faculae and Magnetic Network 264
- 8.4.3 Large-Scale Structure and Evolution of the Photospheric Field 267
- 8.4.4 Global Structure of the Sun's Magnetic Field 273

9 The Chromosphere and Corona 277

- 9.1 The Chromosphere 278
- 9.1.1 Observations of Structures and Motions at the Limb 278
- 9.1.2 Observations on the Disk 280
- 9.1.3 Physical Conditions 287
- 9.1.4 Energy Balance 292
- 9.1.5 Chromospheric Heating 293
- 9.1.6 Dynamics of Spicules and Fibrils 294
- 9.2 The Corona and Transition Region 296
- 9.2.1 Spectrum and Radiation Mechanisms 296
- 9.2.2 Structures of the Corona and Transition Region 297
- 9.2.3 Magnetic Fields and Plasma Motions 300
- 9.2.4 Physical Conditions in Closed and Open Magnetic Structures 306
- 9.2.5 Heating and Dynamics of Coronal Loops and Holes 310

10 Prominences and Flares *319*

- 10.1 Prominences and Filaments 320
- 10.1.1 Observations and Physical Conditions 320
- 10.1.2 Dynamics 324
- 10.2 Flares 330
- 10.2.1 Observations and Physical Conditions 330
- 10.2.2 Energy Release and Dynamics 344
- 10.2.3 Acceleration of Energetic Charged Particles 349

11 Dynamics of the Solar Magnetic Field 353

- 11.1 Dynamics of Solar Magnetic Flux Tubes 353
- 11.1.1 Dynamical Equilibrium and Geometry 353
- 11.1.2 Dynamical Stability 357
- 11.1.3 Thermal Instability 359
- 11.1.4 Plasma Flows 360
- 11.1.5 Oscillations and Waves 362
- 11.1.6 Magnetic Field Dissipation 364
- 11.2 Activity Behavior over the Solar Cycle 367
- 11.2.1 The Sunspot Number and Other Activity Indices 367
- 11.2.2 Time Behavior of the Sun's Magnetic Field 369

XIV Contents

11.2.3	Long-Term Behavior of Solar Activity 370
11.3	Dynamics of the Solar Magnetic Cycle 375
11.3.1	The Babcock Model of the Solar Cycle 376
11.3.2	Dynamical Dynamo Models 379
12	The Solar Wind and Heliosphere 387
12.1	Structure of the Solar Wind 388
12.1.1	In Situ Measurements of Particles and Fields 388
12.1.2	Observations Out of the Ecliptic Plane 393
12.1.3	Cosmic Rays 394
12.1.4	Interplanetary Gas and Dust 398
12.1.5	Structure of the Heliosphere 400
12.2	Transient Features in the Solar Wind 402
12.2.1	High-Speed Streams 402
12.2.2	Interplanetary Shock Waves 403
12.2.3	Coronal Mass Ejections (CME's) 405
12.3	Dynamics of the Solar Wind 407
12.3.1	Thermal Conductivity of the Corona 407
12.3.2	Expansion of the Corona 408
12.3.3	Geometry of the Interplanetary Magnetic Field 411
12.3.4	Energy and Angular Momentum Fluxes 412
12.3.5	Sources of the Wind and of Transient Features 415
13	The Sun, Our Variable Star 419
13.1	The Sun Compared to other Stars 420
13.1.1	The Sun's Location and Proper Motion in the Galaxy 420
13.1.2	Mass, Chemical Composition and Spectrum 421
13.1.3	Luminosity, Radius, and Effective Temperature 422
13.1.4	Chromospheric and Coronal Radiations 423
13.1.5	Stellar Winds and Mass Loss 423
13.1.6	Angular Momentum and Magnetism 424
13.2	Evolution of the Sun 425
13.2.1	The H-R Diagram and Stellar Evolution 425
13.2.2	The Sun's Future Evolution 429
13.2.3	The Early Sun 430
13.3	Stellar Variability 435
13.3.1	Observations of Stellar Activity 435
13.3.2	Mechanisms of Stellar Activity 439
13.4	The Sun's Variable Outputs 443
13.4.1	Total Solar Irradiance Variation 443
13.4.2	Variations in Solar Spectral Irradiance 446
13.4.3	Variability of Radio Frequency Emissions 447
13.4.4	X-ray variability 448
42 4 5	

13.4.5 Particles and Fields 450

- 14 Influences of Solar Variability on the Earth 453
- 14.1 Influences on Space Weather 453
- 14.2 Prediction of Solar Drivers of Space Weather 456
- 14.3 Sun–Climate Influences 459

Index 465