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The Spectroscopic Toolbox

1.1 Introduction

Present spectroscopic instruments use essentially bulk optics, that is, with
sizes much greater than the wavelengths at which the instruments are used
(0.3–2.4 μm in this book). Diffraction effects – due to the finite size of light
wavelength – are then usually negligible and light propagation follows the simple
precepts of geometrical optics. A special case is the disperser or interferometer
that provides the spectral information: these are also large size optical devices
(say 5 cm to 1m across), but which exhibit periodic structures commensurate
with the working wavelengths. The next subsection gives a short reminder of
geometrical optics formulae that dictate how light beams propagate in bulk
optical systems. It is followed by an introduction of a fundamental global
invariant (the optical etendue) that governs the 4D geometrical extent of the
light beams that any kind of optical system can accept: it is particularly useful
to derive what an instrument can – and cannot – offer in terms of 3D coverage
(2D of space and 1 of wavelength).

1.1.1 Geometrical Optics #101

As a short reminder of geometrical optics, that is, again the rules that apply to
light propagation when all optical elements (lenses, mirrors, stops) have no fea-
tures at scales comparable or smaller than light wavelength are listed:

1) Light beams propagate in straight lines in any homogeneous medium (spa-
tially constant index of refraction n).

2) When a beam of light crosses from a dielectric medium of index of refraction
n1 (e.g., air with n close to 1) to another dielectric of refractive index n2 (e.g.,
an optical glass with refractive index roughly in the 1.5–1.75 range), part of the
beam is transmitted (refracted) and the remainder is reflected.The normal to
the surface, the input ray, and the reflected and transmitted rays are in the
same plane, called the incidence plane. For a ray at incidence angle (the angle
between the ray and the normal to the surface) 𝜃i, the transmitted angle 𝜃t
and the reflected angle 𝜃r are given by the very simple formulae: 𝜃r = 𝜃i and
n2 sin 𝜃t = n1 sin 𝜃i (see Figure 1.1).
As indexes of refraction vary with wavelength, a multi-wavelength single

light ray is transmitted as a multicolored fan. Note that the transmission
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Figure 1.1 Light
propagation at an air–glass
interface.

formula above does not give a real 𝜃t value when (n1∕n2) sin 𝜃i is greater
than 1. Hence, for an incidence angle greater than arcsin(n2∕n1), there is no
transmitted light and the beam undergoes total reflection inside the high
refractive index medium n1. This is a useful trick when applicable, since
this is the only way to get reflection of a beam of light with 100% efficiency,
provided all rays have incidence angles greater than the critical value and the
glass surface is superclean.
To extend the above formulas to mirrors in an index of refraction n1

medium, one just uses n1 before the mirror and n2 = −n1 after (1 and −1
when the mirror is in vacuum).

3) Light is actually an electromagnetic wave that carries two orthogonal
so-called polarization states, the p-state with the electric field parallel to
the incidence plane and the s-state with the electric field perpendicular to
the incidence plane. The laws of geometrical reflection and transmission of
light are exactly the same for both polarizations, except when using the few
so-called anisotropic crystals. On the other hand, the reflection coefficients
R and the transmission coefficients T at the interface between two dielectrics
are different for the p and the s components except for normal incidence, that
is, for 𝜃i = 𝜃t = 0. They are given by the Fresnel equations:

Rp =
(n1 cos 𝜃t − n2 cos 𝜃i)2

(n1 cos 𝜃t + n2 cos 𝜃i)2
Rs =

(n1 cos 𝜃i − n2 cos 𝜃t)2

(n1 cos 𝜃i + n2 cos 𝜃t)2
(1.1)

From energy conservation, the transmission coefficients are Tp = 1 − Rp and
Ts = 1 − Rs.

Nearly unpolarized input light, that is, with an equal mix of p and s states is
actually themost common case for artificial light sources, with the notable excep-
tion of many lasers.This is true also for most natural astrophysical sources with a
few exceptions (active galactic nuclei in particular). In the unpolarized case, the
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reflection coefficient is the mean value of Rs and Rp. For common optical glasses
and small incident angles, this gives an about 4% light loss (percentage of reflected
light) when crossing from air to glass. Many IR glasses or crystals, however, have
indexes of refraction as high as 2.5, giving much higher reflection losses (∼ 18%).
For reasonable angles, light beams inside spectrographs remain largely unpolar-
ized, except when a high blaze angle grating is used as seen in Section 1.4.5, unless
the instrument is dedicated to spectropolarimetric investigations, using its own
internal polarization device to separate the p and s beams.
It is easy to see that Rs is never equal to zero; on the other hand, Rp = 0 at the

so-called Brewster incidence angle 𝜃B given by tan 𝜃B = n2∕n1. For n1 = 1 (air)
and n2 = 1.5 (typical low index glass), this gives 𝜃B = 56∘. Light rays striking a
glass at Brewster incidence angle are thus fully s-polarized. Finally, at the crit-
ical incidence angle arcsin(n2∕n1), with cos 𝜃t = 0, Fresnel equations give Rp =
Rs = 1, indicating indeed total reflection of the rays for the two polarizations.

1.1.2 Etendue Conservation

Let us remind first that the solid angle of a cone of any shape is the area it subtends
on a sphere of unit radius; it is thus a dimensionless quantity. In particular, the
solid angle of a circular cone of light with half apex angle 𝛼 is Ω = 2π(1 − cos 𝛼).
For small values of 𝛼, this gives approximately Ω = π𝛼2.
The etendue or optical throughput expresses quantitatively how much a beam

of light is spread out in area and solid angle. Taking an infinitesimal surface ele-
ment dS immersed in a medium with refractive index n, emitting light inside an
infinitesimal solid angle dΩ and at an angle 𝜃 from the normal to the surface,
the resulting etendue is d2E = n2dS cos 𝜃 dΩ (see Figure 1.2). Solid angles being
dimensionless quantities, the etendue has the dimension of area. For a full light
beam, it is obtained by integrating d2E over area and solid angle, giving

E = n2SΩ (1.2)

In particular, for a light cone of half-angle 𝛼 orthogonal to the surface S, we get

E = n2S ∫
𝛼

0
cos 𝜃 dΩ = n2πS sin2𝛼 (1.3)

This computation can be carried out in principle at any location along the opti-
cal path; in practice, for imaging systems, it is usually done either at the level
of the light source itself (or any of its image) or at the level of the pupil (or any
of its image). Seen from the source of light (e.g., from the telescope focal plane
for astronomical purposes), this is essentially the product of the sky field area by

Figure 1.2 Visualization of the infinitesimal etendue component
d2E = n2dS cos 𝜃 dΩ. Θ
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the solid angle subtended by the pupil (telescope primary mirror). Seen instead
from the pupil, this is as well the product of the pupil (telescope mirror) area
by the solid angle subtended by the sky field. Note that the light flux Φ carried
by a beam of radiance L and etendue n2SΩ is Φ = LSΩ: consequently, while it
is often useful to consider optical systems illuminated by a point light source
(S = 0) or a parallel beam (Ω = 0), both have no physical meaning as they carry
zero energy. Actually, there is a minimum beam etendue that is set by finite light
(wave)length 𝜆. For a circular source of diameter d in air, the minimum beam
half-angle set by diffraction is 𝛼 ∼ 𝜆∕d, or a minimum etendue:

E =
(
π2𝜆2

)
∕4 (1.4)

Note that this is the etendue of a diameter 𝜆 disk uniformly emitting in half-space.
The etendue concept is a fundamental and highly useful tool, because as a beam

propagates inside any optical system, its etendue never decreases, being at best
constant, the so-called SΩ conservation. The crucial point here is “any optical
system”: the light beam can be, for example, transmitted through a bundle of
tapered (conical) optical fibers, sliced with multi-mirrors and then recombined;
in fact it can go through any imaging and non-imaging combination you care
to consider, and still at best its original etendue is conserved. For an extreme
example, launch a low-etendue beam from a He–Ne laser and put a diffuser on
the beam trajectory: the etendue can easily increase by a factor of 106 or more
as almost fully collimated laser light is diffused almost uniformly over a whole
half-space (a 2π solid angle). On the other hand, for imaging systems with small
optical aberrations both in the source and pupil planes, the etendue computed
either from pupil images or from source images is the same and nearly conserved,
easily by better than one part in one thousand, as the light beams propagate inside
the optical system: following the etendue along the light path, ultimately down
to the detector plane, is thus a simple and powerful way to size up the optical
components and the detector.
Derivation of this fundamental invariance from the two principles of ther-

modynamics is quite straightforward from the following thought experiment:
A blackbody source of area S and radiance L is immersed in a medium of
index of refraction n and emits light in a solid angle Ω, as per Figure 1.3, upper
part. Light goes through a non-absorbing (perfect light transmission) arbitrary
optical system and emerges through a surface S′ immersed in a medium of
index of refraction n′, with a solid angle Ω′ and radiance L′. The total flux

Optical

system

Centered

system

y

y′

s s′

θ
θ′

Ω Ω′

Figure 1.3 Schematic illustration of
the 2D etendue conservation
SΩ = S′Ω′ for any optical system and
the 1D etendue conservation
y sin 𝜃 = y′ sin 𝜃′ for any centered
system.
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emitted by the source is Φ = LSΩ. The total flux collected at the output is
Φ′ = L′S′Ω′. From the first principle of thermodynamics (flux conservation),
L′S′Ω′ = LSΩ. From the second principle of thermodynamics (non-decreasing
entropy), L′∕n′2 < L∕n2; otherwise, for example, a thermocouple connecting
S and S′ would give an electric current with only one source of heat (the
blackbody source), in clear violation of the second law. Finally, for any optics
n′2S′Ω′ > n2SΩ. Q.E.D.
Most optical imaging systems actually use centered optics, that is, with all pow-

ered (non-flat) optical surfaces of lenses andmirrors having the centers of curva-
ture aligned along a common axis, called the optical axis. Often, all surfaces are
on top rotationally symmetric along this axis, but this is not the case when, for
example, astigmatic or toroidal lenses and/or mirrors are used, as for prescrip-
tion glasses used to correct eye’s astigmatism. For such centered optical systems
and negligible aberrations in the pupil and field images, the etendue conserva-
tion actually works in two dimensions in any plane section containing the optical
axis, as established below. This can be derived from Fermat’s principle, namely,
that light follows trajectories for which the optical path ∫ n dl is an extremum:
the end result is that for a small 1D source of half-length y perpendicular to the
optical axis emitting light in a cone of half apex angle 𝜃 (which, on the other
hand, can be very large), and any centered optical system with small aberrations,
the image of the source has a half length y′ and emits light in a cone of half angle
𝜃′ with ny sin 𝜃 = n′y′ sin 𝜃′ (the so-called Abbe’s sine condition). Given that the
general 2-D etendue conservation gives in that case n2y2sin2𝜃 = n′2y′2sin2𝜃′, one
sees that for centered systems, there is, in addition, conservation of the 1-D “lin-
ear” etendue y sin 𝜃 in any section along the optical axis (see Figure 1.3, lower
part).

OPTICAL ETENDUE #101 TOOLBOX

Optical medium refraction index n
Source circular area S = πy2

Light cone solid angle Ω, half-angle 𝜃.

Follow beam propagation over each source/pupil image

– For any optical system: n2SΩ (at best) invariant
– For any centered optical system: ny sin 𝜃 (at best) invariant

One telling illustration of etendue conservation concerns optical fibers
(Figure 1.4). They are commercially available as almost unlimited length cables
with three cylindrical components from center to edge: a high-index glass core
of up to a few 100 μm diameter, a lower index glass cladding, and a protecting
envelope. For a beam angle smaller than the fiber critical angle, 𝜃M, light injected
in the core is trapped by total reflection and propagates to the other end, with
essentially zero energy loss from the many reflections at the core-cladding
interface. In practice, this angle limitation is expressed by the fiber maximum
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Figure 1.4 Principle of the optical fibers. Light entering the fiber core is trapped by total
reflection at the core-cladding interface and propagates to the fiber end.

numerical aperture (NA) n1 sin 𝜃M. It is easy to show that NA =
√

n1
2 − n2

2,
where n1 is the core refraction index and n2 the cladding refraction index.
A typical value is NA ∼ 0.22, corresponding to an acceptance light cone of
half-angle 12.7∘ in air. For astronomical applications, fiber length is relatively
short, 50m at most, and the fiber’s internal light transmission is extremely good,
from roughly 0.4 to 1.7 μm.
For fiber core diameters greater than ∼ 10 μm, geometrical optics applies, and

owing to etendue conservation, beam linear etendue n sin 𝜃 is in principle per-
fectly conserved as the beam propagates through and exits the fiber. In real life,
it increases in case of even low fiber stress due to cable handling, and/or even
gentle bending applied to carry the light beams to their required location. One
typical application uses hundreds of 30-m long fibers to pick astronomical objects
at the moving prime focus of a telescope some 15m up and carry the light to a
number of spectrographs conveniently located on the floor. A rule of thumb is
then a ∼ 15% linear etendue degradation for an input beam close to maximum
acceptance angle, and more for smaller angles.

1.2 Basic Spectroscopic Principles

1.2.1 The Spectroscopic Case

In the IR-optical domain covered in this book, individual photon frequencies 𝜈
are much too high (3 × 1014 Hz at 1 μm wavelength) for present technology to
be directly measured with a coherent detector, as routinely done in the radio to
far infrared domain. A separate coherent device is thus required to sort out the
photons according to their frequency before they are sent to a non-coherent 2D
detector. The detector then registers the total number of photoelectrons gener-
ated at each of its pixels during the exposure. The main figure of merit of such a
spectrographic instrument is its spectral resolutionℜ = 𝜆∕𝛿𝜆, where 𝜆 = 1∕𝜈 is
the wavelength and 𝛿𝜆 is the smallest wavelength variation that can be detected
by the instrument.
In practice, this sorting out can be done either by using a filter or by using a dis-

perser. As the name implies, a filter lets out only one wavelength slice at a time; to
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get a number of wavelength bins, it is thus necessary to use a filter whose band-
pass can be shifted at will (not a simple endeavor though) and make successive
exposures. As the name also implies, a disperser (a grating or a prism) receives,
say, a parallel beam of light and sends back dispersed parallel beams (i.e., with
different inclinations for different wavelengths), which are imaged on the detec-
tor. In the astronomical domain, exchangeable interference filters coupled to an
imager are widely used for multi-wavelength imaging with spectral resolutions of
at most ∼ 50. On the other hand, dispersers are by far the most common device
used for bona fide spectrography, loosely defined as delivering a minimum spec-
tral resolution of ∼ 300.
Irrespective of their design, spectral properties of spectrographic instruments

are characterized by a set of three generic values, their central wavelength 𝜆c,
spectral range Δ𝜆, and resolved spectral width 𝛿𝜆. This set gives two unitless
parameters defining the instrument spectral grasp, namely, its free spectral
range Rc = 𝜆c∕Δ𝜆 and its mean spectral resolution ℜc = 𝜆c∕𝛿𝜆. The wavelength
domain covered by large ‘optical’ telescopes (as opposed to radio-telescopes),
that is, a whopping 0.3–24 μm range, is usually split in four domains: the
so-called optical domain (0.3–0.95 μm); the near-IR (0.95–2.4 μm); the thermal
IR (2.4–7 μm); and the medium IR (7–24 μm). They correspond to quite differ-
ent instrument technologies and even science goals, with most ground-based
astronomical observations performed in the first two spectral regions. In
terms of spectral resolution, there are essentially four regimes: low spectral
resolution (500–1500) for large surveys of distant galaxies; medium resolution
(3,000 − 6,000) for most galaxy studies, high resolution (15,000–30,000) for
precise radial velocities and/or abundance studies of individual stars or ionized
gas regions, and very high spectral resolution (>100,000) for ultra-precise
abundance determination in stars or in the interstellar/intergalactic medium,
plus search for exoplanets. The 3D line of work explored in this book is
mainly concerned with the first two regimes, that is, low and medium spectral
resolution.
It is essentially impossible to build a single spectrograph that could cover effi-

ciently the full 0.3–2.4 μmoptical to near-infrared range, andmost spectrographs
are in fact limited to one octave at best, that is, a factor of 2 inwavelength breadth.
This corresponds to a maximum free spectral range Rc = 1.5. Nevertheless, to
cover the full optical-near infrared spectral range simultaneously, one can build,
for example, a three-arm instrument with a combination of two dichroic beam-
splitters1 sending three selected spectral windows of manageable widths (e.g.,
0.3–0.5 μm, 0.5–1 μm, 1–2 μm) to three optimized spectrographs; one example
is the X-shooter at the European Southern Observatory (see the corresponding
ESO web pages). One advantage of that multiarm approach is that short-lived
phenomenas, such as 𝛾-ray burst remnants (resulting from one of the most pow-
erful known explosions in the Universe), can be identified over this wide spectral
range in, say, a single 30-min exposure, before fading below detectivity limit.

1 A plane parallel plate with a complex set of dielectric coatings on one surface, which reflects the
short wavelengths and transmits the longer ones. It is usually put at a large angle – for example,
45∘ –with respect to the optical beam to separate the reflected and transmitted components.
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1.3 Scanning Filters

1.3.1 Introduction

Themost commonly used scanning filter in astronomy is the Fabry–Pérot inter-
ferometer. This is a resonant cavity made of two parallel plane glass plates facing
each other and with highly reflective (R ≥ 90%) internal surfaces. Cavity spacing
between the two plates is usually between a few hundred microns and a few mil-
limeters for astrophysical applications. The two outer surfaces of the plates are
antireflection coated and with a ∼ 0.5∘ wedge to prevent troublesome artifacts.
As shown below, the depth of the cavity must be controlled to a very small frac-
tion, easily 1% of the light wavelength 𝜆, by no means a trivial endeavor at optical
to near-IR wavelengths. Plates are usually made of fused silica to take advantage
of its very low thermal expansion coefficient and ability to be accurately figured
and exquisitely polished. Very high reflectivity coatings with low absorption are
obtained in the optical region above ∼ 450 nm by vacuum deposition of alterna-
tive high and low refractive index interference layers on the plates’ inner surfaces;
a thin gold layer is used instead above ∼ 1000 nm.
A light ray of wavelength 𝜆 entering the Fabry–Pérot (FP) cavity – also called

etalon– at an angle 𝜃 with respect to the normal to the cavity undergoes mul-
tiple reflections inside its cavity of optical length ne (cavity depth e & refractive
index n), as shown in Figure 1.5. Parallel rays exiting the etalon interfere with each
other. In the idealized case of perfect parallel plates with 100% reflectivity, that
interference is perfectly constructive when the optical path difference between
two successive rays is any multiple of the wavelength.This gives the canonical FP
phasing equation:

2ne cos 𝜃 = p𝜆 (1.5)

Here p, the etalon order, is a positive integer, usually in the 200–2000 range. For
such rays, 100% of the light is transmitted, while in all other cases the rays are
reflected back to the light source. Transmitted light versus wavelength for any
fixed angle 𝜃 is then a Dirac comb function with zero width peaks separated by
the (slowly varying) etalon free spectral rangeΔ𝜆 = 𝜆∕p. Inmost cases, one needs
to get only one wavelength peak, and the many others transmitted by the cavity
need to be filtered out.
When illuminated uniformly by a monochromatic source, transmitted light

appears as a series of concentric rings at infinity (Figure 1.6) of angular radii 𝜃p
given by the phasing equation. Different wavelengths give ring patterns of dif-
ferent sizes; this is the basis of the two most common astronomical filters, the

Input light

e

Output
light

Figure 1.5 Principle of the Fabry–Pérot interferometer.
Light rays are trapped by multiple reflections inside a cavity
of depth e. The cavity acts as a spectral filter as only rays
undergoing wavelength-dependent constructive
interference are transmitted; all the others being reflected
by the etalon.
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Figure 1.6 (a) Set of k rings (k = 0 to 5) from monochromatic light uniformly illuminating a
Fabry–Pérot etalon, with exact phasing at the center (k = 0). The successive ring radii obey the

canonical equation 2ne cos 𝜃p = p𝜆, which for small angles 𝜃p translates into ring radii rk ∝
√
k.

With rings FWHM ∝ 1∕
√
k, rings etendues are all the same. (b) Transmission function for two

etalons of respective finesses 2 (blue) and 10 (red). (Credit DrBob, Wikipedia.)

non-scanning interference filter with a fixed optical depth cavity and the scan-
ning Fabry–Pérot interferometer with a variable depth cavity.
In real life, however, interferences are not perfectly constructive and the crucial

etalon quality factor is its finesse N , the optical equivalent of the resonant cavity
quality factor Q in the radio domain. This is the unitless ratio between the trans-
mission peaks separation (aka the free spectral range) and their full width at half
maximum (FWHM). At the cavity level, N can be seen as the effective number
of parallel exit rays coming from a single entrance ray and interfering with each
other. At the data set level, this is the number of independent spectral bins that
can be distinguished. Ideally, N would be set solely by the reflectance factor R
of the plates, with Nr ∼ π

√
R∕(1 − R). In that case, normalized transmitted light

intensity T versus wavelength 𝜆 has an Airy shape (Figure 1.6), with

T𝜆 =
1

1 + Nr
2sin2π (𝜆−𝜆0)

Δ𝜆

(1.6)

In this formula, Δ𝜆 is the free spectral range and 𝜆0 the peak wavelength.
Moreover, reflective coatings slightly absorb light (absorption factor A), and

the normalized peak transmission is not 1 any more, but ∼ (1 − NrA) instead.
For reasonable values of the reflective finesse (Nr ≤ 50), this gives a few percent-
age light loss above∼ 480 nm.Moreover, the effective finesseN is always smaller
thanNr , owing to the cavity residual optical defects: this gives a small range for e
in the canonical equation above, and hence again non-perfect constructive inter-
ference. It is also necessary to allow for a finite range of 𝜃 to fall on any detector
pixel, since a beamwith a zero width 𝜃 angle would have zero etendue, and hence
would carry a zero photon flux. This again spoils the light beam’s constructive
interference and lowers N .
The end result is an overall finesse N and a global transmission 𝜏 , with

a comb-like spectral transmission curve T ∼ 𝜏∕[1 + N2sin2π(𝜆 − 𝜆0)∕Δ𝜆)].
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𝜆 − 𝜆0 = 0 corresponds to the transmission peak T = 𝜏 ; 𝜆 − 𝜆0 = 1∕N to a
halved transmission T = 𝜏∕2; 𝜆 − 𝜆0 = Δ𝜆∕N to the minimum transmission
T = 𝜏∕(1 + N2).
The insert below gives quantitative estimates of the overall finesse, spectral res-

olution, and transmission of a Fabry–Pérot etalon.

FABRY–PÉROT ETALON COOKING BOOK

Plates reflectivity R, absorption A; cavity depth e & r.m.s. defects d
Beam incidence angle 𝜃 & radial angular width 𝛿𝜃

Cavity order p = 2e cos 𝜃∕𝜆0, free spectral range Δ𝜆 = 𝜆0∕p

Reflective finesse Nr ∼ π
√
R∕(1 − R); efficiency 𝜏r ∼ 1 − NrA

Defect finesse Nd ∼ 𝜆∕2d; efficiency 𝜏d ∼ (Nd∕Nr) arctan(Nr∕Nd)
Beam finesse N𝜃 ∼ 1∕p𝜃 𝛿𝜃; efficiency 𝜏𝜃 ∼ (N𝜃∕Nr) arctan(Nr∕N𝜃)
[𝜃 = 0 ⇒ N𝜃 ∼ 2∕p (𝛿𝜃)2]

Overall finesse N with: 1∕N2 ∼ 1∕Nr
2 + 1∕Nd

2 + 1∕N𝜃
2

Spectral resolution ℜ = pN; efficiency 𝜏 = 𝜏r × 𝜏d × 𝜏𝜃

Transmission T𝜆 ∼ 𝜏∕[1 + N2sin2π(𝜆 − 𝜆0)∕Δ𝜆]

To get a feel of what this threatening formulae mean, let us take a generic
order p etalon with the reflective finesse of plate coatings Nr , and hence with
a potential spectral resolution ℜr = pNr . It is always a good idea to get the cav-
ity root mean square defects (due to plates figuring, polishing, and parallelism
errors) as small as possible, with at least Nd = 2Nr . Similarly, the working field
and the resolved angular size (set up by the detector pixel size) should be small
enough to get at leastN𝜃 = 2Nr . With thoseminimum values, the insert formulas
giveℜ ∼ 0.82 ℜr and 𝜏 ∼ 0.85 𝜏r . These are reasonably good results, which jus-
tifies a Nd ≥ 2Nr & Ni ≥ 2Nr rule of thumb to get a decent etalon performance.
In practice, this means matching the etalon figuring and adjustment require-
ments with the plates reflectivity specification, and limiting the field of view to
the maximum value compatible with the required beam finesse, and possibly
less.

1.3.2 Interference Filters

Many spectroscopic systems require a spectral filter that lets through light in a
fixed spectral band toward the instrument. A classical Fabry–Pérot etalon can
provide any required spectral band, even exceedingly narrow ones, but cannot
foot the bill because of the many other spectral bands getting through the dif-
ferent etalon orders. What is used instead is an interference filter, an avatar of
the classical etalon, with an extremely low order (p = 1 or 2) solid cavity sand-
wiched between multilayer dielectric stacks, all created by vacuum deposition.
A huge reflective finesse of up to ∼ 800 can be obtained. The resulting spectral
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resolution can then be up to ∼ 1000 in the optical range above about 480 nm,
with a minimum transmission peak around 50%. These performances would be
all but impossible to attain with the classical etalon and its maximum defect
finesse ∼ 100. Such high performance interference filters are commercially avail-
able from a number of vendors and are widely used in a large variety of optoelec-
tronics systems.
These are on top very rugged and highly stable devices, with lifetimes of usu-

ally over a decade, provided they are kept in a reasonably dry environment. One
proviso is their significant temperature-related bandpass shift. The temperature
coefficient is usually positive, that is, the central wavelength transmitted by the fil-
ter shifts to a higher value when temperature increases, by very roughly+0.01 nm
per degree: this could in theory be used to shift the filter bandpass at will; this
is, however, not practical because of the many hours required to change the fil-
ter temperature significantly in a homogeneous manner. Performance (spectral
resolution and peak transmission) drops rapidly below ∼ 480 nm, because of ris-
ing internal absorption from any known high-index material. Interference filters
above ∼ 1800 nm central wavelength are easily subject to delamination of the
thicker coating layers, especially as they are usually used in a cryogenic environ-
ment (operating temperature of∼ 77∘K) to avoid excessive thermal emission from
the filter itself.
The spectral bandpass of a simple interference filter, made with a central 𝜆∕2

optical depth cavity, sandwiched between alternative 𝜆∕4 optical depth high and
low index layers, has the classical strongly peaked etalon Airy shape. By using
a more complex layer set, it is in fact possible to almost get the optimum square
shape, if at the expense of some peak transmission loss. Note that unwanted light,
that is, outside of the filter spectral bandpass, is reflected rather than absorbed
as with color filters: on the negative side, extra care must be taken to avoid that it
is reflected back toward the instrument by any optical surface behind the filter;
on the positive side this light might be used if needed, for example, to monitor
atmospheric transmission changes.
Interference filters owe their usefulness to their large accepting etendue.

Their linear optical etendue in any direction is y sin 𝜃, where y is a circular filter
half-size, and 𝜃 the maximum beam cone half-angle. Standard interference
filter sizes are usually up to 2 in. in diameter (50.8mm), but a few vendors can
provide up to ∼ 185 × 185 mm filters, which can be mosaicked to get even
larger areas. The beam half-angle 𝜃 for a filter with spectral resolution (for a
parallel orthogonal beam) ℜ is readily computed from the cooking book insert
as n∕

√
ℜ. Here, n is the cavity refractive index, about 1.5 if it is made of a low

index material, and 2.4 if it is made of a high index one. Even at its maximum
spectral resolution of ∼ 1000, a high-index interference filter can still accept a
rather big cone of light, with a half-angle 𝜃 ∼ 0.1 rad. or 5.7∘. For filters with a
wider bandpass, the acceptance angle is larger, but limited anyway to roughly
12∘ because of polarization effects in the coating layers at too large angles. Note
that the acceptance angle decreases only with the square root of the spectral
resolution, and not with the spectral resolution when using a grating to filter the
light.
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There are two basic ways to insert an interference filter in an astronomical
instrument, namely, either on an image of the pupil (pupil mounting) or on an
image of the sky field (field mounting).

a) Pupil mounting. This gives the best peak transmission at the cost of a gradual
shift of the central wavelength to lower values for field positions away from
the field center. It is in particular preferable when the input light etendue is
much smaller than the available filter etendue (say, by at least a factor of 3
in linear etendue), since the shift effect above becomes fairly negligible. Note
that the optical quality of the filter then needs to be as good as that of themain
instrument optics, with the corresponding technical specification as required
to the vendor.

b) Fieldmounting.This is often the preferred choice since it gives the same band-
pass for all points in the field (provided the filter bandpass is the same over the
useful area of the whole filter, an important technical specification), if at the
cost of significant light loss,∼ 30%when the input etendue is equal to the filter
etendue. With this mounting, the filter figuring error budget is much relaxed;
on the other hand, extra care must be taken to minimize dust particles on the
two outside faces of the filter that would give artifacts on the final field image.
To minimize this effect, the filters are generally put slightly out of the exact
field position in order to defocus any remaining dust image on the detector.

1.3.3 Fabry–Pérot Filter

As for an interference filter, there are two ways to insert an etalon, the pupil
mounting and the field mounting. Typical useful size of an etalon is 50mm diam-
eter, but up to 150mm diameter plates can be manufactured.

a) pupil mounting. This leads to the classical Fabry–Pérot spectrograph, pre-
sented in Section 3.3, which gives spectral information over a wide field of
view. Its accepting etendue is indeed extremely large, according to the cooking
book recipe 𝜃𝛿𝜃 = 1∕2ℜ (to get the beamfinesseN𝜃 twice larger than the final
finesseN). Here, 𝜃 is the beamcone half angle and 𝛿𝜃 the ringwidth at 𝜃, which
must cover at least 1 pixel on the detector. Taking a typical 50mm diameter
etalon, an F/1.4 camera, and a 4k × 4k detector with 12.5 μ pixels, this gives
a huge beam cone half angle 𝜃 = 21∘ for an already large maximum spectral
resolution ℜ = 7,656. For a large 8-m diameter telescope, this means a quite
sizeable 7.9′ diameterworking field.On the other hand, requirements in terms
of plates figuring and parallelism quality are tough, since the Nd ≥ 2Nr cook-
ing book recipe applies to the full pupil area.

b) Field mounting. This is rarely used, as the beam half-angle on the etalon must
be at most ∼ 1∕

√
ℜ. This leads to a much smaller field of view than with

pupil mounting. Accepting linear etendue of a 2y diameter etalon is y∕
√
ℜ,

obviously that of a same resolution and same diameter interference filter with
cavity refractive index equal to 1. On the other hand, plates figuring and paral-
lelism requirements are much relaxed since they now apply at the very small
size of a detector pixel projected back on the etalon (y∕2048 when using a
4k × 4k detector).
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1.4 Dispersers

As their name implies, dispersers act by dispersing, that is, by changing the incli-
nation of incoming light beams as a function of light wavelength in the so-called
dispersion plane. To separate the output beams according to wavelength, the
incoming beam must have a narrow angular width in the dispersion direction.
On the other hand, the angular length in the orthogonal direction can be very
large, as it is only limited by the field of view of the camera. The usual arrange-
ment is then to limit the beam with a narrow, but possibly long, slit located at
infinity with respect to the disperser. Note that while the slit is nearly always put
on a sky image and the disperser on an image of the telescope primary or sec-
ondary mirror, the opposite combination works too. Actually, this exotic variant
is used for the lenslet-based integral field spectrograph (Section 4.2).

1.4.1 Prisms

Since Isaac Newton’s seminal experiences and for about two centuries, prisms
have been the disperser used for all spectroscopic observations, including of
course astronomical ones. Prisms’ principle is the essence of simplicity: since
the index of refraction n of all transparent materials varies with wavelength 𝜆

(actually decreasing for increasing wavelengths), the output light from a glass
wedge of apex angleA illuminated with a polychromatic parallel beam (incidence
angle 𝜃) consists of a fan of parallel monochromatic beams deviated toward the
prism’s base and with emergent angles 𝜃′ nicely sorted out according to 𝜆.
As illustrated in Figure 1.7, prisms are typically used in their minimum devia-

tion (symmetrical) configuration, with the emergent beam angle 𝜃′c at the central
wavelength 𝜆c equal to the entrance angle 𝜃.This happens for sin 𝜃 = nc sin(A∕2),
where nc is the glass refractive index at 𝜆c. It is easy to show that the central angu-
lar deviation 𝛿𝜃′∕𝛿𝜆 is then equal to K𝛿n∕𝛿𝜆, with the constant K given by

K =
2 sin(A∕2)√

1 − nc
2sin2(A∕2)

(1.7)

K can be quite high, for example, K ∼ 1.7 for a quite typical apex angle of 60∘
and central index nc = 1.62, but the glass dispersion 𝛿n∕𝛿𝜆 is always small for
transparent glasses, with typically only a 2% refractive index variation from the
blue (486 nm) to the red (656 nm). Near strong absorption bands, glasses might
in fact exhibit large dispersions, but then would be hugely variable and associated
with large light losses.

Figure 1.7 Prism’s principle: The figure shows a prism
used at minimum deviation for the central wavelength
(green ray). This is a symmetrical configuration with
similar beam incident and emergent angles 𝜃. The
extreme wavelength beams are shown in red and blue.

A

θ θ
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Linear etendue conservation in the dispersion direction between the grating
plane and the detector plane can readily be used to set up the basic spectrograph
parameters as per the following insert. In the orthogonal direction, the avail-
able etendue is very large and the slit length limited only by the spectrograph
optics field and/or the detector length. In the dispersion direction, on the other
hand, it is limited by the prism’s low dispersion for any required spectral reso-
lutionℜ = 𝜆∕𝛿𝜆. Linear etendue conservation between the prism plane and the
detector plane gives the insert formulae. The prism figure of merit K𝜆 𝛿n∕𝛿𝜆 is
a dimensionless number that expresses its dispersion efficiency. For the typical
glass selected above, the figure of merit is∼ 0.11, an order of magnitude less than
the corresponding figure for a grating (see Section 1.4.2).

Prism Spectrograph Cooking Book

Prism apex angle A; diameter d; glass relative dispersion Δ = 𝜆 𝛿n∕𝛿𝜆
K = 2 sin(A∕2)∕

√
1 − n2sin2(A∕2); unitless figure of merit: KΔ

Telescope diameter D, on-sky slit width 𝛼

Spectral resolution ℜ = (KΔ) d∕D 𝛼 (at minimum deviation)

Prism diameters can be very large, 1m or more for a very few common optical
glasses including fused silica. For diameters≤ 30 cm, a large palette of glasses can
be produced, including expensive UV and/or IR transparent crystals. Care must
be taken to subject prisms to only slow homogeneous temperature changes, as
glass refractive indexes are temperature dependent.2 This can be important for
large prisms, given their huge thermal inertia.
Prism transmissions are usually quite high, 90% or more if its two surfaces are

antireflection coated for the mean optical ray’s incidence/reflective angle. Fur-
thermore, the spectral range potentially covered is in principle limited only by the
transparency of the prism material. This means that it is possible to cover easily
an 1 octave spectral range (i.e., a factor of 2 between the lowest and the highest
wavelength) in one go, or even much more, if at the cost of significant reflection
losses. For example, most glasses are transparent from about 0.4 to 1.5 μm, and
some crystals from, for example, 0.15 to 9 μm, a whopping factor of 60. Another
very attractive property is that all the light is concentrated in a single spectrum,
not in a number of different “orders” as for diffraction gratings (see Section 1.4.2).
Nevertheless, as pointed out above, a big limitation of prisms is their very small

angular dispersion 𝛿𝜃′∕𝛿𝜆 (see Exercise 3): to get the relatively high spectral res-
olutions (a few thousands) most often required for astronomical purposes, one
would need to put an exceedingly narrow slit on the object under study, thus
rejecting most of its light. In addition, glass dispersion significantly decreases
with increasing 𝜆, typically by a factor of 5 over 1 octave in wavelength, with
a nonideal corresponding variation of 2.5 in spectral resolution. As a result of

2 At room temperature, fused silica 633 nm refractive index temperature dependence is +10−5∕∘K,
equivalent to a 0.4 nm wavelength shift per ∘K.
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these two shortcomings, prisms are now used only for a few specific cases, and
diffraction gratings with much higher and more uniform angular dispersion (see
Exercise 4) are chosen instead for most spectrographic applications.

1.4.2 Grating Principle

A diffraction grating is a mirror or windowwith a periodic structure (often called
grooves), which diffracts polychromatic (i.e., made of many wavelengths) input
light into monochromatic beams traveling in different directions. In the canoni-
cal case of a plane parallel beam of wavelength 𝜆 impacting at incidence 𝜃 a plane
diffraction grating with a parallel straight grooves per unit length, the various
output light directions 𝜃′

𝜆
are restricted to the values for which light scattered

from adjacent elements of the grating are in phase (see Figure 1.8). The relation-
ship between the incidence and diffracted angles inmedia of respective refractive
indexes n and n′ can be obtained easily.This is the grating fundamental equation:

n sin 𝜃 + n′ sin 𝜃′ = ka𝜆 (1.8)

Here, the order k is any integer – positive, negative, or null.
For k = 0, we recover the classical reflection law for a normal mirror: this

nondispersed zero order “white” light beam is mostly a nuisance, giving bright
parasitic light on the detector. In a few cases, however, it is useful, for example,
to monitor sky transparency in real-time.
At optical-NIR wavelengths, it is quite convenient to express 𝜆 in micrometer:

a is then the number of grooves per micrometer, with a𝜆, as it must be, a dimen-
sionless number. The grating equation shows that the groove period 1∕a cannot
be smaller than 𝜆∕2: for this limiting value, 𝜃 and 𝜃′ are respectively equal to+90∘
and −90∘, that is, the incident and the order 1 diffracted beams are both parallel
to the grating surface.
The periodic structure (or grooves) that transforms a mirror in a reflection

grating is made by modulating its surface shape (amplitude grating). This can be
done by pushing aside a metal coating on a glass surface (surface relief gratings)
or by etching a light-sensitive material illuminated by interfering laser beams
(holographic gratings). Efficient transmission gratings are made by modulating
the refractive index of a thin gelatine layer on top of an optical window (vol-
ume phase holographic gratings, VPHG), also through illumination by interfering
laser beams.

Figure 1.8 Grating’s Principle’s: A parallel polychromatic
light beam (black rays) falls on a plane reflection grating
at incidence angle 𝜃. In that illustration, first order green
rays (not shown) are diffracted back at the same angle 𝜃

along the input beam (Littrow condition), while extreme
wavelength beams are shown respectively in red and
blue. θ
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Most astronomical applications require covering a wide spectral range at once.
This usually leads to using diffraction gratings in their first order (k = +1): the
grating equation above shows that one can then cover almost one octave with-
out mixing first order diffracted light with any of the other orders, including
the non-dispersed, thus always bright, zero order. Of paramount importance is
then getting the best possible efficiency, that is, with most of the diffracted light
concentrated in the first order. For amplitude gratings, this can be obtained by
manufacturing nearly triangular grooves with facets at the so-called blaze angle
𝜙 with respect to the normal to the grating. Peak efficiency close to 1 is then
obtained at the blaze wavelength 𝜆c, given by 2 sin𝜙 = ka𝜆c. At this wavelength,
the incidence angle and the first order diffraction angle are the same (Littrow con-
dition) and equal to the blaze angle. In practice, for blaze angles up to ∼ 30∘, first
order efficiency is still good (say >70%) over 1 octave. For higher blaze angles,
groove size becomes comparable to the light wavelength: this results in efficiency
curves for the two polarizations that are still highly peaked, but at different wave-
lengths. The end result for natural (unpolarized) light is smaller efficiencies, say,
below 50% for a 60∘ blaze angle over 1 octave.
“Normal” optical systems, that is, combinations of mirrors and lenses, obey the

principle of inverse return of light, both for light path and light efficiency, and
that for each of the two linear polarizations. This is still true with a grating along
the optical path.

1.4.3 The Grating Spectrograph

The canonical plane grating long-slit spectrograph uses the following compo-
nents (see Figure 1.9): (i) a long but exceedingly narrowwidth slit, (ii) a collimator
imaging the slit of at infinity (angular width 𝛼), (iii) a plane grating located on the
exit pupil (diameter d), and (iv) a camera (aperture ratioΩ) to image the dispersed
slit on the detector (projected slit width𝑤). Note that an image of the sky is usu-
ally put on the slit with an image of the telescope primary (or secondary) mirror

Field lens Collimator Grism Camera Detector

Figure 1.9 3D view of the long-slit grating spectrograph concept. (a) The 2D image at
telescope focus is sliced by a long narrow horizontal slit. (b) Light on the detector is dispersed
in the vertical direction. Note that we follow in this book the two usual conventions for figures
showing light propagation inside an optical system: (i) whenever possible, light goes from left
to right (top to bottom for a vertical optical axis) and (ii) the horizontal and vertical scales are
generally not the same, usually exaggerating the angles of the optical beams for better
clarity.
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on the grating, but the other way would work too and has been occasionally
done.
The long narrow slit, typically 3 × 4096 pixels at the detector level, or 0.6′′ × 15′

on the sky or with a 4-m class telescope, is dictated by the dispersive geom-
etry of the grating. This extremely thin shape is far from optimum though, as
astronomical objects other than stars basically always have much more roundish
shapes, and most of their light is just wasted when cut by the slit. On large tele-
scopes, the light of even originally point-like stars is not always fully collected
by long-slit spectrographs: star focal images have a disk shape of roughly 0.4′′
to 1.8′′ diameter depending on atmospheric turbulence, with a median value
around 0.7′′ at the best sites in the world. In the example given above, more
than half of the time a significant fraction of the precious starlight would be
wasted.
2D etendue conservation does not however prevent sending an initially round

object through a narrow rectangular field, while keeping a round pupil at infin-
ity, provided the slit and object areas are equal, or the object is of diameter up to
24′′ for the 0.6′′ × 15′ slit referred above. Unfortunately, this transmogrification
does not conserve the 1D linear etendues and thus cannot be done with sim-
ple centered optical systems, for example, by using a set of cylindrical lenses.
This necessitates developing instead complexmultimirror/lenses systems that are
notoriously difficult to fabricate and align (see Chapter 4 for muchmore on these
so-called image slicers).
As seen above, for an input plane parallel light beam at angle 𝜃 with respect to

the normal of the grating, an exit plane parallel beam at angle 𝜃′ for the wave-
length 𝜆will be in phase if and only if sin 𝜃 + sin 𝜃′ = ka𝜆; k, the spectrum order,
is by principle an integral number, and a is the number of lines per micrometer
on the grating plane, with 𝜆 the wavelength in micrometer.
In the k = 0 case, we have 𝜃 = − 𝜃′ independent of the wavelength of light.

This so-called zero-order or white light thus follows a simple reflection on the
grating plane, collecting light at all wavelengths. This is not only a waste of
light, but also adds a bright line imprinted on the detector. It is thus particularly
important to get a grating with no more than a small percentage of light in zero
order.

1.4.4 Grating Species

There are essentially two grating species, the surface relief grating (mechan-
ically ruled or holographically imprinted) for which the periodic wavefront
modulation is governed by periodic grooves depth, and the VPHG with peri-
odic modulation of the index of refraction of a thin gelatine dichromate layer
deposited on an optical plate. The first variant is now used solely in reflection,
with an aluminum or gold (for the NIR) layer deposited on the front surface.The
second works in transmission only, with a better efficiency than the equivalent
surface relief transmission grating, ∼ 85% for a 45∘ blaze angle instead of
∼ 30% only. VPHGs are often sandwiched between two identical prisms so that
light at the central wavelength goes directly through the disperser with zero
deviation.
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1.4.5 Grating Etendue

For optimum sensitivity, gratings are used mostly at or close to zero deviation
(Littrow condition), that is, with i = i′ = 𝜙 (blaze angle) for the central wave-
length 𝜆c. In order to fully accept the usually circular pupil, they have in general
a rectangular shape with an aspect ratio (length L over height d) at least equal to
1∕ cos𝜙. Differentiating the canonical equation with respect to wavelength gives
the angular width of the slit 𝛽 as 𝛽 = 𝛿i = 2 tan𝜙 ∕ ℜ, where ℜ is the spectral
resolution 𝜆c∕𝛿𝜆. Note that in first approximation and according to the canonical
equation, the spectral resolution over the spectral domain covered on the detec-
tor is proportional to 𝜆∕𝜆c. This is not perfectly constant, but better than when
using prisms.
Linear etendue conservation in the dispersion direction between the grating

plane and the sky plane can be used to set up the basic spectrograph parameters
as per the following insert. In the orthogonal direction, the available etendue is
very large and the slit length limited only by the spectrograph optical field and/or
the detector length. Note that the fundamental relationship between the spectral
resolution and the slit linear etendue has exactly the same shape as for a prism,
the only difference being the dimensionless figures ofmerit of different dispersers
(2 tan𝜙 for a grating).

Grating Spectrograph Cook Book

Grating height d (pupil diameter); blaze angle 𝜙

Telescope diameter D, on-sky slit width 𝛼

Spectral resolution ℜ = 2d tan𝜙∕D𝛼 (at zero deviation)

Anumber ofmanufacturers provide off-the-shelf reflective gratingswith a large
variety of groove periods/blaze angles and sizes, a few up to about 30 cm height.
They all are actually replicas molded in the thousands from very expensive ruled
masters. Larger sizes can be achieved by mosaicking a few identical gratings, if
with stringent alignment requirements. Reflective gratings can be produced for
virtually any working wavelength.
VPHGs are on the other hand mostly custommade, with heights (size perpen-

dicular to dispersion) up to about 25 cm.Mosaicking is rarely done since it is very
difficult to produce two closely identical VPHG. Due to the gelatine dichromate
bandpass, VPHGs can work roughly from 370 to 1700 nm.They can be operated
at cryogenic temperatures when needed.
Maximum blaze angle contribution tan𝜙3 is usually∼ 0.7 for a VPHG covering

one octave (with simple inline optics); ∼ 1.7 for a ruled or holographic reflection
grating (with larger, more complicated optics however); ∼ 4 for a high-order
echelle grating (which however requires an additional disperser used as an
order sorter). The bottom line is that the only free construction parameter is
the grating diameter d, leading automatically to very large gratings (hence big

3 Higher values are technically feasible, but entail up to 50% light loss as the peak efficiency
wavelengths as the p and s polarization components become widely separated.
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expensive instruments) when wanting either a large spectral resolution or a
substantial on-sky slit width and especially when requiring both.
𝑤, the width of the instrument slit projected on the detector by the cam-

era of aperture ratio Ω, usually corresponds to ∼ 2 detector pixels (so-called
Nyquist condition); it can occasionally be set up as large as 3–4 pixels when
a high signal-to-noise ratio is required: this is in practice the province of high
(ℜ ∼ 3.104) and very high spectral resolution (ℜ ∼ 105) astrophysics for which
reaching minimum signal to noise ratios of 50 and 500 per resolved spectral
pixel respectively is the norm. Note that because of linear etendue conservation
between the grating plane and the detector plane, 𝑤 is given by 𝑤Ω = D 𝛼.
In most cases, the spectral resolution is thus directly set up by the slit width,

itself imposed by the need for collecting enough of the science object and/or
the use of a high aperture ratio on the detector to get enough sensitivity. In the
case of bright objects, a very narrow slit can be used in principle: getting a sub-
stantial spectral resolution with a small grating (hence a small instrument) then
becomes easy.There is a limit, however, as part of the light going through the nar-
row slit is diffracted and begins to overfill the instrument pupil. The theoretical
limit is given by a simple formula, namely,ℜM = kN , where k is the grating order
and N is the total number of grooves covered by the pupil. Settling at that limit
though would result in ∼ 50% light loss and a practical upper limit for the actual
spectral resolution of a spectrographic instrument is in fact ∼ kN∕2, unless the
grating/camera combination is enlarged (at a cost) to collect a significant part of
the diffracted light.
The optimum spectral resolution ℜ for an astronomical spectrograph is very

much science dependent, for example, varying from 103 or so for optimumdetec-
tion of extremely faint objects in the near-UV to yellow region to 4.104 for deter-
mining abundances of key chemical elements in Galactic stars, to more than 105
for the indirect detection of exoplanets from minute radial velocity variations of
their parent stars. See Exercise 12 for the specific analysis of absorption line radial
velocity accuracy versus signal to noise ratio.

1.4.6 Conclusion

The vast majority of astronomical spectrographic instruments uses the disperser
approach, almost always a plane grating, either in transmission or in reflection.
This is the basic building block for the many variants presented later in this book,
which differ in the shape of the sky field selected at the telescope focal plane.
This ranges from a simple narrow slit (long-slit spectrography) tomultislits/holes
on well-separated targets (multiobject spectrography) to a single squarish field
(integral field spectrography).

1.5 2D Detectors

1.5.1 Introduction

A suitable 2-D digital detector (for lack of an even better 3-D ones, see Section
7.3) is the key element of any imager and particularly the spectroimagers covered
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in this book.There is a long list of perquisites for such detectors, and particularly,
(i) high, ideally up to 100% quantum efficiency, that is, one electron “created”
by each incoming photon, in a large wavelength range; (ii) very low dark noise
(spurious electrons created during integration time) and readout noise (spuri-
ous electrons created by the detector readout electronics); (iii) large format, up
to billions of detector pixels, and (iv) high linearity and high dynamical range,
that is, output signals that are precisely proportional to the incoming photon flux
over a wide flux range. There are also qualitative, but still crucially needed, addi-
tional features, such as being rugged (idiot/astronomer-proof), easy to use, and
with few if any troublesome artifacts, such as charge blooming around overex-
posed pixels. This section covers the phenomenal progress enjoyed during the
last 50 years and the current state-of-the-art 2D detectors landscape.

1.5.2 The Photographic Plate

Very large 2D integrating detectors were already available at the turn of the nine-
teenth century, namely, photographic plates or films, sensitive from the near-UV
to the red domain. A single 50 cm × 50 cm photographic plate with about 12 μm
spatial resolution (a typical value for plates optimized for low-level fluxmeasure-
ments) actually offered a whopping 1.6 billion spatial pixels, a format now just
attained by the largest detector mosaics being built; see below. Besides, photo-
graphic plates are cheap, rugged, easy to use (just open and then close a shutter
for an exposure followed by a few hours to develop, fix, wash, and dry), are oper-
ated at room temperature, and have the nice feature of doubling as their own data
archive. Unfortunately, they also get a long list of dire shortcomings: extremely
low quantum efficiency, possibly as “high” as a few 10−3, but then with a very
small dynamical range, plus extreme nonlinear behavior not only relative to the
object flux but also with respect to integration time. Data extraction was terribly
slow and of limited accuracy, adding to the overall spectacular inefficiency of this
purely analog device.
Digital detectorswith amuchhigher quantumefficiency (up to 10% in the blue),

near perfect linearity, and high dynamical range were actually available soon after
WorldWar II, with the photomultiplier tubes. An incoming photon strikes a pho-
tocathode, ejecting one electron through photoelectric effect.These electrons are
accelerated inside a vacuum tube, striking multiple dynodes. As a result, a single
primary electron ultimately gives a hundred million electrons, which are easily
detected at the end of the tube as a very short current pulse. Note that this is
not an integrating detector but works by counting incoming photons on the fly
one by one. Unfortunately, photomultipliers are essentially 0-D detectors, that is,
offer only one spatial pixel, and thus took only a small part of the astronomical
pastures, mostly to measure the integrated light flux of stars or central parts of
galaxies.

1.5.3 2D Optical Detectors

The first 2D electronic optical detectors (as well as some 1-D ones) were
introduced in the late 1960s, with many variants of video cameras of increasing
sensitivity, ultimately up to individual photons detection. Essentially 2D versions
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of the photomultiplier, the latter featured single photoelectrons counting,
quantum peak efficiency ∼ 10% in the blue (typically 4% in the red) domain, and
respectable, but not huge, dynamics with recordable fluxes from around 1 to a
few thousand photoelectron per pixel per hour. Despite their small formats (a
few 105, typically 40 × 40 μm, pixels), they quickly displaced photographic plates
for all astronomical work, except for completing the few long-term imaging
surveys of large fractions of the sky carried out at the time.
However, soon after, in the late 1970s, these 2Dphoton counting detectorswere

themselves quickly and almost entirely replaced by the charge coupling devices,
or in short CCDs, invented a decade earlier [13].These are essentially integrating
detectors, such as photographic plates but unlike photon counting ones. They
thus suffer not only from dark noise but also from readout noise. Initially, CCD
formats were also quite small, quite comparable to photon counting formats at
the time.
Somewhat ironically, their introduction resulted initially in a significant

loss in low photon flux detectivity compared to photon counting detectors,
as CCDs then featured huge readout noises, around 100 electron r.m.s. per
pixel (versus essentially zero with photon counting!). But, they already have
much better quantum efficiencies, peaking around 50% in the blue–green, high
dynamics from a few to up to 32,000 electrons per pixel, and most importantly
turned out to be extremely rugged and easy to use. Their sensitivity loss for
extremely low photon fluxes had actually a much smaller impact than could
have been imagined: the vast majority of astronomical (and non-astronomical)
observations relies on detecting a small variation in a high photon flux, rather
than a very small photon flux over a negligible background. Canonical examples
of the former are (i) all wide spectral band imaging for which the photon flux is
dominated by the night sky background and the goal is to detect the very small
flux variation due to, for example, a distant galaxy, and (ii) most absorption-line
spectroscopy of galaxies for which the goal is to measure relatively slight flux
dimming (due to atomic or molecular absorption) of the strong object stellar
continuum. On the other hand, the canonical example of the extremely low
photon flux case is high spectral resolution (typically 12,000) spectroscopy
of emission lines in extremely faint ionized gas regions, a respectable sci-
entific domain, but representing a very small fraction of all astronomical
observations.
A mid-2010s top-of-the-art CCD (see Figure 1.10) is an almost ideal detec-

tor, featuring >80% QE over one wavelength octave, very small dark current
(1e−∕px∕hr or less), and readout noise (1.5 − 3e−∕px∕readout). The dynamical
range is huge – a factor of 30,000 or so, and data output is immediately available
in a digital format. Note that while off-the-shelf CCDs for laymen applications
(video cameras) are dirt cheap, a so-called science-grade 4096 × 4096 (4k × 4k
in detectors lingo) 12.5 μm pixel CCD costs ∼ 50,000 Euro/USD. A major
cost escalation driver is the thinning of the detector: this is a time-consuming
low-yield process, but one which effectively doubles the detector QE. Another
is the on-chip implementation of extremely low-noise electron amplifiers to
drastically reduce the readout noise of standard CCDs. Also, while commercial
CCDs operate at room temperature with very short integration times (50–100Hz
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Figure 1.10 This shows the state-of-the-art 4096 × 4112, 15 μm pixels CCD231-84 from e2v,
one of the leaders in the field. Since this high performance device is four-side buttable, it can
be used as a building block for the development of extremely large mosaics. Credit Paul
Jordan [14], e2v, the UK. (Reproduced with permission of Paul Jordan.)

video frame rate), astronomical CCDs are operated with typically 30–45min
integration times (a factor of 2.105!). To lower dark current to at most a few
electrons per pixel per hour, detectors are cooled to around −90 ∘C, a significant
design and operating complication: in particular, the detector is housed in
vacuum inside a cryostat, with a thick entrance window, often doubling as the
last lens element of the camera. A gentle dry nitrogen flow is often used to
prevent frost formation on the window front face.
CCDs can be fully buttable on their four sides with very little dead space

between them, and mosaics of more than a billon pixels have been built, with
4k × 4k single CCDs used as building blocks. This is essential for most imaging
instruments, covering large fields on the sky, but is also increasingly required for
spectrographic 3D instruments, as builder teams get more and more ambitious
in terms of simultaneous spatial and spectral coverage.
CCDs “natural” spectral coverage starts from the near-UV to roughly 0.8 μm:

as the light wavelength increases, the detector thin siliconmaterial gets transpar-
ent, leading to free-falling quantum efficiency and parasitic fringing at the level of
a small percentage as part of the light going through the detector is reflected back
and interferes with itself. The so-called red-optimized thicker CCDs retain good
quantum efficiencies up to ∼ 0.98 μm and exhibit much less fringing (∼ 0.4%).
Note that most fringes arise from the highly variable upper atmosphere emis-
sion lines strongly prominent at these wavelengths and are not easily calibrated
out. Another annoying feature comes from cosmic rays impacting the detectors
and creating point-like bright spots on the final data: typical spot counts are ∼ 4
per second integration time with a standard 4k × 4k CCD, ∼ 20 for the thicker
red-optimized one. This means some 15,000–75,000 impacts recorded for a typ-
ical 1-h exposure. Fortunately, their distinct highly peaked shape helps much to
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get highly efficient rejection algorithms in the subsequent data processing phase
(see Section 8.3).

1.5.4 2D Infrared Arrays

Until the early 1980s, for lack of the equivalent of photographic plates in the opti-
cal range, near IR astronomical observations above 1 μmwere painstakingly per-
formed with single-pixel semiconductor or bolometer detectors. Development
for the US Air Force of 2D IR Arrays based on HgCdTe or InSb semiconductors
that now feature up to 4k × 4k pixels (e.g., the Teledyne H4RG array) has been a
tremendous bonus, as soon as these (at first much smaller) detectors hit the civil-
ian market. They remain relatively expensive, with a cost per pixel one order of
magnitude higher than for optical CCDs. Like CCDs, they are fully buttable and
large arrays featuring up to 100 million pixels are currently in operation. Unlike
CCDs, it is possible – and almost always advisable – to perform multiple nonde-
structive readouts during the integration time as the IR photons slowly build the
spectra (or the image) on the detector.
Performance is splendid with, in particular, about 80% quantum efficiency

in a large domain, starting around 0.9 μm and reaching up to 5.5 μm. Actually,
with recent improvements in the manufacturing of the HgCdTe material, the
long wavelength cutoff can be tailored anywhere between 1.6 and 5.5 μm by
tweaking the chemical element ratios. Near IR arrays are generally cooled
around 70 ∘K to reduce integration noise to about 0.02 e−∕px∕s; this relatively
high level compared to CCDs usually limits individual integration times to
a few minutes at most. With low speed readout around 50,000 pixels per
amplifier per second and special reading tricks, readout noise is of the order
of 7 e−∕px (again almost an order of magnitude higher than with CCDs): to
avoid excessive total reading time, an individual 4k × 4k array holds up to 64
amplifiers working in parallel and the detector controller continuously performs
low-speed nondestructive readout of the array until the end of the integration
time.
IR arrays are less sensitive than CCDs to cosmic ray impact and, besides, their

multiple nondestructive readout schemes can be used for real-time rejection. On
the other hand, they are more “touchy” than CCDs, with possible artifacts, such
as hot (high-noise) pixels, or parasitic light emission from the amplifiers that can
reach the array corners.

1.5.5 Conclusion

The optical/NIR 2D-detector astronomical landscape is currently dominated by
two commercial solid-state integrating detectors, CCDs for the optical range (up
to 0.98 μm for the so-called deep depletion CCDs) and charge injection devices
(CIDs) for theNIR,with longwavelength cutoffs that can be tailored to the instru-
ment requirements in the 1.6–5.5 μm range. Pixel size is usually around 12 μm
for CCDs and 15 μm for near IR arrays. Very large mosaics can be built, cover-
ing any spectrographic need. Their low readout and integration noise and high
quantum efficiency (actually close to 100%) make them almost ideal detectors,
except for a few photon-starved cases such as high-resolution spectroscopy of
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fast transient sources or real-time measure of atmospheric turbulence to correct
image blurring (Section 9.4).
One worrisome recent commercial development is the increasing replacement

of CCDs by cheaper optical charge injection devices formost laymen applications
(surveillance, mobile phones, etc.), except the really high-end ones. This trend
might well someday make science-grade CCDS nomore available for astronomi-
cal purposes, at the cost of a significant hit in detectivity, owing to the intrinsically
higher CID readout noise.
A recent emerging detector is the avalanche photodiode 2D array. This is a

return to the short-lived photon-counting era, but with much higher QE (typ-
ically 60% peak), more rugged devices, and a larger wavelength range covering
both the optical andNIR domains, for example, up to 1.65 μm, butwith extremely
small formats (typically up to 8 × 8, 50 μm, pixels) and non-negligible dark (inte-
gration) noise. Much larger format devices have been built for defense purposes,
but are not yet available for the civilian market. They are well adapted to wave-
front sensing for adaptive optics systems with their typical sub-millisecond inte-
gration times (see Section 9.4), but not yet – if ever – for hour-long integrations
as the main science detector for spectrographic instruments. In the same vein,
large format CCDs, which, owing to internal electron multiplication, reach full
photon-counting capability, have been developed by an e2v-University of Mon-
tréal collaboration [14].
Finally, all 2D detectors – including photographic plates – currently feature

plane light-sensitive surfaces. This does not mean that there is any strong
technical difficulty in developing detectors with any other sensing surface
curvature, just that zero curvature is by default the commercial standard. This is
a real limitation, as spectrographic optics designers would love getting concave
detectors when opting for refractive cameras and, conversely, convex detectors
to match reflective optics. Developing 2D detectors is however an extremely
expensive endeavor (hundreds of million USD/Euros), and there is little hope to
ever get off-the-shelf curved detectors, except with the kind of massive financial
investment that ground-based astronomy, and even space-based astronomy,
could hardly afford.

1.6 Optics and Coatings

1.6.1 Introduction to Optics

As discussed above, the main optical path for the various spectrographic modes
involves two basic subsystems, namely, a collimator to image either a full 2D field
or a 1D field (an input slit) at infinity, and a camera to image back the field or
the spectra on a 2D detector. Cameras and collimators can be based on lenses
(dioptric systems), or mirrors (catadioptric systems), or a combination of both.
The spectral range to be covered is usually one octave at most, unless multiple
cameras/gratings are used in parallel.
It would be nice to use off-the-shelf optical subsystems, gaining very much in

project cost and timeline, but that is not generally possible while retaining high
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light transmission and excellent image quality. In particular, most spectrographic
cameras necessarily feature an entrance pupil some 5–10 cm before their first
lens, in order to insert their transmission grating; this is a very significant con-
straint on the camera optical system, and all off-the-shelf cameras are designed
instead with the entrance pupil well inside their optical body. Main astronomical
instrument optical systems are thus usually expensiveOneOffprototypes that are
in-house designed and then contracted to industrial optical companies. Optical
cost can then easily be in hundreds of thousand USD/Euros, with the total devel-
opment time around 2 years. In this chapter, we will look at a few basic principles
on how these complex optical systems are designed, fabricated, and tested.

1.6.2 Optical Computation

Optical computation of the various optical subsystems is the first development
step. This endeavor remains much of an art, even if the market offers (generally
at a cost, one of the very few exceptions in the mid-2010s being WinLens 3D
basic for Windows) remarkably efficient optical design programs that are exten-
sively used to optimize delivered image quality, taking into account the many
constraints inserted by the designer. Besides elementary design constraints such
as spectral range, entrance pupil position (significantly before the camera first
lens for grating and Fabry–Pérot based spectrographs), and the collimator and
camera focal lengths and aperture ratios, there are many other less obvious ones,
for example: (i) near telecentricity,4 that is, with the output pupil as seen by the
detector located near infinity, when precise measurement of object locations or
spectral lines positions is required; (ii) use of cheap glasses when budget is lim-
ited; (iii) reasonable glass lengths; (iv) small excursions of the final image posi-
tion with temperature when the instrument is not kept at constant temperature;
(v) achievable optical tolerances, that is, reasonable required precision on opti-
cal component parameters (refractive index, thickness, radius of curvature, tilt
and centering, inter-lens/mirror separations); (vi) no exposed glass surface too
close from an image of the field (as any dust particles would then create an arti-
fact on the final image); (vii) no harmful parasitic images, with particularly no
glass/mirror center of curvature close to the conjugate of the detector plane, as
any bright point in the field would then get a small halo around it, the so-called
Narcissus effect from the eponymousGreek demigod; (viii) no radioactive glasses
or coatings, especially if close to the detector, in order to avoid extra detector
noise, and so on.
One major difficulty in getting high-performance dioptric systems is in can-

celing their inherent chromatic aberrations: this requires at least two kinds of
transmitting materials with different dispersions (relative variation of refraction
index over the working wavelength range). This is relatively easy for 1D long-slit
spectrographs since a large part of the chromatic effects can be easily offset by
tilting slightly the detector. When working in the main part of the optical spec-
trum, say between 450 and 950 nm, cheap optical glasses can then be used (as
an example, see the MUSE instrument case in Section 5.4.2). For the extreme

4 See Figure 1.11 for a visual appraisal of non-telecentricity effects.
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(a)

(b)

Figure 1.11 Illustration of the deleterious effect of non-telecentricity. (a) Three telecentric
beams (with parallel optical axes) fall on a detector. Non-perfect flatness of the detector
degrades the images, but does not move their centers of gravity with respect to each other.
(b) The same, but for non-telecentric beams (optical axes not parallel). There is a similar image
degradation, but now their centers of gravity are displaced with respect to each other. This
leads to significant measuring errors, typically a few micrometers for, say, 10–20 μm flatness
deviation. (Credit Colombine Majou.)
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blue and near-ultraviolet, as well as the near-infrared domains, standard optical
glasses, except the low-index low-dispersion fused silica, are nomore transparent
and more expensive and fragile crystalline glasses are used instead. One special
difficulty for IR lenses is that thewhole optical train is then usually cooled to cryo-
genic temperatures (say 77 ∘K for the near IR): knowledge of refractive indexes at
these temperatures is quite sketchy, which makes optical optimization difficult.
Also a remotely controlled cryogenic motorized system for accurate focusing on
the detector surface is then required on such instruments.
A much better chromatic correction, called apochromatism, is needed for 2D

field (multislit or slitless) spectrographs, for which the above tilting trick cannot
work by design. In the optical domain this usually requires using fluoride glasses
that are more expensive, difficult to polish, and easily cracked during the antire-
flection coating process: this results in steep cost escalation (say ×4) and long
delays, easily 2 years for getting a full optical subsystem.
Mirrors have the huge advantage of no chromatic aberration at all, and on top

give less geometrical aberrations than single lenses of equivalent converging/
diverging power and aperture ratio. Their big disadvantage is geometrical in
nature: light bounces back from mirrors and in most cases, especially for 2D
fields, the output light beam is entangled with the input beam. Nevertheless, one
popular solution for high-aperture cameras is the Schmidt design with a spheri-
cal mirror and the detector cum cryostat located at the mirror focal plane (see
Figure 1.12). A different approach has been chosen for the JWST near-infrared
multislit spectrograph NIRSpec: given its enormous spectral range, 0.6–5 μm,
a train of three strongly aspherical off-axis mirrors (see Figure 1.13) is used for

Pupil
Focal

sphere
M1

Figure 1.12 Illustration of the Schmidt mounting, in essence a spherical mirror with the
entrance pupil located at its center of curvature. Two parallel light beams at two different
inclinations are shown. Owing to the system’s full rotational invariance, all input parallel
beams are imaged with the same (small) aberration irrespective of their 3D inclination, a trick
first discovered by the philosopher (and lens maker) B. Spinoza in 1600 and implemented by B.
Schmidt in the 1930s. This field-invariant aberration can, for example, be canceled by adding
an aspheric window on the pupil; its correction effect then varies over the field, but only as a
cosine function, which in most cases is good enough. Again, because of rotational invariance,
the images are located on a spherical segment with its center of curvature on the pupil. A field
flattener (a thick convergent lens possibly doubling as the detector entrance window) can also
be placed just before the focus.
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Optical axis

M3

M1

Pupil
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Figure 1.13 The so-called three mirror
anastigmat (TMA) is a centered optical system
(i.e., with a common optical axis) made of three
highly aspheric mirrors, the shapes and
positions of which are tuned to give extremely
good images on a flat focal plane over a wide
field of view. In real life, to avoid 100% beam
obscuration by M2, only off-axis cuts of the
three mirrors are used. The TMA can be used as
a camera with light reflected successively by
M1, M2, and M3, or as a collimator when used in
reverse.

both the collimator and the camera. As can be seen on the figure, the off-axis
part neatly solves the disentangling beam problem, at the (huge) cost of large
diamond-machined monolithic optomechanical systems.
One integral part of the optical computation effort is to derive the manufac-

turing tolerances compatible with the required optical quality, so that the manu-
facturer can plan and test accordingly. Like for Goldilocks and the three bears, it
is essential to design and fabricate the optics with the right tolerances, no more,
no less: too loose ones than needed would give poor quality images and too tight
ones, overly expensive or even unfeasible optics.

1.6.3 Optical Fabrication

Optical fabrication spans a huge range of technical procedures, adapted to
the many different substrates (glass, crystal, metal, plastic, ceramic), sizes
(from about 0.1mm to 8.4m diameter in the astrophysical domain), shapes
(spherical, mildly or hugely aspherical), and required surface qualities (from a
few 𝜆 for auxiliary lenses to 𝜆∕4 for precision lenses to 𝜆∕100 for interferometric
components, where 𝜆 is the shorter wavelength at which the component is used).
For mirrors and lenses alike, the first step is usually to grind the substrate to

get an approximate shape or even an accurate one, but with still rough surfaces at
the micrometer size level. The next step is to lap/polish the surface to get a local
smooth finish at close to the nanometer level, or even an extra-smooth one, for ,
for Fabry–Pérot or Michelson plates, or when the optics must image faint struc-
tures near an intensely bright one (the so-called coronagraphic grade optics).
Here are a few tidbits connected to optical surfacing:

• Onemight think that the most important manufacturing requirement is to get
the exact theoretical shapes of the lenses/mirrors. Actually, this is not gener-
ally the most difficult part, as shape tolerances are often as “large” as a few
micrometers, or even more, especially on large (meter-size) optics. What is
more difficult is to avoid introducing significant slope deviations at all scales
from the full diameter of the optical piece to about half a wavelength. Penalty
for not reaching the required smoothness level is a significant fraction of scat-
tered light, especially when working at short wavelengths. This means signif-
icant light losses and problematic artifacts around bright objects in the field.
Slope requirements are especially tighter for the coronagraphic grade optics
required to observe very faint sources near highly bright ones.



1.6 Optics and Coatings 41

• Classical optical figuring uses a statistical process that automatically generates
smooth spherical surfaces, including plane ones: the glass piece or blank,
ground to the global shape, is put in contact with a same-size matching tool,
with a mixture of abrasives and water in between. The blank and the tool
rotate and oscillate with respect to each other in a pseudorandom manner.
Over hours while using increasingly finer abrasives, this process automatically
generates two spherical surfaces of opposite curvatures, since only two
such spherical elements can remain in full contact for any orientation and
lateral displacement. To produce plane surfaces, two blanks are lapped over a
roughly plane tool, and the two blanks are also lapped against each other. This
statistical process can be altered to get instead aspheric surfaces, for example,
by stressing the optical surface during and/or after polishing, but these are
slow, expensive processes, especially when one wants to avoid significant
scattered light (say, no more than 1%). This is too bad because even only a few
aspheric surfaces often allow the design of performant optical systems with
much less lenses than their all-spherical variants.

• Molding techniques produce large quantities of dirt-cheap spherical or
aspheric optics of quite reasonable optical quality. Molds are expensive to
fabricate (say typically ∼ 50 kEuros for a 10 cm diameter component), but can
then produce tens of thousands of identical components at very low added
cost. Owing to significant post-molding shrinking of the plastic materials, this
process is however not well suited for production of high precision optical
components. Molding is thus generally used for mass production of relatively
low-tech optical components, for example, microlens arrays, cameras for
smart phones, and so on. One nice feature is that a single mold can directly
produce a full subcomponent, for example, a mirror with its mounting cell
and reference alignment points, saving significant fabrication, integration,
and adjustment time.

• Diamond-turning is a process of direct mechanical machining of precision
optics using a computer-controlled lathe equipped with a diamond-tipped
tool. Diamond-turning is used to manufacture spherical or aspheric lenses
or mirrors alike from a number of crystals, metals, and plastics. Note that
it is only since the beginning of the 2010s that it has been possible to get
high-quality low-scatter diamond-turned optics good enough for the optical
domain. One nice feature of this technique is that it is relatively easy to
produce (at a cost) a monolithic all-mirror piece, for example, all aluminum or
copper, incorporating, for example, three off-axis aspheric mirrors located at
their precise theoretical locations within onemicrometer or so. Such a built-in
subsystem permits to evade having to perform tricky high-precision mechan-
ical adjustments, and besides cannot subsequently become misaligned.
Moreover, such subsystems can be put directly in a cryogenic environment;
metal (isotropic) shrinkage will slightly alter the optics prescription in a
homothetic way, but with the optics still aligned and focused. This does not
work for lenses though, since optical train changes are then dominated by
temperature shift of the refraction indexes of glasses.

• Optical testing during the fabrication process is essential for high-quality com-
ponents and actually the only way to converge to the desired shape and surface
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finish. This can easily be a full subproject in itself, with the study and fabrica-
tion of often huge testing devices. The usual rule for optical manufacturing is
“if you can test it good enough and fast enough, you can get it good enough
and fast enough.” And the corollary, “if you cannot test it right, you will never
get it right.”

• For major subsystems (collimators, cameras, etc.) with exacting mounting
tolerances, it is almost always better to get (at a cost of course) the optical
components fully integrated inside their mechanical body from the industrial
manufacturer. The client must nevertheless plan for independent end-to-end
testing before closing the contract: image quality testing is generally quite
easy in the optical domain, but takes much longer – usually days – for NIR
optics working at cryogenic temperature. Checking light throughput is always
difficult, and even more in the UV and NIR domains.

1.6.4 Anti-Reflection Coatings

When a beam of light crosses from a dielectric medium of index of refraction
n1 (e.g., air whose n is very close to 1) to another dielectric of index n2 (e.g.,
an optical glass with index roughly in the 1.5–1.75 range), part of the light
is transmitted (refracted) and the remainder is reflected. For optics made of
transmitting elements – lenses, prisms, transmission gratings, beam splitters,
Fabry–Pérot plates, and so on– the transmitted part is the useful one, while the
reflected part is essentially a big nuisance, reducing overall light efficiency and
possibly bouncing back from the other optical surfaces to finally create unwanted
artifacts on the detector. The intensity of the reflected (R) and transmitted (T)
components is given by the Fresnel equations as given in Section 1.1.1. In partic-
ular, the relative loss for light at normal incidence on a surface of refractive index
n2 immersed in air is R = (n2 − 1)2∕(n2 + 1)2. This is about 4% loss for standard
optical glasses, and is much higher with more exotic materials such as diamond
at all wavelengths, or silicon, zinc sulfide, and zinc selenide in the near-IR
range.
For astronomical optics, antireflection (AR) coatings are normally applied

to the surface of all transmitting elements, including the front surface of
transmission gratings and detectors. The simplest theoretical interference
AR coating would consist of a single quarter-wave layer (meaning that its
optical thickness ne is equal to 𝜆c∕4) of a transparent material whose refractive
index is the square root of that of the lens. This gives zero reflectance at 𝜆c
for normal incidence light (of whatever polarization) and typically less than
2% reflectance over one octave in wavelength and for incidence angles less
than 15∘. In the optical and UV domains, but not the NIR, this is somewhat
theoretical though as there are no two transparent and durable materials with
such a wide refraction index contrast. Cheap AR coatings for cameras and
prescription glasses are usually overcoated with a quarter wave layer of MgF2
whose refractive index is 1.386 at 500 nm, versus typically 1.5–1.65 for cheap
glasses.
On the opposite side, a perfect AR coating would consist of a material whose

refractive index would continuously vary from the bulk material value on the
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inside to the air index (n = 1) on the outside. In electrical terms, this would give
perfect impedance matching between the surrounding air and the lens material,
and hence no light loss at all. Incredibly enough, this can be rather closely
achieved by spin-coating lens surfaces with variable porosity silicon prepared
through a sol–gel process: see Cleveland Crystals Inc. for commercial availability
up to 300mm diameter, in particular for coating highly fragile crystals since the
process is very gentle. Another process to cover a wide wavelength band, still at
the research laboratory stage, is to print periodic nanostructures on the surface,
mimicking biostructures on moth’s eyes. With top-structured pyramids of about
1 μm size, better than 1% reflection has been obtained over 0.5–2.5 μm, or 2.3
octaves.
Most coatings for astronomical purposes consist instead of a sandwich of

dozens of thin multilayers made of alternating high and low refractive index
materials. Layer thicknesses of, for example, MgF2 and ZnSe thin films are
tailored to produce destructive interference in the beams reflected from the
glass–air interfaces, and reciprocally constructive interference in the corre-
sponding transmitted beams. In practice, one can get better than 1% reflectance
over one octave wavelength and for incidence angles less than 15∘. The layers
are deposited one by one in a vacuum chamber. Whenever possible, it is better
to get hard coatings that can be easily dusted off and cleaned. The hardening
part involves baking the coated lenses at high temperature though and only
soft coatings can be applied to fragile materials such as crystals and fluoride
glasses. It is usually possible to get such complex vacuum-deposited coatings
from commercial firms over about half a meter in diameter lenses (or mirrors).

1.6.5 High Reflectivity Coatings

Mirrors present a somewhat different set of challenges, whether working in the
NIR or in the optical to near-UV domain.
For theNIR domain, beyond about 1 μm, an extremely durable very high reflec-

tivity (≥ 99%) can be readily obtained by overcoating the glass or metal mirror
with a layer of vacuum-deposited gold. FromKirchhoff’s law, this alsomeans that
the thermal emissivity of a such a mirror is below 1%, meaning that even at room
temperature its thermal IR emission will usually be negligible.
For the optical domain, a protected silver coating gives good reflectivity

(90–98%) in the 0.5–1 μm range, but does not cover the blue and near-UV
domains. To do that, multilayer dielectric coatings are needed and can be
obtained from a few industrial firms, very much like for AR coatings. Extremely
high reflectivity ≥ 99.99% can even be attained, but only for a single wave-
length, a single incidence angle, and a single polarization to boot. For the usual
astronomical requirements of 1 octave wavelength range, reasonable incidence
angles, and unpolarized light, very good reflectivity ∼ 99% is achievable, if by
stacking up to ∼ 100 coating layers.
One difficult case is the coating of the large telescope glass mirrors. They usu-

ally work from the atmospheric UV cutoff (0.31 μm) to the atmospheric IR cutoff
at 24 μm, a huge spectral range for which there is no good solution, only trade-
offs. For almost all telescopes, the lesser bad choice is a thin (∼ 100 nm) vacuum
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deposited aluminum layer, spontaneously overcoated by a very thin Al2O3 layer
as the vacuum chamber is opened to outside air. During the first few weeks of
operation, this gives a respectable >92% reflectivity over the whole range (except
for an 86% dip around 0.85 μm). Quite unfortunately, aluminum coatings do age
though and, even with mirror cleaning every month or so to remove dust par-
ticles, reflectivity in the visible range drops to maybe 80% within 18 months,
and recoating, usually with a custom plant at the telescope premises, needs to
be performed. Alternatively, the Gemini-South 8-m diameter telescope mirror is
currently overcoated with a custom-protected silver coating: it cannot be used
below 0.4 μm, but is more durable and gives better and more stable reflectivity
than even fresh aluminum for all wavelengths beyond 0.45 μm, also provided it
is regularly cleaned.

1.6.6 Conclusions

By way of summary, here is the typical, if somewhat convoluted, way in which an
optical subsystem for amajor astronomical instrument is developed over possibly
a 3–5 year time span:
• The instrument’s main optical train is defined by the user, with all fundamental

parameters (field, focal length, wavelength range, pupils, disperser, detector),
and special requirements clearly set up.

• Detailed optical computation, including optical and mechanical tolerances,
is performed by an optical engineer, with some iterations back and forth to
the previous step and to the mechanical engineer in charge of the instrument
design. A detailed specification and requirement document is then sent out for
competitive tendering.

• Optical fabrication is contracted out to an optical firm, with some iterations
back and forth to the previous step, for example, to refine glasses index of
refraction to that of already available blanks, the radiuses of curvature to
those of tools already available, etc. Acceptance tests both at the manufacturer
premises and in-house are clearly spelled out. For ultra-high precision optics,
it is not uncommon (at a cost though) that the most critical lens is produced
first, and its actual parameters accurately measured and used for a next
iteration of the whole optical system design.

• Coatings are usually subcontracted by the optical firm. Their specification
and progress must be closely followed, because of the high potential for
bad performance – for many possible reasons such as improper lens or
mirror cleaning before deposition, deposition on the wrong surface, and
even use of radioactive materials (!) that would saturate the detector. Besides,
vacuum deposition of hard layers is not a gentle process, and lens/mirror
cracking or permanent surface distortion is quite common, especially when
exotic glasses are used. Any such event can easily delay the project by
a year.

• Progress meetings/reports are regularly performed as contractually agreed
upon.

• Subsystems delivery and acceptance are performed as contractually agreed
upon.
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1.7 Mechanics, Cryogenics and Electronics

1.7.1 Mechanical Design

Mechanical design of an astronomical instrument is a complex venture. The pri-
mary role of mechanics is to house the optical components of the instrument
with accuracies/stabilities that can range from 1mm to 1 nm (a factor of 1million
range!), depending on the component functions. It must allow for easy, precise,
and stable adjustments, at first for the initial instrument assembly, but also during
its whole lifetime. It almost always provides for the motion/exchange of key opti-
cal components (filters, gratings, scanning interferometric system, etc.), again
with highly variable requirements in terms of accuracy and stability. Note that
accuracy and stability are two separate issues; for example, exchanging one plane
reflective grating with another for, say, modifying the spectral resolution calls for
a modest accuracy (a 1mm centering error for a 15 cm diameter grating would
not make any sizeable harm), but requires an extremely good stability during a
whole 1-h exposure, usually within a few micrometers. It is important to analyze
quantitatively all these requirements before starting themechanical design of the
instrument.
Proper housing of optical components means putting them firmly and accu-

rately in place in their holders, yet without exerting any strong mechanical con-
straint that would distort their shape, or even break the glass. One important
mounting concept here is that of mechanical degrees of freedom: any optome-
chanical component has six degrees of freedom that fully define its position in
space andmust be all constrained to get a highly stable and repetitive positioning,
possibly down to a fraction of amicron; see Figure 1.14 for an archetypal example
using three spheres in contact with three grooves. In the laboratory, one can rely
on gravity to ensure that components stay on their contact points (except dur-
ing a strong earthquake!). For telescope-mounted instruments, one adds springs
exerting forces orthogonal to the glass surface and directed toward the support
points: any mismatch here would create constraints that would distort or even
break the glass.
For less demanding applications, say at the 10 μm repetitiveness level, one can

slightly overconstrain the system, for example, with extended soft contact points.
For even less precise requirements, one can opt out entirely of the kinematic
mounting business and overdefine the component positions, for example, insert
a thin elastic rubber band between a lens and its housing: this is easier to install
and much more gentle for a glass component, but also less stable and much less
repetitive. For more on the fascinating issue of kinematic mountings, you may
look at the nice University of Arizona tutorial at http://fp.optics.arizona.edu/.
Mechanical development also comprises housing of electronics systems

(instrument and detector control), fluids cabling (electric power, data stream,
cooling fluid, dry gas lines), and various calibration systems. Add that mechan-
ical design complexity is more than often underappreciated and systematically
“slaved” to the more glamorous optical design effort to boot, it is no wonder that
this is historically the main source of frustration and delays in (astronomical)
instruments development.
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Figure 1.14 This classical kinematic mounting features three optically polished sapphire
spheres glued at 120∘ to the underside of a component and three right-angle hardened
ground steel grooves at 120∘ on top of its mounting plate. This gives the required six contact
points, ensuring incredibly stable and repetitive positioning. The upper component can be
removed and then put back (gently) in place, and without any adjustment repositions itself
within a fraction of a micron. Note that this requires only very lax absolute accuracy (say only
at the millimeter level) for the relative positions of the spheres and grooves. (Reproduced with
permission of Colombine Majou.)

One significant difficulty is thatmost astronomical instruments call for extreme
stability, yet are more than often moving a lot with respect to gravity with a typi-
cal angular speed of 15∘ per hour as the telescope tracks the sky: that is a lot when
a few micron stability per hour is required, for instance, between the optics out-
put and the detector. There are quite a number of ways for a telescope to feed its
instruments (Figure 1.15): Prime Focus and Cassegrain instruments are actually
moving in two dimensions; Nasmyth instruments are rotating orthogonally to
gravity at the cost of one more mirror; folded Nasmyth are rotating along gravity
(hence with no differential flexures) at the cost of two; finally coudé instruments
are fully stable at a minimum additional cost of three mirrors (or alternatively
tens of meters of optical fibers). It is usually a good idea to opt for a nonmov-
ing instrument when stability requirements are stringent and the field of view
is small enough to make it possible. Note that for moderately large fields (say 1′
diameter for a 10-m telescope), a so-called field derotator (e.g., a three-mirror
combination, see Figure 1.16) can be inserted in the optical beam in order to
feed a fixed-orientation instrument on a Nasmyth platform: the instrument still
rotates slowly as the alt-azimuth telescope tracks an object on the sky, but only
along gravity.
Still, many instruments are actually operated under big gravity changes and

must carefully be designed to get negligible flexures, and, even more important,
correctly built to avoid mechanical instabilities. It is not uncommon to find that
a given instrument, which according to finite elements analysis should not flex
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Prime focus Cassegrain focus

Nasmyth focus

Figure 1.15 The three main telescope foci are shown, namely prime focus, Cassegrain focus,
and Nasmyth focus. Additional mirrors are needed for the folded Nasmyth and coudé foci. As
the telescope tracks during the night along two orthogonal axis, much like a warship turret,
instruments at prime focus and Cassegrain focus move along, and on top usually rotate to
cancel field rotation. At Nasmyth focus, owing to the rotating tertiary mirror, light is sent to a
horizontal rotating platform when the instrument sits; field rotation has still to be canceled,
though.

Rotation Axis
C CC C

Figure 1.16 This is a schematic view of the classical three-mirror derotator in the case of a
parallel beam input. It works also with a convergent beam, for example, with an image of the
field on mirror #2. Field rotation is nulled by counterrotating the derotator around its
horizontal axis. For small enough light beams, a prism with three internal reflections can be
used instead.

by more than a few micrometer, actually internally moves by millimeters, due
to, for example, an improperly tightened nut: this is a rather trivial example,
but a number of “completed” instruments have never been operated because of
unmanageable flexures. In some cases, flexure requirements are just too harsh to
be attained with purely passive means; it is then necessary to incorporate active
flexure compensating systems, despite the added complexity: as an example, no
DVD player would work at its required submicron accuracy level without its
many internal control loops.
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1.7.2 Alignments

In any instrument design, and not only for astronomical ones, building and doc-
umenting an alignment/adjustment strategy is essential. Here are a few cardinal
rules:

• Like for any crucial element of a project, if you fail to plan, you plan to fail.
• Start on it as soon as you are at the instrument concept level, certainly not as

an afterthought at the end of instrument design. An alignment impossibility
is arguably one of the most likely hidden traps that might spell doom for your
project right from its start.

• Define carefully the instrument elements that are to be adjusted and how you
are going to do it. If you do not put enough degrees of freedom, the instrument
will never be aligned and so will never work. If you put more adjustments than
needed, youmight ultimately succeed, but that will takemore efforts andmight
cause significant delays.

• Evaluate correctly the various adjustment ranges/accuracies required. If you
set them too small/too loose, the instrument will never be adjusted correctly.
If they are overly large/tight, the instrument might ultimately be adjusted, but
with an impact on cost and timeline.

• Design and build adjustment devices that are repetitive, highly stable, andmost
preferably equippedwith digital or analogic encoders.Manual adjustments are
much cheaper to develop, but more than often could not be accessed safely, at
least on large telescopes: fully motorized and encoded adjustment systems are
then required. All that design and implementation effort might cause project
overcosting and delays in the short term, but chance is that it is going to be
recouped many times later on.

• When performing instrument adjustments, do not hesitate to be dumb and
lazy and proceed empirically: see, for instance, Exercise 6 for a rather generic
“blind” adjustment scheme that avoids figuring out the precise metrology of
the adjustment scheme.

1.7.3 Cryogenics

Since the demise of the photographic plate, every astronomical instrument fea-
tures at least one cryogenic system in order to operate its digital detector at
proper temperature, around 150 ∘K for CCDs and 75 ∘K for NIR arrays. This
requires integrating the detector and its proximity electronics in a cryostat (in
essence a magnified thermos bottle) under good vacuum and developing a cool-
ing system, generally either a liquid nitrogen bath or a cryocooler. In the latter
case, much care is needed to avoid the vibrations from the cryocooler operation
propagating inside the instrument. In the CCD case, the window cryostat is usu-
ally the interface between the cooled and uncooled parts of the instrument. To
avoid frost formation on the outside face of the window, one can, for example,
maintain a gentle nitrogen flow in front of the window. All in all, this requires a
significant number of cables, pipes, and regulating mechanisms.
Near-IR spectrometers installed at normal telescope sites (meaning neither in

space nor in Antarctica) must be entirely cooled when working above ∼1.65 μm.
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Looking backward along the light path, this must extend up to the entire focal
plane of the instrument: the reason is that the disperser is actually “looking back”
over a full hemisphere to any thermal radiation from the instrument mechanics
and sending a good fraction of it along the main optical path, ultimately up to
the detector. Any detector pixel thus sees thermal radiation over the full spectral
range, but science light only over one resolved spectral element. NIR instruments
are thus installed inside big cryostats, with usually a strong thermal gradient
between the instrument entrance at say 150 ∘K, which is enough to get negligible
thermal radiation up to 2.4 μm, and the detector support at 75 ∘K, about the best
operating temperature for the detector array. Apart from the additional cost, this
makes initial adjustment and integration, as well as subsequent repairs, excruci-
atingly slow: a week cycle forth and back to cryogenic operation for a few hours
of repair on an open cryostat at room temperature is a frustrating but common
occurrence. Also, anymotorizedmotion inside the cryostat is difficult and expen-
sive to develop, as the very few cryocompatiblemotors tend to exhibit vanishingly
small torques and small lifetimes when operated at such low temperatures. It
is also not uncommon that a failing motion at cryogenic temperature reworks
spontaneously when the cryostat is still closed but already back to less frigid con-
ditions. This makes repairs even more problematic, such as for proverbial car’s
faults that never occur at dealers’ premises.

1.7.4 Electronics and Control System

Like modern cars, most astronomical instruments (including of course 3D-
spectrometers) incorporate many motors and encoders and cannot be operated
without fully automated control systems. Given that the time to, for example,
reconfigure hundreds of fibers in the focal plane of a multiobject instrument to
address a different sky field, exchange a grating to modify the spectral resolution,
exchange a filter to modify the wavelength range, and so on, is time lost for
observing, it is vital to develop optimized automatic sequences in order to
perform these functions in parallel. Note that all this requires a lot of cabling,
which must be done most professionally. It is not uncommon that analysis of
the failures history of an operating instrument shows that more than half are
connected to cabling problems, especially for instruments that are regularly
taken in/out of their telescope focal locations.
Detector environments too usually require a number of controlled functions,

such as a light shutter for all CCDs (to be closed during frame readout) or an
internal focusing mechanism for most NIR instruments (because of the huge
temperature difference between an opened and closed cryostat). A highly special-
ized electronic controller is also needed to set up the detector voltages, start/end
the exposures and read out the detector pixels. This is often done with in-house
built electronic racks; in some cases the required functions are (mostly) provided
by an off-the-shelf integrated circuit developed by the detector provider.
Given the number and sophistication of controlled functions in any modern

astronomical instrument, operation is now always fully computer controlled
and closely integrated with the operation of the telescope. To save precious
telescope time, whenever possible the various steps needed are done in parallel,
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for example, disperser and filter exchange while the telescope moves toward the
next target. User’s friendly feedback is continuously sent to the observer, usually
through a graphical user interface. In the few cases where the observer must
actually provide a real-time input, for example, precisely set a narrow slit on the
science target, a “super” user’s friendly environment is provided. For instance,
just clicking on two locations on a sky image taken with the instrument will
automatically move the telescope and set its field rotator to place a slit or an
integral field unit at the required sky position.

1.8 Management, Timeline, and Cost

As can be gathered from the technical complexity of 3D spectrometers, suc-
cessful development of such full-scale instruments requires heavy management
investment over a long timeline – up to a decade fromfirst concept to start of rou-
tine operation – and carries a substantial global cost, easily in the tens of million
Euros/USD.
Just to give a flavor of what is generally needed for a successful endeavor, here

are a few pragmatic “rules” for the many project stages (see Figure 1.17):

• At start, there is a Concept, a Principle Investigator (P.I.) eager to transform
his/her goal (“a goal is a dream with a deadline,” Napoleon Hill 1925, The Law
of Success) into a Project to be carried out over a 10-year period or so, and at
least one Institution eager to get the instrument and ready to support a team
of competent people led by the P.I. and find/provide adequate funding. Very
often, this very first phase takes actually many years of preliminary studies and
intense lobbying before the Project gets its first green light and moves to the
definition phase, usually with a flashy acronym attached.

• In every case, at least most subsystems, or even the whole instrument, will be
built by high-tech industrial firms. Always remember that they are most likely
to know better than you how your specifications can be achieved at minimum
cost and/or timeline by their technology: impose only really needed specs, and
never how they are going to be met, making industry part of the solution,
rather than of the problem. Remember also that tradeoffs are unavoidable, as

Operation

IntegrationBuilding
Design

Feasibility

Concept

Figure 1.17 Project Funnel. This small cartoon illustrates how starting from a broad concept,
any instrumental project becomes more and more tightly defined as it moves through
successive stages toward start of operation. Along the way, uncertainties, in terms of cost,
timeline, and/or performance drastically decrease, that is for a successful project.
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per the (already optimistic) adage “Performance, Cost, Timeline, choose two.”
Competitive tendering (when at all possible) is a must, as a factor of 4 over-
all range in the industrial offers for the same optomechanical component is
not uncommon. Beware, while you might have got a very cost-effective deal
in the tendering process, changing later the specs at the building phase means
reopening thewhole cost issue, a recipe for heavy cost increases: this is a widely
valid warning, not limited to astronomy or even high-tech developments, but
which applies to any big project, as attested bymany high-profile horror stories
of public building developments.

• Any substantial Project goes through a number of phases, namely: Feasibility
Study; Preliminary Design; Final Design; Fabrication; Assembly, Integration
and Testing (AIT); Telescope Installation and Commissioning. Each step car-
ries the Project to a well-defined level, including detailed planning of the next
step, and ends with a Review, preferably led by external consultants. Projects
can be deeply modified or even canceled following any Review by whatever
organization the builders are working for, in particular, should meeting rea-
sonable performance, cost, and/or timeline appears highly problematic.

• The basic aim of Feasibility Study is to show that the project can be achieved at
minimum risk with the required performance at an affordable cost and within
a reasonable timeline. This is for a substantial part “just” a paper effort, but
with additional in-house and/or external technological developments to prove
the validity and cost of the key concepts of the instrument. Preliminary and
Final Design are in principle just design phases as their names imply, again
producing a lot of (electronic) papers, but are often coupled with procurement
in parallel of long-lead subsystems, such as the main optical components.
These two phases lead to the Fabrication phase, which includes careful
components/subsystems validation, both at the manufacturers’ premises and
subsequently in the AIT hall.

• AIT is the next crucial step, with the T (Testing) generally the longest and
most expensive part. In particular, it usually requires special premises. That
may include an integration hall with proper environmental parameters (tem-
perature, hygrometry, dust level, vibration level, etc.) and various equipments
(handling tools, vacuum pumps, gas containers, cryogenics, electric power,
etc.), a metrology laboratory for subsystem test and acceptance, a clean room
for detector integration, and any required custom-made test equipment: this
can be a full subproject by itself that needs to be planned and even possibly fab-
ricated well in advance as an integral part of the whole Project. In the 1980s,
the then fashionable time- and cost-saving strategy of careful testing only the
subcomponents as a way to avoid the higher burden of whole instrument test-
ing resulted in the one billion dollars Hubble Space Telescope near-fatal disas-
ter: a single error in the optical testing of the secondary mirror, compounded
by NASA’s adamant refusal for any full system testing, resulted in an orbiting
telescope delivering strongly aberrated images. This was eventually fixed by
adding optical correctors in front of each on-board instrument, but this now
proverbial story remains as a reminder to come back to the harsh but much
more sensible way of full instrument characterization prior to shipping to a
distant mountain and even more to outer space.



52 1 The Spectroscopic Toolbox

• For a really big project there will be many specific team positions: Project
Investigator; Project Manager; Instrument Scientist; Control Manager;
Mechanical, Optical, Electronics and Software Leaders, and so on. For a
smaller one, the same functions are still needed but are concatenated to be
filled by fewer people. For both small and large projects, advanced work
planning (often on a yearly basis), with at least monthly progress assessments,
is a must. Keeping such large teams eager and enthusiastic over a decade or
more, while facing unavoidable problems and setbacks, is by no means a small
management challenge.

• Delivering proper documentation is a major part of any project, and a vital
tool during the instrument operating phase. Yet, it is too often seen as a chore,
to be (badly) done after instrument building has been achieved. Au contraire,
it should be started early, preferably already at the feasibility study level: Early
drafts of, for example, the Usersmanual, the Alignment, Control Software, and
theAIT documents are actually a great way to catchwell ahead of time intrinsic
problems that might later kill the Project as such, or at least cause big delays
and/or cost overruns.

• Providing, documenting, and maintaining a near real-time pipeline that
extracts and visualizes the 3D data in physical units (intensity versus wave-
length at each sky position) at most a few minutes after observation, is no
small feat, but essential to evaluate the validity of typically 1-hour long obser-
vations. Together with a thorough off-line pipeline for proper data reduction
delivering science-ready products, equally maintained during the whole life
of the instrument, requires a big manpower investment over decades. This
is also one of the best ways to ‘sell’ the instrument to its potential users, the
ultimate touchstone for instrument success.

• Any project has risks. You can strive to minimize them, but you cannot elimi-
nate them altogether. On one side, you can develop your 10-year project using
only well-seasoned risk-free technologies right from the start, and chance is
that when completed it will be fully uncompetitive. On the other side of the
fence, you could redefine your project for any technological advance and/or
new science drivers that happen along the line, and chance is that the instru-
mentwill never be completed. Staying at the optimumrisk level thatmaximizes
the expected scientific value of the instrument is arguably the best winning
strategy, even if much easier said than done.

1.9 Conclusion

As can be gathered from this chapter, developing a state of the art (3D) instrument
is a long, expensive, complex, and risky high-tech endeavor. It requires in partic-
ular building a large competent team in all relevant technical domains, selecting
the best high-tech vendors and learning from them, and during the long devel-
opment phases striking a delicate balance between rigorous long-term planning
and creativity.
This long-term effort is not limited solely to the instrument design, building,

and installation phases, but extends as well during its whole operating life, either
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still by the original building team or by the instrument host observatory, or as
a combination of both. It is in particular quite common to rejuvenate an age-
ing instrument, for instance, by implementing a new state-of-the-art detector or
changing its spectral domain and/or spectral resolution. On the other hand, as
over time an instrument becomes decidedly uncompetitive, it is usually better
to reject aggressive and futile therapy, and build instead a worthy successor. In
any case, only a cradle to grave investment can give an instrumental facility the
chance to achieve its full observing potential over a reasonable length of time.

*** Exercise 1 Trying to beat etendue conservation #1

You have been tasked with detecting an all-sky night emission line with a ground
flux of 20 ph.cm−2 s−1 sr−1. Back in the early 1960s, your best detector is an 12%
quantum efficiency (QE), 7mm diameter, photomultiplier, accepting light from a
30∘ half-angle conic beam. Detector r.m.s. noise is 12 counts per second.The line
is selected with a 38% peak transmission narrow-band interference filter. Since
the detector QE varies over its sensitive area, for better signal stability, you image
the pupil on the detector, with telecentric beams (i.e., sky image at infinity). A
reminder: the solid angle of a cone of half-angle 𝜃 is π sin2𝜃.

1. Shooting the detector directly at the sky, with a baffle somewhere to avoid
input light out of the detector acceptance cone, what count number per sec-
ond do you get? Hint: First compute the detector etendue.

2. To improve the situation, you put a telescope in front of your instrument
in order to collect more light. What is the optimum telescope diameter (if
any)?

3. Undeterred, you put a tapered cone in front of the photomultiplier with a d
mm input diameter and of course a 7mm diameter output. What is the best
d (if any)? What happens to the light rays?

4. As a last resort, you now insert a tapered paraboloid with its focus at the
center of the sensitive surface of the detector. With perfect concentration of
all light rays parallel to the optical axis at the center of the detector, will you
finally collect more light?

Answer of exercise 1
1. Detector maximum etendue: (π∕4) × (0.7)2 = 0.385 cm2 sr. Photons

to detector counts efficiency: 0.38 × 0.12 = 0.0456. Detected flux:
20 × 0.385 × 0.0456 = 0.35 counts per second. With the 12 counts per
second r.m.s. detector noise, it looks like a short integration, ∼ 300 s would
lead to say a 5 𝜎 detection. However, at the time, photomultipliers had
highly unstable noise properties, and a signal of about 3 counts per second
was already at the detection limit, irrespective of integration time.

2. Light is collected on a much larger pupil area, but with a smaller solid angle
on the sky. Because of etendue conservation, the detected flux is the same,
actually smaller because of the not perfect light transmission of the tele-
scope.
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3. More of the same, again because of etendue conservation. One might won-
der why a larger beam etendue than permitted by etendue conservation
injected in the tapered fiber does not strike the detector. A careful look
shows that these extra rays, after a few reflections on the conewall, just come
back along the cone, ultimately up to the sky.

4. Again noway, for the same reason. Yes, thewhole beamparallel to the optical
axis entirely strikes the detector. However, with zero etendue, it carries zero
energy. Note that one of the authors (GM) has been indeed tasked at the
time to find a way to detect such a source, and went through these steps one
by one, including showing with a messy computation5 that the paraboloid
off-axis aberrations indeed prevent breaking the etendue limit.

***** Exercise 2 Trying to beat etendue conservation #2

Let us take a hypothetical 10′′ diameter ionized gas cloud at a galaxy center with
a uniform brightness narrow emission line at 656 nm. The gas is rotating as a
solid body, with constant integrated radial velocity along the sky plane projec-
tion of its rotation axis (the minor axis) and a linear radial velocity gradient G =
20 km s−1 (′′)−1 along the projected orthogonal axis (the major axis) from one
edge to the other. You are using a long-slit spectrograph observing facility with
the following parameters: telescope diameter D = 3.6 m, grating diameter d =
150 mm, and blaze angle 𝜙 to be derived.

1. Find the grating blaze angle for which a wide, 10′′ width, slit parallel to the
cloud minor axis (thus collecting the whole cloud light) gives nevertheless a
narrow spectral line on the detector.

2. Assuming 100% optics transmission, this spectral line is an order of mag-
nitude brighter at the detector location than on the sky. Now, here is the
tough question: this is a clear violation of the sacrosanct second principle of
thermodynamics, right?

Answer of exercise 2
1. Spectral resolutionℜ = 𝜆∕𝛿𝜆 for a 1′′ wide slit is equal to 105d (tan𝜙)∕D.ℜ

is also equal to c∕G′, whereG′ is the radial velocity gradient across the 1′′ slit.
With G′ = −G, the emission line peak beams are on top of each other and
thus fall on the same detector pixels. This requires tan𝜙 = 10−5cD∕dG =
3.6, or a steep but feasible 75∘ blaze angle high-order echelle grating.

2. Well, yes and no. The second law as expressed so far –never decreasing
entropy in a closed system– is indeed spectacularly violated here. However,
the fully correct extended 2nd law–never decreasing entropy plus informa-
tion in a closed system– is not. It is the known a priori information (location,
orientation, andmagnitude of the object radial velocity gradient) that is used
to achieve this seemingly impossible feat. Note that a similar experiment had
actually been done successfully in the 1950s (De Vaucouleurs G., private dis-
cussion).

5 You are of course most welcome to repeat it.
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** Exercise 3 Prism etendue

The goal is to illustrate the small linear etendue of the prisms in the direc-
tion of dispersion. A spectrograph at the focus of a D = 4 m telescope is
using a d = 75 mm, 60∘ apex angle A, BaF10 prism at minimum deviation.
Slit width projected on the sky: 𝛼 = 1′′ (∼ 5.10−6 rad); camera aperture ratio
Ω = 1∕1.5. Glass index of refraction n given by n = B + C∕𝜆2, with 𝜆 is in μm,
B = 1.67;C = 0.00743. Central wavelength 𝜆c = 0.55 μm.

1. Compute the instrument spectral resolution at central wavelength.Hint: use
the prism spectrograph cooking book insert.

2. Compute the slit width w projected on the detector.

Answer of exercise 3
1. Index n = 1.695 at 0.55 μm. From prism spectrograph insert, spectral reso-

lution isℜ = (KΔ)d∕D𝛼. From the prism data:K = 1.883 andΔ = 2C∕𝜆2 =
0.049. Finallyℜ = 346, just a small value at the lower limit of spectrographic
resolution.

2. Etendue conservation gives 𝑤Ω = D 𝛼, hence 𝑤 = 30 μm, or typically 2.4
CCD pixels.

** Exercise 4 Grating etendue

The goal is to compare the linear etendue of gratings versus prisms in the direc-
tion of dispersion, with a similar instrumental setting as in Exercise 3. A spec-
trograph at the focus of a D = 4 m telescope is using a d = 75 mm diameter
transmission grating (first order Littrow mounting) with a blaze angle 𝜙 = 30∘.
Slit width projected on the sky: 𝛼 = 1′′ (∼ 5.10−6 rad); camera aperture ratioΩ =
1∕1.5. Central wavelength 𝜆c = 0.55 μm.

1. Compute the spectral resolution at central wavelength. Hint: use the grat-
ing spectrograph cooking book insert. Set up the grating ruling (number of
grooves per millimeter).

2. Compute the slit width w projected on the detector.

Answer of exercise 4
1. From the grating spectrograph insert, spectral resolution is ℜ =

2 (tan𝜙) d∕D𝛼. From the grating data: 2 tan𝜙 = 1.155, giving ℜ = 4330, a
comfortable value, 12 times larger than with the equivalent prism-based
instrument. Using 2 sin𝜙 = a𝜆c gives a = 1082 grooves per millimeter.

2. Etendue conservation gives 𝑤Ω = D 𝛼, hence 𝑤 = 30 μm, or typically 2.4
CCDpixels, of course the same as with the equivalent prism spectrograph.

*** Exercise 5 Grism Rotation Invariance

We consider a generic zero deviation grism, made of a blaze angle 𝜙 (in air at
central wavelength 𝜆c) VPHG sandwiched between two identical apex angle 𝜙
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prisms of refractive index nc. Because of their zero mean deviation, different
grisms can be exchanged in the instrument, with, for example, different wave-
length ranges and/or wavelength dispersion, with the spectra automatically cen-
tered on the detector. Given the use of remotely controlled exchange mecha-
nisms, it is difficult to avoid small rotation angle uncertainties 𝜖 of the grisms
in the dispersion plane, the consequences of which are evaluated here.

1. Find the emergent angle (𝜙 + 𝜖′) at central wavelength 𝜆c for an incident
angle (𝜙 + 𝜖). Derive the zero deviation departure (𝜖′ + 𝜖). Hint: evaluate
approximatively 𝜖′ as a second degree polynomial in 𝜖.

2. Compute the corresponding spectral shift Δ𝜆 versus rotation error 𝜖. Find
the relationship between the grism rotation error 𝜖 and the resulting spectral
shift ‘resolution’ R = 𝜆c∕Δ𝜆. Does that ring a bell?

3. Taking the same spectrograph as in Exercise 4, what rotation angle error 𝜖
will shift the central wavelength by one slit width?Howdoes it comparewith
the slit angular width as seen from the grating.

Answer of exercise 5
1. From the classical grating law, sin(𝜙 + 𝜖) + sin(𝜙 + 𝜖′) = 2 sin𝜙. Taking 𝜖′ =

k1 𝜖 + k2 𝜖2 with the well-known approximations sin x ∼ x and cos x ∼ (1 −
x2∕2), one gets k1 = −1 and k2 = tan𝜙. The error angle 𝜖 + 𝜖′ is equal to
𝜖2 tan𝜙.

2. Using again the classical grating law, but now looking at its 𝜆 dependence,
we find 𝜖 =

√
2∕R. And, yes, the wavelength shift versus grism tilt angle (in

the dispersion plane) and the wavelength shift versus Fabry–Pérot tilt angle
(in any plane) obey similar laws.

3. From Exercise 4, R = 4330, hence 𝜖 = 0.0215 or 1.23∘ at the grism level. Slit
width is 1′′ on the sky, hence 1′′ × (4000∕75), or 0.000267 rad at the grism
level. Their ratio is ∼ 80, which can be seen as the grism invariance figure of
merit.

* Exercise 6 Optical Adjustments for Dummies

To adjust amirror inclination inside your instrument, you use a point-light source
centered on its input field, the image of which on the 15 μm pixel CCD must be
exactly centered, that is, at xc = 2048, yc = 2048 in pixel units. Initially, the image
is instead at x = 2274.4, y = 1852.7. You are using two rotating linear screws with
encoders. From your own calibration, one positive (clockwise) 360∘ turn of the
screws moves the light source on the detector by Δx1 = 122.7,Δy1 = 85.4 for
screw #1, Δx2 = 97.1,Δy2 = −101.6 for screw #2.

1. Assuming fully linear behavior, what are the screw rotations Δ𝜃1,Δ𝜃2 in
degrees required to make the adjustment?

2. Applying the computed corrections, you now find the source image at x′ =
2046.1, y′ = 2048.9. What screw rotations do you apply now?

3. You should be now happily dead centered: why?What can you say about the
relative actions of the two screws in length scales and orientations?
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Answer of exercise 6
1. From the calibration: Δx = (122.7∕360) Δ𝜃1 + (97.1∕360) Δ𝜃2 and

Δy = (85.4∕360) Δ𝜃1 − (101.6∕360) Δ𝜃2. Inverting the corresponding
2× 2 matrix gives Δ𝜃1 = 1.7621 Δx + 1.6840 Δy and Δ𝜃2 = 1.4811 Δx −
2.1280 Δy. With the required adjustments Δ x = −226.4 pixels and
Δ y = 195.3 pixels, this gives Δ𝜃1 = −70.05∘ and Δ𝜃2 = −750.92∘.

2. Now Δ x = 1.9 pixels and Δ y = −0.9 pixels. This gives Δ𝜃1 = +1.75∘ and
Δ𝜃2 = +4.84∘.

3. The first iteration missed the target at the 1% level. The second one
should give a similar accuracy, that is, this time better than 0.1 pixel
adjustment: this has been done just from an empirical calibration, with-
out having to figure out the mirror actual motions, a thankless task.
Normalizing the two Δ𝜃 relationships gives Δ𝜃1 = k1 (x cos 𝛼1 + y sin 𝛼1)
and Δ𝜃2 = k2 (x cos 𝛼2 + y sin 𝛼2), with k1 = 2.437, 𝛼1 = 43.7∘, k2 = 2.593,
𝛼2 = −55.2∘. The two screws thus move the light beam by slightly different
amounts, their scale ratio being k2∕k1 = 1.064.Their two directions are also
not exactly orthogonal, with an angle 𝛼1 − 𝛼2 = 98.9∘.
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Redshift z

The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the
local Universe ever made, with deep multicolor images of one third of the sky, and spectra for
more than three million astronomical objects. The maps show the distribution of galaxies of
the local universe [121]. Each dot is a galaxy; the color bar shows the local density. These
observations have been obtained with the multiobject fiber-based spectrograph of the SDSS
2.5 m telescope at Apache Point Observatory. ([120]. Reproduced with permission of Michael
Blanton.)




