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The Principle of Wave–Particle Duality: An Overview

1.1 Introduction

In the year 1900, physics entered a period of deep crisis as a number of peculiar
phenomena, for which no classical explanation was possible, began to appear one
after the other, starting with the famous problem of blackbody radiation. By 1923,
when the “dust had settled,” it became apparent that these peculiarities had a
common explanation. They revealed a novel fundamental principle of nature that
was completely at odds with the framework of classical physics: the celebrated
principle of wave–particle duality, which can be phrased as follows.

The principle of wave–particle duality: All physical entities have a dual
character; they are waves and particles at the same time. Everything we used to
regard as being exclusively a wave has, at the same time, a corpuscular character,
while everything we thought of as strictly a particle behaves also as a wave. The
relations between these two classically irreconcilable points of view—particle
versus wave—are

E = h f , p = h
𝜆
, (1.1)

or, equivalently,

f = E
h
, 𝜆 = h

p
. (1.2)

In expressions (1.1) we start off with what we traditionally considered to be solely
a wave—an electromagnetic (EM) wave, for example—and we associate its wave
characteristics f and 𝜆 (frequency and wavelength) with the corpuscular charac-
teristics E and p (energy and momentum) of the corresponding particle. Conversely,
in expressions (1.2), we begin with what we once regarded as purely a particle—say,
an electron—and we associate its corpuscular characteristics E and p with the
wave characteristics f and 𝜆 of the corresponding wave. Planck’s constant h, which
provides the link between these two aspects of all physical entities, is equal to

h = 6.62 × 10−27 erg s = 6.62 × 10−34 J s.

Actually, the aim here is not to retrace the historical process that led to this fun-
damental discovery, but precisely the opposite: Taking wave–particle duality as
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granted, we aim to show how effortlessly the peculiar phenomena we mentioned
earlier can be explained. Incidentally, these phenomena merit discussion not
only for their historical role in the discovery of a new physical principle but
also because of their continuing significance as fundamental quantum effects.
Furthermore, we show that the principle of wave–particle duality should be
recognized as the only sensible explanation to fundamental “mysteries” of the
atomic world—such as the extraordinary stability of its structures (e.g., atoms
and molecules) and the uniqueness of their form—and not as some whim of
nature, which we are supposed to accept merely as an empirical fact.

From its very name, it is clear that the principle of wave–particle duality can be
naturally split in two partial principles: (i) the principle of wave–particle duality
of light and (ii) the principle of wave–particle duality of matter. We proceed to
examine both these principles, in relation to the peculiar phenomena and prob-
lems that led to their postulation.

1.2 The Principle of Wave–Particle Duality of Light

According to the preceding discussion, the wave–particle duality says that
light—which in classical physics is purely an EM wave—has also a corpuscular
character. The associated particle is the celebrated quantum of light, the
photon. The wavelike features f and 𝜆 of the corresponding EM wave, and the
particle-like features E and p of the associated particle, the photon, are related
through expressions (1.1). We will now see how this principle can explain two
key physical phenomena—the photoelectric effect and the Compton effect—that
are completely inexplicable in the context of classical physics.

1.2.1 The Photoelectric Effect

With this term we refer today to the general effect of light-induced removal
of electrons from physical systems where they are bound. Such systems can
be atoms and molecules—in which case we call the effect ionization—or a
metal, in which case we have the standard photoelectric effect studied at the
end of the nineteenth and the beginning of twentieth century. What makes the
effect peculiar from a classical perspective is the failure of classical physics to
explain the following empirical fact: The photoelectric effect (i.e., the removal
of electrons) is possible only if the frequency f of the incident EM radiation is
greater than (or at least equal to) a value f0 that depends on the system from
which the removal occurs (atom, molecule, metal, etc.). We thus have

f ≥ f0. (1.3)

In classical physics, a “threshold condition” of the type (1.3) has no physical
justification. Whatever the frequency of the incident EM wave, its electric field
will always produce work on the electrons, and when this exceeds the work
function of the metal—the minimum energy required for extraction—electrons
will be ejected from it. In other words, in classical physics, the frequency plays no
crucial role in the energy exchanges between light and matter, while the intensity
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of the electric field of light is the decisive factor. Clearly, the very existence of
a threshold frequency in the photoelectric effect leaves no room for a classical
explanation. In contrast, the phenomenon is easily understood in quantum
mechanics. A light beam of frequency f is also a stream of photons with energy
𝜖 = h f ; therefore, when quantized light—a “rain of light quanta”—impinges
on a metal, only one of two things can happen: Since the light quantum is by
definition indivisible, when it “encounters” an electron it will either be absorbed
by it or “pass by” without interacting with it.1 In the first case (absorption), the
outcome depends on the relative size of 𝜖 = h f and the work function, W , of
the metal. If the energy of the light quantum (i.e., the photon) is greater than
the work function, the photoelectric effect occurs; if it is lower, there is no such
effect. Therefore, the quantum nature of light points naturally to the existence of
a threshold frequency in the photoelectric effect, based on the condition

h f ≥ W ⇒ f ≥ W
h

= f0, (1.4)

which also determines the value of the threshold frequency f0 = W∕h. For
h f >W , the energy of the absorbed photon is only partially spent to extract the
electron, while the remainder is turned into kinetic energy K (= m𝑣2∕2) of the
electron. We thus have

h f = W + K = W + 1
2

m𝑣2, (1.5)

which is known as Einstein’s photoelectric equation. Written in the form

K = h f − W ( f ≥ f0), (1.6)

Equation (1.5) predicts a linear dependence of the photoelectrons’ kinetic energy
on the light frequency f , as represented by the straight line in Figure 1.1.

Therefore, by measuring K for various values of f we can fully confirm—or
disprove—Einstein’s photoelectric equation and, concomitantly, the quantum
nature of light, as manifested via the photoelectric effect. In addition, we can
deduce the value of Planck’s constant from the slope of the experimental line.

The discussion becomes clearer if in the basic relation 𝜖 = h f = hc∕𝜆 we
express energy in electron volts and length in angstroms—the “practical units”
of the atomic world (1 Å = 10−10 m, 1 eV = 1.6 × 10−19 J = 1.6 × 10−12 erg). The
product hc, which has dimensions of energy times length (since h has dimensions
of energy times time), then takes the value hc = 12 400 eV Å, and the formula for
the energy of the photon is written as

𝜖(eV) = 12 400
𝜆(Å)

≈ 12 000
𝜆(Å)

. (1.7)

1 For completeness, let us also mention the possibility of scattering. Here, the photon “collides”
with an electron, transfers to it part of its energy and momentum, and scatters in another direction
as a photon of different frequency (i.e., a different photon). This is the Compton effect, which we
examine in the coming section. But let us note right away that Compton scattering has negligible
probability to occur for low-energy photons like those used in the photoelectric effect.
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Figure 1.1 The kinetic energy K of electrons as a function of photon frequency f .
The experimental curve is a straight line whose slope is equal to Planck’s constant.
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Figure 1.2 The standard experimental setup for studying the photoelectric effect. The
photoelectric current occurs only when f > f0 and vanishes when f gets smaller than the
threshold frequency f0. The kinetic energy of the extracted electrons is measured by reversing
the polarity of the source up to a value V0—known as the cutoff potential—for which the
photoelectric current vanishes and we get K = eV0.

The last expression is often used in this book, since it gives simple numerical
results for typical wavelength values. For example, for a photon with
𝜆 = 6000 Å—at about the middle of the visible spectrum—we have 𝜖 = 2 eV. We
remind the readers that the electron volt (eV) is defined as the kinetic energy
attained by an electron when it is accelerated by a potential difference of 1 V.
Figure 1.2 shows a typical setup for the experimental study of the photoelectric
effect. Indeed, Einstein’s photoelectric equation is validated by experiment,
thus confirming directly that light is quantized, as predicted by the principle of
wave–particle duality of light.
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Example 1.1 A beam of radiation of wavelength 𝜆 = 2000 Å impinges on a
metal. If the work function of the metal is W = 2 eV, calculate: (i) the kinetic
energy K and the speed 𝑣 of the photoelectrons, (ii) the cutoff potential V0.

Solution: If we set 𝜆 = 2000 Å in the relation 𝜖(eV) = 12 000∕𝜆(Å), we obtain
𝜖 = 6 eV. So if we subtract the work function 2 eV, we obtain 4 eV for the kinetic
energy of the outgoing electrons. The speed of the photoelectrons can then be
calculated by the relation

K = 1
2

m𝑣2 = 1
2

mc2
(
𝑣

c

)2
⇒

𝑣

c
=
√

2K
mc2

=
√

2 × 4 eV
1
2
× 106 eV

= 4 × 10−3 ⇒
𝑣

c
= 4 × 10−3 ⇒ 𝑣 = 1.2 × 108 cm∕s.

Here we wrote 1
2
m𝑣2 as 1

2
mc2(𝑣∕c)2 in order to express mc2 in eV (mc2 = 0.5 MeV

for an electron) and the electronic speed as a fraction of the speed of light
(which is useful in several ways: for example, it helps us assess the validity of
our nonrelativistic treatment of the problem). As for the cutoff potential V0, it is
equal to V0 = 4 V, since K = 4 eV and K = e ⋅V0.

We should pause here to remark how much simpler and more transparent our
calculations become when, instead of using the macroscopic units of one system
or another (cgs or SI), we use the “natural” units defined by the very phenomena
we study. For example, we use eV for energy, which also comes in handy
when we express the rest mass of particles in terms of their equivalent energy
rather than in g or kg. In this spirit, it is worthwhile to memorize the numbers
mec2 ≈ 0.5 MeV and mpc2 ≈ 1836 mec2 = 960 MeV ≈ 1 GeV for electrons and
protons, respectively. We will revisit the topic of units later (Section 1.2.3).

1.2.2 The Compton Effect

According to expressions (1.1), a photon carries energy 𝜖 = h f and momentum
p = h∕𝜆. And because it carries momentum, the photon can be regarded as a
particle in the full sense of the term. But how can we verify that a photon has
not only energy but also momentum? Clearly, we need an experiment whereby
photons collide with very light particles—we will shortly see why. We can then
apply the conservation laws of energy and momentum during the collision to
check whether photons satisfy a relation of the type p = h∕𝜆.

Why do we need the target particles to be as light as possible—that is, electrons?
It is well known that when small moving spheres collide with considerably larger
stationary ones, they simply recoil with no significant change in their energy,
while the large spheres stay practically still during the collision. Conversely, if the
target spheres are also small (or even smaller than the projectile particles), then
upon collision they will move, taking some of the kinetic energy of the impinging
spheres, which then scatter in various directions with lower kinetic energy.
Therefore, if photons are particles in the full sense of the term, they will behave
as such when scattered by light particles, like the electrons of a material: They will



8 1 The Principle of Wave–Particle Duality: An Overview

transfer part of their momentum and energy to the target electrons and end up
with lower energy than they had before the collision. In other words, we will have

𝜖′ = h f ′< 𝜖 = h f ⇒ f ′< f ⇒ 𝜆′ >𝜆, (1.8)

where the primes refer to the scattered photons. This shift of the wavelength to
greater values when photons collide with electrons is known as the Compton
effect. It was confirmed experimentally by Arthur H. Compton in 1923, when
an x-ray beam was scattered off by the electrons of a target material. Why
were x-rays used to study the effect? (Today we actually prefer 𝛾 rays for this
purpose.) Because x- (and 𝛾) rays have very short wavelength, the momentum
p = h∕𝜆 of the impinging photons is large enough to ensure large momentum
and energy transfer to the practically stationary target electrons (whereby the
scattered photons suffer a great loss of momentum and energy). In a Compton
experiment we measure the wavelength 𝜆′ of the scattered photon as a function
of the scattering angle 𝜃 between the directions of the impinging and scattered
photon. By applying the principles of energy and momentum conservation we
can calculate the dependence 𝜆′ = 𝜆′(𝜃) in a typical collision event such as the
one depicted in Figure 1.3.

Indeed, if we use the conservation equations—see Example 1.2—to eliminate
the parameters E, p, and 𝜙 (which we do not observe in the experiment, as they
pertain to the electron), we eventually obtain

Δ𝜆 = 𝜆′ − 𝜆 = h
mc

(1 − cos 𝜃) = 𝜆C(1 − cos 𝜃), (1.9)

where

𝜆C = h
mc

= 0.02427 Å ≈ 24 × 10−3 Å (1.10)

is the so-called Compton wavelength of the electron. It follows from (1.9) that
the fractional shift in the wavelength, Δ𝜆∕𝜆, is on the order of 𝜆C∕𝜆, so it is
considerable in size only when 𝜆 is comparable to or smaller than the Compton
wavelength. This condition is met in part for hard x-rays and in full for 𝛾 rays.

Compton’s experiment fully confirmed the prediction (1.9) and, concomi-
tantly, the relation p = h∕𝜆 on which it was based. The wave–particle duality of
light is thus an indisputable experimental fact. Light—and, more generally, EM
radiation—has a wavelike and a corpuscular nature at the same time.

f, λ

y

x

f′, λ′

E, p

θ

ϕ

Figure 1.3 A photon colliding with
a stationary electron. The photon
is scattered at an angle 𝜃 with a
wavelength 𝜆′ that is greater than
its initial wavelength 𝜆. The
electron recoils at an angle 𝜙 with
energy E and momentum p.
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Example 1.2 In a Compton experiment the impinging photons have wave-
length 𝜆 = 12 × 10−3Å = 𝜆C∕2 and some of them are detected at an angle of 60∘
with respect to the direction of the incident beam. Calculate (i) the wavelength,
momentum, and energy of the scattered photons and (ii) the momentum, energy,
and scattering angle of the recoiling electrons. Express your results as a function
of the electron mass and fundamental physical constants.

Solution: For 𝜆 = 𝜆C∕2 and 𝜃 = 60∘ (⇒ cos 𝜃 = 1∕2), the formula Δ𝜆 = 𝜆′ − 𝜆 =
𝜆C(1 − cos 𝜃) yields 𝜆′ = 𝜆C, which is twice the initial wavelength. The momen-
tum and energy of the photon before and after scattering are

p𝛾 =
h
𝜆
= h

𝜆C∕2
= h

(h∕mc)∕2
= 2mc, p′

𝛾 =
h
𝜆′

= h
𝜆C

= mc

and

𝜖 = h f = hc
𝜆

= hc
𝜆C∕2

= 2mc2, 𝜖′ = hc
𝜆′

= hc
𝜆C

= mc2,

where the index “𝛾” in the momentum symbol p denotes the photon (in custom-
ary reference to “𝛾 rays”) to disambiguate it from the symbol p of the electronic
momentum. We can now write the conservation laws of energy and momentum
as follows:

• Conservation of energy

𝜖 + mc2 = 𝜖′ + E ⇒ 2mc2 + mc2 = mc2 + E ⇒ E = 2mc2.

• Conservation of momentum along the x-axis (Figure 1.3 with 𝜃 = 60∘)

p𝛾 + 0 = p′
𝛾 cos 𝜃 + p cos𝜙 ⇒ 2mc + 0 = mc 1

2
+ p cos𝜙

⇒ p cos𝜙 = 3
2

mc. (1)

• Conservation of momentum along the y-axis

0 + 0 = p′
𝛾 sin 𝜃 − p sin𝜙 ⇒ 0 = mc

√
3

2
− p sin𝜙

⇒ p sin𝜙 = mc
√

3
2

. (2)

If we now take the square of (1) and (2) and add them, we get

p2 = 3m2c2 ⇒ p =
√

3 mc

and, based on (1), we find that
√

3 mc cos𝜙 = (3∕2)mc ⇒ cos𝜙 =
√

3∕2 ⇒
𝜙 = 30∘.

Now that p and E for the electron (p =
√

3 mc, E = 2mc2) have been calculated,
one may wonder whether they satisfy the relativistic energy–momentum relation
E2 = c2p2 + m2c4.2 Indeed they do, as the readers can readily verify.

2 The use of relativistic formulas here is necessary because the speeds of the recoiling electrons are
indeed relativistic.
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1.2.3 A Note on Units

At this point we should pause to make some remarks on the system of units. We
have already suggested (see Example 1.1) that both the cgs and SI system of units
are equally unsuited for the atomic world, since it would be quite unreasonable
to measure, for example, the energy in joules (SI) or erg (cgs). The natural scale
of energies in atoms is the electron volt, a unit that is 19 orders of magnitude
smaller than the joule and 12 orders smaller than the erg! Likewise, the natural
length unit in the atomic world is the angstrom (= 10−10 m), since it is the typical
size of atoms. In this spirit, it is inconvenient to express, say, Planck’s constant
in erg s or J s, and hc—another useful constant—in erg cm or J m; instead, it is
easier to use the corresponding practical units eV s for h and eV Å for hc. There
is, however, one instance in atomic physics where we cannot avoid choosing
one system over another: The basic force law governing atomic and molecular
structure—Coulomb’s law—has a much more convenient form in cgs than SI
units, namely,

F = 1
4𝜋𝜖0

q1q2

r2 (SI) F =
q1q2

r2 (cgs), (1.11)

whence we immediately see why the cgs system is preferable over SI in atomic
physics. In SI units all mathematical expressions of the basic quantum results
for atoms appear much less elegant because they carry the cumbersome factor
1∕4𝜋𝜖0. For example, in cgs units the quantum formula for the ionization energy
of the hydrogen atom has the simple form WI = me4∕2ℏ2, while in SI units it
becomes WI = me4∕32𝜋2𝜖2

0ℏ
2! Therefore, our choice is to go with the cgs system

for the mathematical expression of Coulomb’s law, but to make all calculations in
the practical units eV and Å, or even in the so-called atomic system of units, which
we will introduce later. As you will soon find out, the practical unit of energy (i.e.,
the eV) is much better suited than the joule, even for calculations concerning
physical quantities, like voltage or electric field intensities in atoms, where the
SI units (V or V∕m) are certainly preferable. The reason is that the energy unit
eV is directly related both to the fundamental unit of charge e and the SI unit
of volt. A pertinent example was the calculation—without much effort!—of the
cutoff potential in Example 1.1. The same holds true for electric field intensities
in atoms, where the SI unit V∕m (or V∕cm) arises naturally from the energy
unit eV.

So, even readers who are adherents of the SI system will find that the practical
energy unit, eV, is much closer to the SI system than the joule itself.

As for the cgs system, we remind the readers that its basic units—length, mass,
and time—are the centimeter (cm), the gram (g), and the second (s), while for
derivative quantities such as force, energy, and charge, the cgs units are the dyn,
the erg, and the esu-q (electrostatic unit of charge), respectively. These units are
related to their SI counterparts as follows:

Quantity cgs SI Conversion
Force dyn N (newton) 1 N = 105 dyn
Energy erg J (joule) 1 J = 107 erg
Charge esu-q C (coulomb) 1 C = 3 × 109 esu-q
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Another advantage of the cgs system is that the charge q has mechanical
units (due to the form of Coulomb’s law), while in the SI system charge is an
independent physical quantity whose unit is not related to the mechanical units
of the system. Therefore, in the SI system, dimensional analysis—which we use
extensively in this book—becomes unnecessarily cumbersome, since there are
now four fundamental quantities instead of three. Conversely, in the cgs system,
the electric charge q—or rather, its square, via the relation F = q2∕r2—has
mechanical units, namely,

[q2] = [F ⋅ r2] = [F ⋅ r ⋅ r] = E ⋅ L ⇒ [q2] = erg cm.

Incidentally, another quantity with dimensions of energy times length, like q2, is
the product hc. The ratio q2∕hc is thus a dimensionless quantity, which we shall
encounter later on in this chapter.

Problems

1.1 The ionization energy of the hydrogen atom is WI = 13.6 eV. Will there be a
photoelectric effect (i.e., ionization of the atom) if it is exposed to ultraviolet
(UV) light of wavelength 480Å? What is the speed of the extracted electron?

1.2 Besides the threshold frequency, another remarkable feature of the pho-
toelectric effect is the practically vanishing time between the incidence of
the light beam on the photocathode and the extraction of electrons. Even
for a very weak beam, photoelectrons are produced almost instantaneously
(𝜏 < 10−9 s). To see how the classical theory fails here also, estimate the
time needed to extract an electron from an atom exposed to a light beam
of the same intensity as, say, a light bulb of 100 W at a distance of 1 m.
Treat the atom as a light collector that absorbs all EM energy incident on
its cross-sectional area.

1.3 A photon of 𝜆 = 𝜆C impinges on a stationary electron and scatters at an
angle of 180∘ (𝜃 = 𝜋). Calculate the momentum and energy of the electron
after the collision and confirm your results by performing an appropriate
test. What could this test be?

1.4 A photon of 𝜆 = 𝜆C∕2 is Compton scattered by an initially stationary
electron. (a) Calculate (in terms of h,m, and c) the wavelength, momentum,
and energy of the photon scattered at a 120∘ angle. (b) Calculate the
scattering angle, momentum, and energy of the electron after the collision.

1.3 The Principle of Wave–Particle Duality of Matter

As emphasized in the introduction, relations (1.2) of the wave–particle duality of
matter are similar to those of light—relations (1.1)—but they have to be viewed
in reverse order. In case (1.2), we are talking about entities (e.g., electrons) we
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used to recognize as particles in classical physics (so they are described by their
energy E and momentum p), but we now learn they are also waves. Their wave
features f and 𝜆 are connected to the corpuscular attributes E and p via relations
(1.2). The electron—the most fundamental particle of nonnuclear matter—is thus
a particle and a wave at the same time. We were already aware of its corpuscular
nature; after all, we first came across the electron as a particle. So we just need to
examine if it is also a wave with 𝜆 = h∕p, as Louis de Broglie first hypothesized in
1923. Let us examine how we can infer the existence of these waves.

1.3.1 From Frequency Quantization in Classical Waves to Energy
Quantization in Matter Waves: The Most Important General Consequence
of Wave–Particle Duality of Matter

To experimentally verify the wavelike nature of electrons, the obvious test is to
look for interference phenomena between electronic waves, just as in classical
waves. This would be a direct confirmation. But there is also an indirect confir-
mation, invoking a characteristic feature of standing waves, namely, frequency
quantization. A standing classical wave—localized on a finite object—can only
exist if its frequency takes a discrete sequence of values known as the eigenfre-
quencies of the system. The most representative examples are the standing waves
of definite frequency—the so-called normal modes—on a string. As it follows
from Figure 1.4, the allowed frequencies of the string’s vibrations—f = c∕𝜆,
where c is the speed of wave propagation—are given by

L = n𝜆
2
⇒ 𝜆 = 2L

n
⇒ f = c

𝜆
= c

(2L∕n)
= c

2L
⋅ n, (1.12)

which means that the only possible vibrations of the string are those with integer
multiples of the fundamental frequency f1 = c∕2L.

But if the frequency is quantized in classical systems, so too will be the
particle’s energy, since the wave–particle duality of particles—namely, the
relation E = hf —provides a direct link between their energy and the frequency
of the corresponding wave. So if a quantum particle, say an electron, is trapped
somewhere in space (e.g., in an atom or a molecule), the associated de Broglie
wave will be a standing wave with quantized frequency, and therefore the energy
E = hf of the electron will also be quantized. As we will see shortly, energy
quantization for particles that are trapped in some region of space (and thus
perform confined motion) is the deepest consequence of the wave–particle
duality of matter.

n = 1

L = λ/2

0 L

L = 3λ/2L = λ

n = 2 n = 3

Figure 1.4 Standing classical waves on a string. A standing wave of this kind can only be
formed when an integer number of half-waves fit on the string. That is, L = n 𝜆

2
(n = 1, 2,…).
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1.3.2 The Problem of Atomic Stability under Collisions

We will now see that energy quantization of atomic electrons provides the only
reasonable explanation for the mystery of atomic stability. Why is this a mystery?
Because atoms remain completely unscathed, even though they continuously
undergo violent collisions with each other. If we picture the electrons in atoms
orbiting around the nucleus, like planets around a sun, then it is as if their orbits
do not change at all upon innumerable collisions with other “solar systems.”
But there is more to it. Even if we took apart an atom—by removing all its
electrons—and let it “reconstruct” itself, it would reemerge in identical form
and shape. The evidence for these statements is that atoms always emit the same
characteristic frequencies—the same spectrum—while their chemical behavior
also remains unaltered. In fact, chemical stability is an essential prerequisite for
our very existence. Note, however, that in the discussion we only considered
atomic stability against collisions. We have completely ignored the stability of
atoms against the radiation emitted by their electrons, which, being charged
particles in accelerated motion, ought to radiate and lose energy until they fall
into the nucleus. We discuss this problem in Section 1.3.6. Until then, let us
simply accept that, for some reason, the classical laws of EM radiation do not
hold in the atomic world. Let us then see how the problem of atomic stability
against collisions can be explained naturally by assuming that the energy of
atomic electrons is quantized. In the hydrogen atom, for example, if the electron,
which has quantized energy, occupies the lowest possible state—the so-called
ground state—then the smallest possible change for the atom is a transfer of the
electron from the ground state to the next available state, namely, the first excited
state. In other words, the electron can only make a discontinuous transition—a
quantum jump (or leap)—toward an excited atomic state. Now, if the environ-
ment offers less energy to the atom than the energy required for such a leap, as
is the case for thermal collisions at room temperature, then no transition can
occur at all. Indeed, the energy difference between the ground and first excited
states of any atom—or molecule—is on the order of a few eV, while the average
thermal energy at room temperature is about a 100th of this value. As a result,
thermal collisions at room temperature do not provide sufficient energy to excite
the atoms, which thus behave as stable and invariant entities during collisions.
We have to reject the classically allowed small, gradual changes in energy, and
consider only those quantum jumps for which the minimum required energy is
available. Hence, energy quantization arises as the only conceivable explanation
of the mystery of atomic stability. The “equation”

Quantization = stability

emerges thus as the fundamental conceptual equation of quantum physics.
And since the only natural mechanism of quantization we are aware of involves
standing waves, the following reasoning also applies:

Stability → quantization → wavelike behavior.

This explanation of the central mystery of the atomic world—the remarkable
stability of its structures—demonstrates that the notion of wavelike behavior
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for particles is not so “crazy” after all. In hindsight, we can regard it as the only
natural explanation of the most fundamental problem put forward by the study
of matter at the atomic level.

Example 1.3 To appreciate the extreme conditions under which atoms man-
age to retain their structural stability, calculate the typical frequency of collisions
between air molecules. Treat air particles as spheres of 1 Å diameter and assume
an approximate value for the particle density n of air equal to 1020molecules∕cm3,
which is about 1000 times less than the density of solid matter.

Solution: Our approach is to first estimate the mean free path 𝓁 of air
molecules—that is, the mean path traversed by a particle between collisions—and
then divide it by the mean thermal speed 𝑣 to obtain the average time 𝜏 between
two consecutive collisions. The frequency of collisions will then be equal to 1∕𝜏 .
We can easily calculate the mean free path if we realize that a molecule collides
with another when it travels far enough to cover the whole volume available to
it. This volume is equal to V∕N = 1∕(N∕V ) = 1∕n, where n is the number of
particles per cm3. Therefore, the quantities 𝓁 (mean free path), 𝜎 (cross section
of molecules), and n (particle density) are all related via the expression

𝓁 ⋅ 𝜎 = volume covered by a molecule that travels a distance𝓁
= volume of the space available per molecule = 1∕n

⇒ 𝓁 = 1
n𝜎

. (1)

For n ≈ 1020 cm−3 and 𝜎 ≈ (10−8 cm)2 = 10−16 cm2, we find

𝓁 ≈ 10−4 cm. (2)

We can also obtain the mean thermal speed 𝑣—actually, the root-mean-square
(rms) speed—of the air molecules (of mass M) as follows:

1
2

M𝑣2 = 3
2

kT ⇒ Mc2
(
𝑣

c

)2
= 3kT ⇒

𝑣

c
=
√

3kT
Mc2

⇒
𝑣

c
≈

√
3 ⋅ 1

40
eV

30 × 109 eV
⇒ 𝑣 ≈ 105 cm∕s. (3)

Here, we expressed the kinetic energy as 1
2
Mc2(𝑣∕c)2 in order to use familiar

numbers such as the proton’s rest energy mpc2 ≈ 2000 ⋅ mec2 ≈ 2000 ⋅ 0.5 MeV ≈
1 GeV = 109 eV. As a typical molecule of air we take the nitrogen molecule N2
with mass 28 (≈ 30) times that of a proton. For kT at room temperature we
used the rounded value kT ≈ 1∕40 eV, which results from (kT)T≈12 000 K ≈ 1 eV.
Naturally, we have rounded the numbers significantly, as we are only making an
order-of-magnitude estimate.

From expressions (2) and (3), we obtain the time between collisions 𝜏 = 𝓁∕𝑣 ≈
10−9 s, so the frequency of collisions is f = 1∕𝜏 ≈ 109 s−1. Each air molecule thus
undergoes approximately one billion collisions with other molecules per second.
And yet it remains intact. Surely, molecules are very robust structures!
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1.3.3 The Problem of Energy Scales: Why Are Atomic Energies on the Order
of eV, While Nuclear Energies Are on the Order of MeV?

The main idea of the previous discussion—namely, that microscopic particles in
confined motion inside a structure (such as an atom or a molecule) are repre-
sented by standing matter waves—helps us understand another central mystery
of the atomic world: The smaller the region inside which a particle resides, the
greater the energy of that particle. The most typical examples of this mystery are
the atom and the nucleus. Atomic electrons (of the outer shell, for heavy atoms)
have energies on the order of a few eV, while the corresponding energies for
protons and neutrons inside the nucleus are one million times greater—that is,
on the order of a few MeV! Again, the explanation lies in the wave–particle dual-
ity expression 𝜆 = h∕p and the realization that the first (fundamental) standing
wave in a region of space—recall the example of the string—has a wavelength
𝜆 on the order of the linear size of the region. The wavelengths of the higher
standing waves are even smaller. So we can say that the largest wavelength—the
one that corresponds to the ground state—will be about the size of

𝜆max ≈ 2L,
where L is the linear size of the region within which the standing wave is formed.
In this case, the relation 𝜆 = h∕p ⇒ p = h∕𝜆 shows that the momentum of the
trapped wave–particle cannot be smaller than

pmin = h
𝜆max

≈ h
2L

.

And, if we are interested in the state of lowest energy—which is certainly the
most important state—then p ≈ pmin, and the formula

p ≈ h
2L

provides a good estimate of the momenta of particles trapped inside a quantum
system of linear dimension L. For the corresponding kinetic energy, p2∕2m, of
these particles, we have

K ≈ h2

8mL2 . (1.13)

The conclusion is now clear: The smaller the region inside which a particle is
moving, the smaller the wavelength (in the first standing wave) of that particle
and, consequently, the greater its momentum and energy. Figure 1.5 should help
visualize the physics of this key fact.

If we now apply formula (1.13) on a nucleon—where m = mN =mass of a
proton or neutron and L ≈ 2R (R =nuclear radius)—or an electron of an outer
atomic shell—where m = me and L = 2a (a =atomic radius)—we obtain

KN = h2

32mNR2 = h2

32mea2
a2

R2

me

mN
= Ke

(a
R

)2 me

mN
. (1.14)

Given now that a ≈ 1 Å ≈ 10−10 m, R ≈ 10−15 m, and mN ≈ 1836 me, expression
(1.14) yields

KN ≈ (106 − 107)Ke, (1.15)
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2
= L

λ

λ = 2L

2L
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h2
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p ≈

K ≈

Figure 1.5 A standing matter wave of
spherical shape. A particle trapped
inside a bounded region—a spherical
volume in our case—of linear
dimension L, is described (in the state
of lowest energy) by a spherical
standing wave that vanishes only at
the boundary of this region. For its
wavelength we thus have
𝜆∕2 ≈ L ⇒ 𝜆 ≈ 2L.

which tells us that the kinetic energies KN of protons and neutrons inside the
nucleus are a few million times greater than the kinetic energies Ke of the
outer-shell electrons in atoms. (Inner-shell electrons have greater energies than
electrons in the outer shells, since they are moving in a smaller region of space.)

Furthermore, we can use the formula Ke = h2∕32mea2 to obtain a typical value
for the kinetic energy of the outer electrons

Ke ≈ a few eV. (1.16)

We combine Eq. (1.15) with Eq. (1.16) to obtain

KN ≈ a few MeV. (1.17)

If we now take the next logical step, namely, that the energies released in
chemical and nuclear reactions should be on the same order of magnitude as the
energies of outer-shell atomic electrons and nucleons, respectively, then we can
deduce another fundamental feature of our world: Energies released in chemical
reactions can only be on the order of an eV, while energies released in nuclear
reactions must be on the order of an MeV per reaction. We can thus say that eV
and MeV define the chemical and nuclear energy scales, respectively.

We can now reexamine the problem of atomic stability. If the energy scale
of electrons in atoms—in the hydrogen atom, for simplicity—is on the order
of an eV, then differences between adjacent energy levels (remember, they are
quantized) should be of the same order, that is, a few eV. Note, for example, that
the first excited state of the atom will correspond to a standing matter wave with
𝜆 = L (one-half that of the ground state), so the electronic momentum p = h∕𝜆
will double and the kinetic energy will quadruple compared to the ground state.
(Provided, of course, that all standing waves of the atom occur within the same
volume in space, which is not exactly true; in its excited states the atom is bigger.)
The energy difference between the ground and first excited states of an atom,
such as hydrogen, would thus also be on the order of an eV; this energy difference
determines the atom’s stability against collisions, as we noted earlier. We remind
the readers that the factor kT that determines the average magnitude of thermal
energies at temperature T via the relation

K = 3
2

kT (1.18)
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takes (at room temperature) the approximate value

kT|T≈300 K ≈ 1
40

eV. (1.19)

We can thus see that thermal collisions at room temperature—but also at
much higher temperatures, say, a few thousand degrees—cannot cause atomic
excitations. Atoms emerge from their incessant collisions—roughly one billion
collisions per second, as we saw—completely intact. In reality, not all atoms of
a gas have the same thermal kinetic energy—(1.18) is merely a mean value—but
obey a Maxwell–Boltzmann distribution, so some of them are much more
energetic than others and able to cause mutual excitations when they collide
with each other. So the exact picture is this: Even at room temperature, a small
fraction of atoms in a gas are excited, but the overwhelming majority remains
intact in their ground state.

In the case of an atomic nucleus, where the energy difference between the
ground and first excited states is on the order of an MeV, a similar reasoning
leads us to conclude that nuclear stability against collisions is a million times
greater than atomic stability. The critical temperature for the stability of a
nucleus is thus a few billion degrees kelvin, compared to a few thousand degrees
for an atom. Therefore, for thermonuclear reactions to occur, as in the interior
of a star, the temperature needs to rise to billions of degrees! And yet ther-
monuclear reactions inside stars occur—for without such reactions, we would
not exist—even though the typical temperature in their interior is no greater
than 10–20 million degrees! The resolution of this mystery has a quantum
origin also and is discussed in the online supplement of Chapter 5.

1.3.4 The Stability of Atoms and Molecules Against External
Electromagnetic Radiation

There are two types of external “perturbations” that atoms and molecules are
often subjected to, and which could threaten their structural stability. The first
perturbation is thermal collisions—actually, electric forces between electrons of
approaching atoms—which we have already examined. The second type of per-
turbation is the ubiquitous electromagnetic radiation—visible light, infrared (IR),
UV, x-rays, radio waves, and so on—that hits atoms continuously. Does EM radi-
ation change the structure of atoms? If the atoms were classical systems, then
the answer would surely be in the affirmative, since they would have to “respond”
to any external perturbation, however small, by changing their structure accord-
ingly; for example, by slightly adjusting their electronic orbits. However, atoms
are not classical but quantum systems and therefore their states have quantized
energies that can only change via specific quantum jumps. In other words, atoms
cannot absorb an arbitrary amount of energy, but only the amount required for a
transition from the ground state—if this is where they start from—to any one of
their excited states. Now, due to the wave–particle duality of light, the incident
EM radiation on an atom is also quantized with an energy quantum equal to

𝜖 = hf = hc
𝜆

⇒ 𝜖(eV) ≈ 12 000
𝜆(Å)

. (1.20)
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For example, for visible light, where

4000 Å < 𝜆 < 7400 Å (visible light), (1.21)

the energies of optical photons span the range

1.6 eV < 𝜖 < 3 eV (visible light) (1.22)

with a typical value—for 𝜆 ≈ 6000 Å—equal to 2 eV. Thus, UV photons—being
more energetic, and hence more chemically potent, than optical photons—have
energies greater than 3 eV, while IR photons have energies less than
1.6 eV. In other words, UV- and IR-light photon energies lie to the right
and left, respectively, of the visible range (1.22). For radiowaves—where
f ≈ 100 MHz ⇒ 𝜆 = c∕f = 3 m = 3 × 1010 Å—we have

𝜖 (radiowaves) = 12 000
3 × 1010 eV = 0.4 × 10−6 eV ≈ 1μeV.

What happens when one of the aforementioned kinds of radiation impinges on
an atom? Take, for example, the hydrogen atom, for which the first excitation
energy—equal to the energy difference between its first excited and ground
states—is 10.2 eV. Clearly, any radiation whose photons have energies less
than 10.2 eV cannot induce any changes to the hydrogen atom. The photons
of the impinging radiation “bounce off” the atom to another direction; they
are scattered, as we say, leaving the atom intact. Hence, we can conclude that
energy quantization of atomic electrons—and the corresponding energy scale on
the order of an eV—combined with light quantization, ensures atomic stability
against not only collisions but also all of EM radiation with energy below the
UV: visible, IR, microwaves, radio waves, and so on. No matter how long atoms
or molecules are bombarded by such radiation—provided its intensity is not too
high—they remain completely unaffected. Similarly, radiation at such frequencies
cannot cause chemical reactions. The reason is that for chemical reactions there
is also an energy threshold, a minimum energy barrier the light quantum has to
surpass for a reaction to occur. And just like the typical energies in atoms and
(small) molecules are on the order of a few eV, this threshold energy is also on
the order of a few eV—typically greater than 3 eV. So the only kinds of radiation
that are chemically potent are those in the UV range and beyond (x-rays,
𝛾 rays, etc.). This means, among other things, that visible light is not chemically
dangerous—for if it were, we would not be here (since our planet is awash
with it)!

We thus come to the realization that the crucial feature of the photoelectric
effect—the existence of a threshold frequency (and energy) for the phenomenon
to occur—is completely general: It holds for chemical reactions, excitations,
dissociations of molecules, and so on. As a consequence, all radiation with
photon energies below the energy threshold is “harmless,” in the sense that
it cannot cause the abovementioned effects. Given also that all “threshold”
energies are on the order of a few eV, atoms and molecules are completely
“safe” against all radiation from the visible range and below (in energy). (Visible
light can actually cause some reactions, but these belong to a very specific
category.)
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1.3.5 The Problem of Length Scales: Why Are Atomic Sizes on the Order
of Angstroms, While Nuclear Sizes Are on the Order of Fermis?

So far, we considered the problem of energy scales in the microscopic world. We
wondered if there is a simple explanation to a seemingly paradoxical feature of
nature: The energies trapped in a nucleus—in spite of its minuscule size—are a
million times greater than in an atom, even though the latter is roughly 100 000
times larger. We saw that a nucleus is an energy giant precisely because it is so
small. Let us recall the reason for this: Since the “fundamental” standing wave in
a region of space of linear size L has a wavelength on the order of L (𝜆 ∼ 2L), the
momentum p = h∕𝜆 of the particle trapped there will be inversely proportional
to L and will thus increase as the region shrinks in size. So the fact that the
nucleus is an energy giant should no longer surprise us, but should instead be
viewed as a direct consequence of its size in conjunction with the principle of
wave–particle duality. The tinier a structure, the more energetic the particles that
lie inside it. But to determine the specific energy scales—eV in atoms and MeV
in nuclei—we also have to know the length scales of these structures, namely,
that they are on the order of an angstrom (= 10−10 m) for atoms, and a fermi
(= 10−15 m) for nuclei. We took these characteristic lengths as given. So our next
question is: Can we explain the characteristic length scales of atoms and nuclei?
Why should the size of atoms, for example, be on the order of an angstrom and
not much smaller or much larger? Let us try to answer this question, starting
with the self-evident idea that the ground state of an atom—which is essentially
what we are after—has to be such that the total energy (kinetic + potential) is
minimized. We will take the hydrogen atom as a representative example and
think first of the qualitative mechanism that possibly determines its size. There
are two energy terms: potential and kinetic. The former favors a short distance
between the electron and the nucleus, ideally with the electron right on the
nucleus and at rest. In that case, the total classical energy3

E = K + V = 1
2

m𝑣2 − e2

r
(1.23)

tends to minus infinity for r = 0 and is thus clearly minimized. But the possibility
of an electron at rest on the nucleus exists only in classical physics. In the context
of the wave–particle duality of matter, it is not possible to have a particle at rest
at a specific point. In fact, the exact opposite is true: If the electron is “squeezed”
in such a tiny region like that of the nucleus, or even smaller, it will develop a
huge momentum—on the order of h∕4R, where R is the nuclear radius—and
a corresponding kinetic energy K = h2∕32mR2 that will hurl it away from the
nucleus. We thus see that the notion of an electron confined in the vicinity of
the nucleus does not minimize the total energy of the atom. While the potential
energy is then minimized, the kinetic energy grows with no bound. To obtain
the “correct” size of the atom, we need to find its radius a for which the total
energy is minimized. For the kinetic energy, we use the quantum expression

3 Recall that we are using the cgs system precisely because the expression for the electrostatic
potential energy, V = q1q2∕r, does not contain the cumbersome factor 1∕4𝜋𝜖0. Note also that here
q1 = proton charge = e and q2 = electron charge = −e.
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E(a)

E(a) ≈ h2 e2

32ma2 a

a0 a

Figure 1.6 Total energy of the hydrogen atom as a function of its size, a. The real radius of the
atom is the one that minimizes its total energy.

K = h2∕32ma2, while for the potential energy we can use the approximation
V ≈ −e2∕a, even though the electron is not located at this exact distance a,
since it is now a wave that extends throughout the spherical volume of radius
a. (This is the so-called probability cloud as we will shortly see.) But for crude,
order-of-magnitude estimates we can still use the (approximate) expression of
the total energy

E ≈ h2

32ma2 − e2

a
. (1.24)

Figure 1.6 shows the total energy of the atom as a function of its possible size a.
The function has a minimum—obtained from the condition dE∕da = 0—at

a0 = h2

16me2 ≈ 1 Å, (1.25)

which indeed corresponds to the correct order of magnitude of atomic radii.
The general conclusion about the mechanism that determines the characteristic

length scales of various atomic-scale structures is now clear. No matter how
strong the mutual attraction between particles that form a microscopic structure,
it will never be able to compress them to an infinitesimally small volume, because,
in that case, the particles would develop an exceedingly large kinetic energy
(due to their extreme localization) that would offset the energy gained by the
reduction of their potential energy. The minimum total energy is thus achieved
at an optimum size, which is determined by the balance between the attractive
potential energy term (that pulls particles together) and the repulsive kinetic
energy term (that resists their extreme localization). In this regard, the much
smaller size of the nucleus compared to the atom must be accounted for by the
much stronger nuclear forces exerted between the nucleons, and also by their
bigger masses that weaken their resistance to localization. In fact, if we consider
that the strength of nuclear forces—as measured by the relevant coupling
constant g, which is the analog of e in (1.25)—is about 100 times greater than
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that of the EM force,4 and also that the nucleons’ mass is about 2000 times
greater than an electron’s mass, then formula (1.25), applied to the nucleus, gives
a nuclear radius five orders of magnitude smaller than the atomic radius. This is
in full agreement with observation.

Let us also add here that all atoms have roughly the same size—on the order
of an Å—because their outer electrons are subject to (approximately) the same
electric attraction from the nucleus as the single electron in the hydrogen atom.
The reason is that inner electrons screen a large fraction of the nuclear charge
from the outer electrons. In other words, from the vantage point of the outer
electrons, heavier atoms resemble hydrogen and must therefore have roughly the
same size.

1.3.6 The Stability of Atoms Against Their Own Radiation: Probabilistic
Interpretation of Matter Waves

In 1911, the Rutherford experiment showed that the atom consists of a tiny
nucleus with the electrons orbiting far away, like planets around the sun. No clas-
sical model could explain how such an atom may last more than a few tenths of
a nanosecond! Whatever the classical orbit of the electrons, their motion would
surely be an accelerated one (with linear or centripetal acceleration). As a result,
electrons would emit EM radiation continuously, lose energy, and ultimately
fall—in an infinitesimally small amount of time—on the nucleus. Conclusion:
A truly classical atom cannot exist. But can the quantum atom—based on the
principle of wave–particle duality of electrons—also solve the mystery of the
atoms’ stability against their own radiation, as it solved the two previous mysteries
(stability against collisions and stability against external radiation)? Here the
answer is not a resounding yes, as it was for the other two questions. At this point,
the mystery of the stability of atoms against their own radiation cannot be solved
directly, because the quantum theory has not been “set up” yet. Nevertheless, this
problem can be at least bypassed with the following reasoning: If the principle
of wave–particle duality is correct, then the orbital motion of electrons (which
is where radiation comes from) has no physical meaning. Let us elaborate:
Orbital motion means that the electron at any given time is found at a specific
location (i.e., localized in space), whereas the very concept of a wave postulates
a physical entity that is spread out in space. Moreover, a particle is by definition
“indivisible”—within certain limits—while a wave can always be divided, for
example, by letting a part of it be transmitted through one slit and another part
through another. A wave is thus always extended and divisible; a particle is always
localized and indivisible. At this point, the reader would be justified to ask: How
can the principle of wave–particle duality of matter then be true? How can we say
that a particle is at the same time a wave? How can we fit within the same physical
entity two mutually exclusive properties, such as “localized and indivisible” on
the one hand, and “extended and divisible” on the other? We have just arrived at
the most critical question of quantum theory—a question that, as we see in the

4 Measured in dimensionless units, the strength of (strong) nuclear interactions, 𝛼s = g2∕ℏc, is of
order 1, while the corresponding parameter 𝛼 = e2∕ℏc for electromagnetic forces has the known
value of 1∕137.
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next chapter, leads to the celebrated statistical (or probabilistic) interpretation
of matter waves. Here is what this interpretation says (Max Born, 1927):

The function 𝜓 = 𝜓(r) that describes a matter wave (its so-called wave-
function) does not represent a measurable physical quantity. It is rather
a mathematical wave—a probability wave—whose squared amplitude|𝜓(r)|2 yields the probability per unit volume to locate the particle in the
vicinity of an arbitrary point r.

We thus have

P(r) = |𝜓(r)|2, (1.26)

where P(r) is the probability per unit volume—the probability density—of
locating the particle in the vicinity of an arbitrary point in space. The total
probability of finding the particle anywhere in space is given by the integral over
all space

∫ |𝜓(r)|2 dV = 1, (1.27)

which clearly equals unity.
Given this interpretation, the wavefunction 𝜓 has no immediate physical

meaning—as it does not represent some sort of a physical wave—so it can take
complex values in general. This is why absolute values are necessary in (1.26)
or (1.27). According to (1.26), quantum particles frequent locations where their
wave is strong—“stormy” areas—and avoid “calm” places where their wave
is weak. In the context of such an interpretation, the contradiction between
particles and waves is removed at once, since the particle need not cease being a
particle and does not have to physically “disperse” throughout the volume of the
wave. The wave simply describes the probability of detecting the particle here or
there, but never here and there at the same time. When we do locate the particle,
our detectors always record an integral and indivisible entity. No experiment
has ever “captured” half an electron or a quarter of a proton. To give readers an
idea of how we describe quantum particles, we depict in Figure 1.7 two simple
examples of one-dimensional wavefunctions.

This short detour in our discussion helped us arrive at the following basic
conclusion: The correct interpretation of the principle of wave–particle duality
strips the concept of electronic orbits in atoms of any physical meaning. As
a result, it makes no sense to speak of accelerated motion of electrons, nor,
therefore, of emission of radiation from them. In other words, we do not have
a solution to the problem mentioned earlier—but we do not have a problem
either! However, a new question pops up naturally at this point: How do atoms
radiate after all? We address this question in the following section.

1.3.7 How Do Atoms Radiate after All? Quantum Jumps from Higher
to Lower Energy States and Atomic Spectra

Let us make some “impromptu” thoughts on this question, using again the
hydrogen atom as an example. Like any standing wave, a standing electron
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x = 0

(a) (b)
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Figure 1.7 Typical one-dimensional wavefunctions. (a) An extended wavefunction: The
position of the particle is known with very low precision. There is a significant probability of
locating the particle in regions away from the “most frequented” location at x = 0.
(b) A localized wavefunction: The position of the particle is known with very high precision.
In the vast majority of the measurements, we would detect the particle in the immediate
vicinity of x = 0.

wave around the nucleus can exist in a number of possible forms—the so-called
normal modes. The first form corresponds to the state of lowest energy and the
next ones correspond to excited atomic states. The corresponding energies are
quantized according to some discrete sequence E1,E2,… ,En,… Since these
successive standing waves around the nucleus represent the only possible energy
states of the electron, we have the following two scenarios:
(a) If the electron is in the ground state, then it obviously cannot radiate; for if

it did, then it would lose energy and would have to move to a lower energy
state, which, however, does not exist.

(b) If the electron is in an excited state—say, the first excited state—it can be
de-excited,5 but only according to the basic quantum rules described earlier.
First of all, a gradual de-excitation is impossible because the electron would
then be able to gradually shed its excess energy in the form of radiation and
transit to states with gradually decreasing energy, which, again, do not exist.
The only available state to go to is the ground state, which, however, is located
(in the hydrogen atom) 10.2 eV below the first excited state. So what can the
excited electron do to “shed” its excess energy and return to the ground state?
Very simply, a quantum jump: an abrupt transition from the excited to its
ground state via emission of the energy difference 10.2 eV in the form of a
UV photon.

Atoms, therefore—and, likewise, molecules, and all other quantum
systems—emit light only when they undergo a transition from one of their
excited states to a lower state. When this happens, a photon is emitted with
energy hf , equal to the energy difference between the initial and final states of
the transition. We thus have

En − Em = h fnm (n > m), (1.28)

5 As we shall later see (e.g., Chapters 9 and 16), excited states are always unstable and get
de-excited by emission of electromagnetic radiation from the atom.
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where En (n > 1) is the energy of the initial excited state of the atom and Em is the
energy of the final state (which may or may not be its ground state).

The frequencies fnm are what we observe in the so-called line emission or
absorption spectrum of a gas made of the atoms or molecules we wish to
study. We thus realize that the quantization of electronic energies in atoms or
molecules is reflected in the line spectra of the corresponding substances in
gas form. In turn, these spectra are our best “tool” for measuring the allowed
energies in a quantum system.

The frequencies fnm that correspond to the transitions n → m are known as
Bohr frequencies. Theoretical physicists, however, prefer to use the same term for
the corresponding angular frequencies, 𝜔nm = 2𝜋 fnm, because 𝜔 is better suited
than f (= 𝜔∕2𝜋) for the mathematical description of harmonic oscillations
or waves. Note, for example, that the mathematical expression of a harmonic
oscillation x(t) = A sin(2𝜋t∕T)—where T is the period—takes the much simpler
form x(t) = A sin𝜔t if we introduce the angular frequency 𝜔, via the relation

𝜔 = 2𝜋
T

= 2𝜋 f . (1.29)

In the same spirit, theoretical physicists prefer to write the fundamental relation
𝜖 = h f in the equivalent form

𝜖 = h f = h 𝜔

2𝜋
= h

2𝜋
𝜔 = ℏ𝜔,

where

ℏ = h
2𝜋

(1.30)

is the so-called reduced Planck’s constant. As we will see later, the mathematical
expressions of basic quantum results are considerably simplified when written
in terms of ℏ instead of h. Thus, the use of ℏ instead of h is now common in
quantum physics, while one can always revert to the older symbol whenever
there is a need to use quantities closer to what is experimentally measured, such
as the frequency f , or the wavelength 𝜆.

Having thus opted to use ℏ over h, we can rewrite the second expression—p =
h∕𝜆—of the wave–particle duality as

p = h
𝜆
= 2𝜋ℏ

𝜆
= ℏ

2𝜋
𝜆

= ℏk, (1.31)

where

k = 2𝜋
𝜆

(1.32)

is the so-called wavenumber of the wave. Clearly, k is the spatial equivalent
of 𝜔, with 𝜆 in place of T , as we should have expected, since 𝜆 is the spatial
and T is the temporal period of a sinusoidal wave. The modern version of the
wave–particle duality is thus written as

E = ℏ𝜔, p = ℏk, (1.33)

which is clearly more elegant than the older form.
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1.3.8 Quantized Energies and Atomic Spectra: The Case of Hydrogen

With hydrogen being the simplest and most abundant element, it is no accident
that the spectrum of its atoms in gaseous form has been studied extensively
in the visible and its neighboring regions (IR and UV) of the EM spectrum.
A remarkable result of those studies is the famous Balmer’s formula for the
emitted frequencies

fnm = R
( 1

m2 − 1
n2

)
, (1.34)

where n and m are positive integers (n > m) and R = 3.27 × 1015 s−1 is the
so-called Rydberg constant, which has dimensions of frequency.

A comparison of formulas (1.28) and (1.34) gives the following expression for
the quantized energies of the hydrogen atom:

En = −hR
n2 = −13.6

n2 eV, (1.35)

where the negative sign appears because we are talking about bound states. Here,
the number 13.6 eV is simply the numerical value of hR expressed in units of eV.

According to (1.35), the ground-state energy of the atom is E1 = −13.6 eV. Its
opposite, WI = 13.6 eV, is the ionization energy, as confirmed by chemical data.

It also follows from (1.35) that the energy of the first excited state of the atom is
E2 = −3.4 eV, and, therefore, the first excitation energy E2 − E1 is indeed equal to
the value 10.2 eV we already mentioned. This unusually large value explains the
remarkable stability of the hydrogen atom against external influences (thermal
collisions or EM radiation).

The conclusion from the preceding discussion should be clear. Spectral data for
the hydrogen atom fully confirm all the general atomic properties we identified
earlier based solely on the principle of wave–particle duality for electrons. The
electronic energies in the atom are indeed quantized—they only take the discrete
values of (1.35)—and the energy scale is indeed on the order of a few eV, as we
predicted. And given that the energy scale stems from the length scale, the size
of the hydrogen atom must be on the order of an Å. The same holds true for the
size of all heavier atoms, for reasons we already mentioned (Section 1.3.5).

Based on this, we also need to introduce a suitable terminology to reflect the
fundamental role in quantum physics of the allowed—or quantized—energies of
a quantum system. Thus, we now speak of energy levels of the system and depict
them in the so-called energy-level diagram, as in Figure 1.8.

1.3.9 Correct and Incorrect Pictures for the Motion of Electrons in Atoms:
Revisiting the Case of Hydrogen

After our discussion so far, how can we picture the hydrogen atom, at least in
its ground state? Which description would be consistent with the wave nature
of the electron and at the same time devoid of concepts with no experimental
meaning, like the electronic orbit? The answer is plain to see. The picture we
seek should be the analog of a classical standing wave with a similar geometry;
for example, a classical sound wave in the interior of a hollow sphere filled with
air. The simplest form of such a wave—corresponding to the “fundamental”
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Figure 1.8 The energy-level diagram for the hydrogen atom and the two basic quantities
associated with it. The ionization energy WI is the minimum energy needed to remove the
electron from the atom. The minimum excitation energy ΔE is the energy required to affect
the smallest possible change to the atom in its ground state.

frequency—is a spherically symmetric compression (high pressure) that period-
ically becomes a rarefaction (low pressure), while retaining its spherical shape.
Such a wave has a time dependence of the form

p(r, t) = p(r) cos𝜔t, (1.36)

where the pressure p is measured with respect to atmospheric pressure—that
is, a positive sign refers to higher-than-atmospheric and a negative sign to
lower-than-atmospheric pressure.

Note that, just like in the case of a string, the following is also true for the
normal oscillation modes of two- or three-dimensional objects: The shape of the
fundamental oscillation has no nodes (i.e., no nodal lines for two-dimensional
objects and no nodal surfaces for three-dimensional ones), while it also has
the full symmetry of the problem. In a string, the fundamental oscillation
is symmetric with respect to its midpoint; in a two-dimensional object with
circular geometry, such as a drum, it is rotationally symmetric with respect to
its center; and likewise for three-dimensional objects with spherical symmetry.
It follows that the “fundamental” standing electron wave around the nucleus is
also spherically symmetric with no nodal surfaces.

The answer, therefore, to the question “how are we to picture the hydrogen
atom in its ground state,” is depicted in Figure 1.9: a spherically symmetric
cloud of probability density that engulfs the nucleus. Such a cloud roughly



1.3 The Principle of Wave–Particle Duality of Matter 27

Figure 1.9 The correct quantum picture for the ground state of the
hydrogen atom. The wave nature of the electron is incompatible
with motion along some classical orbit. Instead, we are forced to
think of the electron (in its ground state) as a spherically symmetric
probability cloud about the nucleus.

Figure 1.10 A false picture that should be
discarded. Here the electron supposedly forms
something like sinusoidal standing matter
waves along a circle of radius r. But this picture
is a flawed projection to three-dimensional
space of the classical picture for a wave on a
string. Three-dimensional waves—quantum or
classical—typically fill the space and surely do
not look like standing sound waves in a
circular tube.

r

λ

represents—according to the probabilistic interpretation of matter waves we
mentioned earlier—the region of space where it is highly likely to find the
electron. (In reality, the wave extends outside the shaded region, but with
exponentially diminishing amplitude.)

But unlike pressure fluctuations in a classical gas (that can vanish periodically
as compressions become rarefactions), a probability “compression,” as in
Figure 1.9, cannot periodically disappear, since the electron it describes would
then also disappear! It follows that quantum waves—precisely because of their
interpretation as probability waves—cannot evolve temporally as in (1.36), but
must instead have a different time dependence, which we shall unravel later.6
For the time being, let us retain the notion that quantum waves are similar to
classical waves in their spatial form, but distinctly different with respect to their
physical interpretation and time evolution.

The preceding discussion focused on a rudimentary description of the most
basic quantum system, namely, the electron in the ground state of the hydrogen
atom. But it also serves another purpose in helping us eliminate the false picture
of Figure 1.10 for the hydrogen atom.

6 Instead of cos𝜔t in (1.36), the time dependence has the complex form exp (−i𝜔t), where
𝜔 = E∕ℏ. But since |e−i𝜔t| = 1, such a time dependence implies that the probability distribution of
the electron around the nucleus (in a state of a given energy and frequency) remains unchanged in
time. For the ground state in particular, this means that the physical and chemical properties of the
atom remain invariant in time, as one should expect. (By the way, this is the reason atoms in their
ground state do not radiate.) The complex form of the time evolution is thus a crucial difference
between quantum and classical waves, without which the physical interpretation of the former
would be impossible.
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According to this false picture—used extensively in many textbooks, due to its
success in explaining Bohr’s quantization condition (see subsequent text)—the
standing electronic waves of the hydrogen atom are formed along a circle whose
radius r satisfies the relation

2𝜋r = n𝜆. (1.37)

In other words, electronic waves are formed if an integer number of wavelengths
fits on the said circle. But since 𝜆 = h∕p, expression (1.37) can be written as
rp = nh∕2𝜋, or, equivalently,

𝓁 = nℏ, (𝓁 = rp = m𝑣r), (1.38)

which is the celebrated Bohr’s quantization condition (Bohr, 1913): The electron
in the hydrogen atom can only move along specific quantized circular orbits
for which its angular momentum, 𝓁 = m𝑣r, is an integer multiple of Planck’s
constant, ℏ. Equation (1.38) together with Newton’s law for a circular orbit,

m𝑣2

r
= e2

r2 (cgs), (1.39)

form a system of two equations with two unknowns, 𝑣 and r. Its solution yields

rn = n2 ℏ2

me2 = n2a0 (allowed radii) (1.40)

𝑣n = e2

ℏ

1
n

(allowed speeds) (1.41)

En = −me4

2ℏ2
1
n2 (allowed energies), (1.42)

where a0 = ℏ2∕me2 = 0.529 Å ≈ 0.5 Å is the so-called Bohr radius, which
correctly predicts the size of the atom in its ground state (n = 1). Likewise, the
quantity WI = me4∕2ℏ2 in the energy formula gives the ionization energy of
the atom and its numerical value (13.6 eV) agrees with our earlier finding using
experimental data.

But despite the empirical success of Bohr’s theory—and its theoretical
justification based on de Broglie waves—we should not give in to the tempting
thought that Bohr’s theory describes something real. There are no quantized
orbits—since no orbits exist at all—and no standing de Broglie waves of the
type shown in Figure 1.10. As we have seen, this picture is flawed; therefore, the
sooner we put it aside, the better.7

7 It is curious that this flawed picture appears to go back all the way to the time of Schrödinger and
de Broglie! (Which may partly explain its endurance, despite its falseness.) Indeed, as recounted by
Felix Bloch (Section 2.2), Schrödinger himself had used this picture to obtain Bohr’s quantization
rules, an approach for which he was chided by Debye who characterized this way of thinking as
“childish,” thus prodding Schrödinger to delve deeper and come up with his eponymous wave
equation. So, to a small extent, we may owe the discovery of the Schrödinger equation to this flawed
picture of waves fitted along a stationary orbit. Actually, waves of this form can also appear in
modern quantum mechanics, but only in the, so-called, classical (or semiclassical) limit of the
theory.



1.3 The Principle of Wave–Particle Duality of Matter 29

Let us now see how we can use the correct three-dimensional picture of the
spherical probability cloud for the hydrogen atom (Figure 1.9), in order to view
in the right context the approximate condition 𝜆 ∼ 2L we frequently invoked
to explain the basic features of the atomic world. For a spherical probability
cloud we can say the following. Although the concept of the wavelength has
meaning only for sinusoidal waves, we can introduce a sort of wavelength
for three-dimensional standing waves (which are anything but sinusoidal),
by defining the distance between adjacent nodes as half-wavelength, or the
distance between a peak and the nearest node as quarter-wavelength. Therefore,
for a spherical probability cloud with a peak at r = 0 and the node at r = a,
we obtain the approximate expression 𝜆∕4 ≈ a ⇒ 𝜆 = 4a. We could arrive at
the same result by saying that a diameter of the sphere is half a wavelength
(𝜆∕2 = 2a ⇒ 𝜆 ≈ 4a) because the wave vanishes at the endpoints of the diameter.

1.3.10 The Fine Structure Constant and Numerical Calculations in Bohr’s
Theory

Although we emphasized that Bohr’s theory of quantized orbits does not provide
a correct picture of the atom—since the wave nature of electrons excludes the
existence of orbits—the theory is nevertheless useful for quick calculations that
give us a first quantitative description of the essential features of the hydrogen
atom. These calculations are further simplified if we use the so-called fine
structure constant, which is defined, in cgs units, as

𝛼 = e2

ℏc
≈ 1

137
(fine structure constant), (1.43)

and is a dimensionless quantity, as already mentioned in Section 1.2.3. Using
(1.43) we can rewrite formula (1.41) as

𝑣n = e2

ℏc
c
n
= 𝛼c

n
(n = 1, 2,…), (1.44)

which tells us that the speed of the electron in the first Bohr orbit (n = 1) is
approximately 137 times smaller than the speed of light. Even though this small
value justifies, to first order, the nonrelativistic treatment of the problem, it also
shows that relativistic effects are not negligible to second order. Such effects are
manifested particularly as small shifts in the energy levels of the atom—and the
corresponding spectral lines—and thus produce the so-called fine structure of
the spectrum. The name of the quantity (1.43) refers exactly to this fine structure.

The constant 𝛼 is also quite useful for quick numerical calculations, since it
allows us to eliminate from the pertinent expressions the square of the electric
charge e2 by setting

e2 = 𝛼ℏc, (1.45)

so that e2 is given in terms of more familiar physical constants. Actually, the
substitution (1.45) in various expressions allows us to perform the calculation in
a quick and elegant manner. In the case of ionization energy, for example, we have

WI =
me4

2ℏ2 = 1
2

m(𝛼ℏc)2

ℏ2 = 1
2
𝛼2mc2 = 1

2

( 1
137

)2
0.5 MeV = 13.6 eV.
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As you see, we are able to perform the calculation promptly—and in the
appropriate energy unit of eV—by simply using the rest energy of the electron (a
value worth remembering, since it is customary to refer to particle masses not
in units of g or kg, but in terms of their equivalent energy). We also note that the
factor 𝛼2 before mc2 alerts us about the order of magnitude of atomic energies:
They are some five orders of magnitude smaller than an MeV, that is, on the
order of 10 eV.

In practice, it also pays to remember the numerical values of some equivalent
combinations of parameters of the hydrogen atom (e.g., m, e, and ℏ) with the
dimension of energy. Three such equivalent combinations that arise often are
me4∕ℏ2, ℏ2∕ma2

0, and e2∕a0, where a0 (= ℏ2∕me2) is the Bohr radius. They are
equal to each other and have twice the value of the ionization energy of the atom,
namely, 27.2 eV. As we shall see later—when we introduce the so-called atomic
units—this value is the natural unit of energy in the atomic world; it is known as
one Hartree or the atomic unit of energy.

In the following example, we describe how to calculate in a quick and trans-
parent way another important property of Bohr’s theory: the intensity of the
electric field acting on the electron in its ground state.

Example 1.4 Calculate, in SI units, the electric potential and the electric field
intensity at a distance of one Bohr radius from the nucleus of the hydrogen atom.

Solution: The electric potential is obviously V = −27.2 V, since the correspond-
ing potential energy of the electron is V = −e2∕a0 and the absolute value of this
quantity is 27.2 eV, that is, 27.2 e ⋅ V. For the intensity  of the electric field we
should note that the pertinent unit in the SI system is the volt per meter (V∕m),
given that the product  × distance yields the potential difference between two
points. In the present case we have

 = e
a2

0
≡ e2

a0

1
e

1
a0

= 27.2 eV ⋅
1
e
⋅

1
0.5 × 10−10 m

= 5.44 × 1011 V∕m.

Here we simply rewrote the initial expression e∕a2
0 to form the energy combina-

tion e2∕a0 = 27.2 eV and then divided by the electric charge e to isolate the volt.
Finally, we divided by the Bohr radius a0 = 0.5 × 10−10 m to obtain V∕m, which
is the unit of the electric field in the SI system.

It should be evident by now how cumbersome the conventional systems of
units—SI or cgs—are for calculations in the atomic world. If there is any shred of
doubt remaining, we encourage the readers to attempt the preceding calculation
in any one of those systems. Good luck!

In the following example we expand Bohr’s theory to the so-called hydrogen-like
atoms (or ions).

Example 1.5 Calculate (in eV) the ionization energies of the first three
hydrogen-like atoms—He+, Li++, and Be+++—together with their corresponding
radii.
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Solution: Let us first clarify that the so-called hydrogen-like atoms are simply
ions of heavier elements that have been stripped of all but one of their electrons.
A hydrogen-like atom is thus identical to hydrogen, except that it has Z protons
in its nucleus. Since the nuclear charge is then Ze, the Coulomb force on the
electron is equal to F = (Ze) ⋅ e∕r2 ≡ Ze2∕r2, instead of e2∕r2 for hydrogen.
Clearly, applying Bohr’s theory to any given hydrogen-like atom with atomic
number Z yields the “same” results as for hydrogen, albeit with Ze2 instead of e2.
For example, for the ionization energy WI = me4∕2ℏ2 we obtain

WI(Z) = WI(H)|e2→Ze2 = mZ2e4

2ℏ2 = Z2WI(H) = Z2 ⋅ 13.6 eV,

while for the corresponding radii we have

a0(Z) = a0(H)|e2→Ze2 = 1
Z

ℏ2

me2 = 1
Z

⋅ 0.5 Å.

In particular, for the ionization energies of He+ (singly ionized helium), Li++
(doubly ionized lithium), and Be+++ (triply ionized beryllium), we find

WI(He+) = Z2 ⋅ 13.6 eV|Z=2 = 54.4 eV,

WI(Li++) = 122.4 eV, WI(Be+++) = 217.6 eV,

in excellent agreement with experimental data. Moreover, the complete set of
allowed energies of a hydrogen-like atom is given by the formula

En(Z) = En(H)|e2→Ze2 = Z2En(H) = −Z2 ⋅ 13.6
n2 eV.

For instance, in the case of He+ we obtain

En(He+) = −54.4
n2 eV.

This prediction is in spectacular agreement with the “dark spectral lines” in the
sun’s absorption spectrum, which are therefore attributed to the existence of
He ions in the solar atmosphere. Actually, the successful explanation of these
lines was one of the early triumphs of Bohr’s theory and played a decisive role
in its adoption by the scientific community. Nevertheless, a few years later,
the wave–particle duality of matter was discovered, leading to the realization
that Bohr’s theory, although a successful calculational model for hydrogen-like
atoms, was based on notions (such as quantized orbits) that have no place in a
modern quantum mechanical context.

1.3.11 Numerical Calculations with Matter Waves: Practical Formulas
and Physical Applications

To facilitate calculations with matter waves, we first need to rewrite formula
𝜆 = h∕p so that it gives us the wavelength of a particle directly in Å, once we have
its energy in eV. Indeed, what we typically know is not the speed or momentum
of, say, an electron, but its energy in eV, since we normally deal with a beam of
such particles that have been accelerated by some potential difference expressed
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in volts. So, for this purpose, we rewrite formula 𝜆 = h∕p as

𝜆 = h
p
= h√

2mE
= hc√

2mc2 ⋅ E
= 12 400 eV Å√

2 ⋅ 0.5 × 106 eV ⋅ E(eV)
,

where we invoked the nonrelativistic energy–momentum formula E = p2∕2m ⇒

p =
√

2mE and multiplied the numerator and denominator by the speed of light
c. We thus obtained mc2 in the denominator and hc in the numerator. The latter
is a constant whose value, in eV Å, is already known to us. (It appears in the
relation 𝜖 = hf = hc∕𝜆 for photons, where we found that 𝜖(eV) = 12 400∕𝜆(Å)
and therefore hc = 12 400 eV Å.) We thus obtain the following practical formula:

𝜆e(Å) = 12.4√
E(eV)

≈ 12√
E(eV)

, (1.46)

while for the proton and the neutron (i.e., the nucleons) we have

𝜆N(Å) = 𝜆e(Å)
√

me

mp
=

𝜆e(Å)√
1836

≈
𝜆e(Å)

43
. (1.47)

Here we took into account that mp ≈ mn ≈ 1836 me, and that the dependence
of the wavelength on the mass is 1∕

√
m. According to (1.47), the de Broglie

wavelength of a nucleon is about 43 times smaller than the corresponding
wavelength of an electron of the same energy. Taking (1.46) into account, the
corresponding formula for nucleons becomes

𝜆N(Å) = 0.289√
E(eV)

≈ 0.3√
E(eV)

. (1.48)

A simple order-of-magnitude test of formula (1.46) is the following: For electrons
in the ground state of the hydrogen atom, whose kinetic energy is 13.6 eV, the
wavelength should be roughly twice the atomic diameter—that is, on the order
of a few angstroms. Indeed, (1.46) confirms this expectation.

An interesting practical conclusion emerges from the comparison of formula
(1.46) and the corresponding one for photons; namely, 𝜆𝛾 (Å) = 12 400∕𝜖(eV): To
attain a wavelength on the order of a few angstroms, an electron needs an energy
of a few eV, while a photon needs a few thousand eV, respectively. A direct
implication of this fact is the concept of the electron microscope. As is known
from optics, the resolution of a microscope is limited by the wavelength of the
light being used. For a given 𝜆, we cannot see any details of the object if their
size d is less than or equal to 𝜆. To obtain a resolution of a few angstroms with
an “optical” microscope, we would need to employ photons of a few thousand
eV—that is, x-rays—which are hard to manipulate, for example, focus.

However, if our microscope uses electrons instead of photons—that is, matter
waves instead of EM ones—then a resolution of a few angstroms can be achieved
with electrons of very low energy (a few eV), which can readily be used in many
applications. In fact, if our desired resolution is 100 Å—which is good enough
for most biological uses of the electron microscope—then the required energy
decreases to a few hundredths of an eV, a nondestructive energy for the sample
examined. (It does not cause ionizations or dissociations of chemical bonds,
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etc.) At the same time, the manipulation of an electron beam is feasible using an
appropriate system of electric and magnetic lenses.

Another important application of matter waves pertains to the so-called
thermal neutrons. These are produced in large quantities in nuclear reactors when
initially fast-moving neutrons impinge on a material containing light nuclei8 (e.g.,
graphite). In this way, neutrons slow down through collisions with the graphite
nuclei and eventually reach thermal equilibrium. Their kinetic energies are then
approximately equal to E(eV) ≈ (kT)T≈300 K ≈ 1∕40 eV, so formula (1.48) yields

𝜆n(Å) ≈ 0.3√
E(eV)

≈ 0.3 ⋅
√

40 ≈ 2 Å.

This result means that thermal neutrons are the prototypical matter wave for
crystallographic studies, because, first, they interact with lattice nuclei (and are
therefore sensitive to their positions) and, second, internuclear distances are
on the same order of magnitude as the wavelength of these neutrons (so the
required resolution is available).

Going to the other extreme—the macroscopic world—let us now calculate the
wavelength of a dust particle, which has a mass of 1 mg and is moving at a speed
of 1 cm/s. In this case, we have (in cgs units)

𝜆 = h
m𝑣

≈ 6 × 10−27

10−3 ⋅ 1
= 6 × 10−24 cm.

To observe the wave nature of a “particle” that has such a tiny wavelength, we need
interference or diffraction experiments with slits or obstacles of a size similar
to that of the wavelength. But neither of these exists in nature, since even the
smallest “object” we know of—the atomic nucleus—has dimensions of 10−13 cm.

We therefore conclude that, even though the principle of wave–particle duality
of matter is in theory also applicable to the motion of macroscopic bodies, it has
no measurable consequences for them and can thus be ignored in practice.

1.3.12 A Direct Confirmation of the Existence of Matter Waves: The
Davisson–Germer Experiment

As we noted at the beginning of this section, the direct confirmation of the
existence of matter waves requires an interference experiment. The simplest such
experiment was conducted for the first time—somewhat inadvertently—in 1927
by Clinton Davisson and Lester Germer. When they bombarded a nickel crystal
with a monoenergetic beam of electrons with E = 54 eV, they were surprised to
discover that apart from the normal reflection, the beam had a preferential angle
of oblique reflection equal to 51∘ with respect to the direction of incidence. The
crucial thing to note here is that—due to their low energy—electrons do not
penetrate the crystal, and reflection, therefore, takes place only at the surface.
Figure 1.11 depicts the main idea of the experiment.

If we adopt the de Broglie hypothesis, then the theoretical analysis of the
experiment is simple. The incident electron wave is reflected at the locations
of the Ni atoms in the form of secondary spherical wavelets with the same

8 Because only then there is a sizable energy transfer from the neutrons to the nuclei.
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Figure 1.11 Theoretical analysis of the Davisson–Germer experiment. The electrons are
scattered preferentially toward those directions 𝜃 that satisfy the condition of constructive
interference d sin 𝜃 = n𝜆 (n = 0, 1, 2,…).

wavelength as the initial wave. These wavelets interfere constructively only
in those directions 𝜃 for which the path difference AB (= d sin 𝜃) between
two adjacent reflected “rays” is an integer multiple of the wavelength 𝜆 of the
electrons. In other words, constructive interference occurs when

d sin 𝜃 = n𝜆. (1.49)

In the case at hand, we have d = 2.15 Å (this was already known from earlier
diffraction measurements of crystalline nickel using x-rays) and therefore,
according to formula (1.46) for E = 54 eV,

𝜆(Å) = 12.4√
54

= 1.68 Å.

Thus, condition (1.49) yields

sin 𝜃n = n 𝜆

d
= n 1.68

2.15
= 0.78n,

whence we see that, apart from the trivial case of normal reflection
(n = 0 ⇒ 𝜃0 = 0), there is only one more scattering direction at an angle

sin 𝜃1 = 0.78 ⇒ 𝜃1 = 51∘,

just like the experiment revealed! Thus, from 1927 onward de Broglie waves
were no longer a theoretical conjecture, but an irrefutable experimental fact.

1.3.13 The Double-Slit Experiment: Collapse of the Wavefunction Upon
Measurement

The evidence we presented so far in support of the principle of wave–particle
duality of matter is so compelling that one may wonder why there would be a
need at all for yet another pertinent experiment. Let us therefore stress right
away that the double-slit experiment—originally a thought experiment that was
subsequently conducted numerous times—is not included here as just another
confirmation of the dual nature of particles. It serves, rather, as an ideal “tool” for
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investigating the central concept of quantum theory, namely, the probabilistic
interpretation of matter waves. Such an interpretation is compulsory for reasons
we already explained (Section 1.3.6). It provides the only conceivable way to
combine, in the same physical entity, the mutually exclusive properties of being
localized and indivisible (akin to particles) on the one hand, and extended and
divisible (akin to waves) on the other. By interpreting the wave associated with
a particle as a probability wave, we no longer deny the corpuscular nature of the
particle. The wave here simply describes the probability of finding the particle
here or there, but never here and there at the same time. This implies that
quantum particles (e.g., electrons) are always detected as integral and indivisible
entities. They leave, for example, point-like traces on a photographic plate.

However, the “abstract” nature of quantum waves—we could also call them
information waves or even waves of knowledge (of probabilistic nature) pertinent
to a particle’s state—has as an inescapable consequence the so-called collapse of
the wavefunction upon measurement. This effect underlies all major paradoxes
of quantum mechanics, such as those arising from the double-slit experiment
we shall discuss shortly. The collapse of the wavefunction highlights the central
role of the measurement process in the quantum world. What this term means is
somewhat self-evident: If a measurement yields some information about the par-
ticle, then its wavefunction immediately after the measurement must reflect what
we just measured, and must “incorporate” the information obtained from the
measurement. That is, if we were to repeat the measurement a second time—on
the same particle that was just observed—we should always confirm the first
measurement. For example, if we measure the position of a particle—say, in one
dimension, for simplicity—and locate the particle in the vicinity of a point x0,
then its wavefunction after the measurement can only be highly localized about
the point x0. The said wavefunction thus represents a particle whose location is
now known to us with high precision—or at least with as much precision as we
were able to measure it. The result of the measuring process is thus an abrupt—in
fact, instantaneous—“shrinking” of the initial wavefunction to its new form that
is dictated by the result of the measurement. We depict all this in Figure 1.12.

The “collapse” of the wavefunction so that it “adapts” to experimental data
is thus an inescapable logical consequence of the probabilistic interpretation.
Without this collapse the probabilistic interpretation would make no sense.

We are now ready to discuss the double-slit experiment in the abovementioned
context.

Two alternative pictures of the experiment are shown in Figure 1.13. In
the first picture, a beam of particles with prescribed momentum—and hence,
wavelength—impinges on a plate with a double slit. The beam is depicted as a
plane wave that emerges on the other side of the plate as two circular wavelets
centered on the two slits. An image of interference fringes appears on the
screen—a sort of photographic plate that records the particles arriving at its
various regions—depending on whether the two circular wavelets emanating
from the slits arrive in the specific region in phase or out of phase. In the second
picture, the impinging beam is shown as a “stream of particles.” The particles
fall on the plate, go through one or the other slit, and form interference fringes



36 1 The Principle of Wave–Particle Duality: An Overview

ψ(x)

ψ0(x)

x0

x

Figure 1.12 The “collapse” of the wavefunction in a position measurement: When a
measurement detects a particle at position x0, its wavefunction collapses immediately to a
highly localized form around x0 and instantaneously vanishes elsewhere. It is as if the
measurement “sucks” the wavefunction, only to concentrate it suddenly at the point where
the particle was located. Clearly, such an instantaneous collapse has a nonlocal character; that
is, it seems to imply some sort of action at a distance. But since the wavefunction is a
mathematical entity—not a physical wave with energy and momentum distributed in
space—this instantaneous collapse does not imply a corresponding instantaneous transfer of
energy or momentum and therefore it does not violate the theory of relativity. A measurement
simply “removes” all possibilities to locate the particle anywhere else than the position it was
found to be.

ψ

ψ1

ψ2

(a) (b)

|ψ1 + ψ2|2

Figure 1.13 Two alternative pictures for the double-slit experiment: (a) The wave picture. (b)
The particle picture. Both pictures are legitimate. But only the wave picture—with the
understanding of the wave as a probability wave—provides a qualitatively and quantitatively
correct understanding of this experiment. The particle picture is just to remind us that there
are only particles “behind” the wave that describes how they move in space.

as before, by appearing in various regions in the screen in smaller or greater
numbers. After all, it is the same experiment.

But in contrast to the wave picture—which predicts naturally the interference
fringes of the actual experiment—the particle picture can never lead us to the
correct description of the phenomenon. The reason is that the particle picture
implies from the outset the false notion that the particles move in classical orbits.
On such a flawed basis, no valid predictions can be drawn, especially about
interference fringes. The conclusion is completely general: The only basis for
the proper description of quantum phenomena is always the wave picture, with
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the additional clarification that the corresponding waves are to be interpreted
as probability amplitude waves,9 not as classical waves. We thus arrive at the
key point for the double-slit experiment. Let us view it from the perspective
of a person who is skeptical of the statistical interpretation, and whose line of
thinking is the following: “There is no doubt that the incident beam behaves like
a wave, since it produces the expected interference fringes on the screen. But
how do we know that this is a probability amplitude wave and not a truly classical
wave? Can we experimentally distinguish these two possibilities, since they both
lead to the same interference fringes?” This is the real conceptual question that
needs to be clarified by the double-slit experiment.

Let us begin then. A probability wave—if this is what is going on here—does
not represent a measurable physical disturbance. It takes physical meaning only
through the particle it describes: An experiment can only detect the particle and
nothing else. The experimental question pertinent to the particle is clearly the
following: Which slit did it go through? Clearly, the particle can pass through
either one slit or the other (but not through both) because in the context of
wave–particle duality (and its probabilistic interpretation) particles are integral,
indivisible entities, and are always detected as such.

Therefore, if we were to place two detectors near the exit of each slit—so that
they register an event when a particle passes through—then we expect the follow-
ing experimental outcome (provided that the incident beam is so dilute that only
one particle arrives at the plate at any one time): (i) Only one of the two detectors
will register an event every time. This means that it is only through one slit that
“something” goes through at that instant—obviously, this is the particle—while
nothing at all goes through the other slit. (ii) If we repeat this experiment many
times and measure how many times a particle passes through one slit or the other,
the two numbers will tend to be equal. The reason for this is that the incoming
plane wave has the same amplitude at the entry point of each slit and therefore the
probabilities of locating the particle at the entry of one or the other slit are equal.

But if the waves in our experiments were classical waves of some kind—that
is, if they represented some measurable physical disturbance—then the two
detectors would continuously register an event, since in this case, a physical
wave (not a probability wave) would be transmitted continuously through both
slits. It is clear, therefore, that if we confirm the prediction of the probabilistic
interpretation—that something passes through one slit and nothing passes
through the other—then the classical picture of a continuous passing of the wave
through both slits fails and is thus rejected. The experiment actually confirms the
quantum mechanical prediction. It is only through one slit at a time that some-
thing passes, while the transmission numbers are indeed equalized eventually.

But the most fundamental difference between the two types of waves—the
probability waves and the classical waves—is what we are about to describe now.
If the waves in our experiment are indeed probability waves, then the placement
of detectors immediately behind the slits would have a dramatic consequence:

9 The term amplitude is necessary because the wave nature is represented by the wavefunction 𝜓 ,
that is, by the wave amplitude. But for brevity we will often use the term probability wave instead of
probability amplitude wave.
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Interference fringes disappear! By contrast, if the waves are classical then the
presence of the detectors should not affect the interference fringes!

For classical waves, the abovementioned statement is self-evident. In the
classical world the act of observation can always be made so as not to affect the
observed phenomenon in any significant way.

It is therefore impossible to explain in classical physics the disappearance of
the interference fringes due to the presence of the two detectors. And yet this
disappearance is an experimental fact. All pertinent experiments confirm it
beyond any doubt. As soon as we activate the detectors to alert us as to which
slit the particle passed through, the interference fringes vanish!

A straightforward explanation of the disappearance of interference fringes is
provided by the collapse of the wavefunction due to measurement. We remind the
readers that in the context of the statistical interpretation, the wave describing the
particle is not a physical wave but an “information wave,” and, as such, it should
always respond instantaneously to the “new knowledge” about the particle that is
obtained via measurement. In other words, the probability (or information) wave
ought to express what we know at every instance.

Here is the direct implication of this thinking on our experiment (Figure 1.14).
As soon as the detector observes the particle passing through slit #1, the
probability to detect it simultaneously at slit #2 vanishes and the corresponding
wavelet (in the vicinity of slit #2) disappears at once. The probability wave
immediately after the measurement—where transmission through slit #1 was
recorded—contains only the circular wavelets centered on that slit. A similar
statement can be made when the other detector records transmission through
slit #2: We would have circular wavelets around slit #2, and nothing around
slit #1. If we were dealing with classical waves, the only way to obtain such an
outcome would be to shut one or the other slit at a time. As a result, there would
be no interference fringes on the screen (since the two slits would never be open
at the same time), but a mere merging of the two diffraction patterns10 around
the projections of the slits onto the screen. Indeed, this is what we obtain in our
experiment when the detectors near the slits are in operation, informing us from
which slit the particle passed through every time. But as soon as we switch the
detectors off, interference fringes reappear in all their glory!

Let us also note that the quantum nature of the incident wave is revealed clearly
from the way the interference fringes form in the course of the experiment. The
fringes appear gradually as the “spots”—that is, the traces of the particles imping-
ing on the screen—accumulate. And while all such particles are described by the
same quantum wave—and are thus in no way different from one another—we
observe that each particle “lands” at a different spot on the screen. Each such
event is fundamentally unpredictable and nobody can say why a particle falls
on a particular spot. Yet all these events together must form the probability
distribution described by the intensity of the quantum wave in each region of the

10 In a typical diffraction experiment, a wave beam that passes through a tiny slit emerges in wide
angles if the size of the slit is comparable to or narrower than the wavelength of the beam. Because
of the beam’s angular opening, the trace of the diffracted beam on a screen is not only centered at
the projection of the slit but also extends away from it with decreasing intensity.
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Figure 1.14 Quantum mechanical explanation of the disappearance of interference fringes.
Because of the measurement, the wavefunction collapses into the wave that passes through
the slit where detection occurs. Simultaneous “emission” of probability waves from both slits is
no longer possible, and interference fringes disappear.

screen. This intensity is high in areas where the two circular wavelets interfere
constructively and low in areas where the two wavelets interfere destructively.

We conclude the section by examining how we got here. We initially stated our
twofold goal: to empirically check the principle of wave–particle duality—this
fundamental principle of quantum theory—and to familiarize our readers with
it. Our aim was to make them view the principle not as a whim of nature
(something we have to accept simply because it is empirically correct), but as the
only natural explanation of the most challenging mysteries of the atomic world:
the inexplicable, from a classical viewpoint, stability of its structures (say, atoms
and molecules) and the uniqueness of their form: The fact that no matter how
many times we “break up” an atom or a molecule and allow it to form anew, it
always emerges in identical form. In other words, the microscopic constituents
of nature—atoms, molecules, nuclei, and so on—have no history. Their form
is predetermined—like that of normal oscillation modes in classical standing
waves—and does not depend on how and when they were created. In the words
of Niels Bohr:

I had best begin by telling you a little about the history of this theory.
My starting point was not at all the idea that an atom is a small-scale
planetary system and as such governed by the laws of astronomy. I never
took things as literally as that. My starting point was rather the stability of
matter, a pure miracle when considered from the standpoint of classical
physics. By ‘stability’ I mean that the same substances always have the
same properties, that the same crystals recur, the same chemical com-
pounds, etc. In other words, even after a host of changes due to external
influences, an iron atom will always remain an iron atom, with exactly
the same properties as before. This cannot be explained by the principles
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of classical mechanics, certainly not if the atom resembles a planetary
system. Nature clearly has a tendency to produce certain forms—I use the
word ‘forms’ in the most general sense—and to recreate these forms even
when they are disturbed or destroyed.
[Werner Heisenberg, Physics and Beyond: Encounters and Conversations,
Translated by Arnold J. Pomerans, Harper & Row (New York, 1971).]

We encouraged the readers earlier, and emphatically continue to do so now, to
return to the “mystery of the atomic stability” every time they feel intimidated
by the paradoxical features of quantum theory. When they realize time and again
the scandalous failure of classical physics to explain this mystery, they can retrace
the chain of thought we put forward in Section 1.3.2 and summarize again here
as follows:

Stability → Quantization → Wavelike behavior → Wave
= Probability wave → Collapse of the quantum wave upon measurement.

We leave it to the readers to traverse this chain of thought—as a kind of
conceptual exercise—by bringing forward the arguments we developed earlier.
There is not much room for alternatives. Based on our knowledge today, it is
clear that the fundamental principles of quantum mechanics arise readily as the
only natural explanation of the mystery of atomic stability and the uniqueness of
atomic structures.

Actually, it is classical physics—not quantum mechanics—that ought to shock us
when we try to explain the phenomena of the atomic world.

Problems

1.5 To familiarize yourselves with the “practical formulas” of wave–particle
duality, calculate the following quantities:
(a) The de Broglie wavelength of an alpha particle accelerated by a poten-

tial difference of 50 V.
(b) The energy of the incident electron beam in a Davisson–Germer exper-

iment, where the crystal has d = 2.48Å and the angle of maximum
oblique reflection is 𝜃 = 30∘.

(c) The de Broglie wavelength of protons in a CERN experiment (CERN
is the European Organization for Nuclear Research near Geneva,
Switzerland), where their energy is on the order of 10 TeV = 1013 eV.
Show first that for ultrarelativistic particles, whose rest energy is
practically negligible compared to their kinetic energy, the formula for
the wavelength is the same as for photons. Why is this to be expected?

1.6 (Particle in a tubule.) For some linear organic molecules the valence
electrons can practically move freely along the molecule’s main axis,
without being able to leave the molecule. We can therefore approximate
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their motion with that of a free-moving particle—of mass m—inside a
tubule of length L (equal to the molecule’s length) from which it cannot
exit. The particle is permanently trapped there. Apply the condition for
the formation of standing waves to calculate the allowed energies of the
particle trapped in the tubule.

1.7 What do you expect will happen to the Bohr radius (a0 = ℏ2∕me2) and
the ground-state energy of the hydrogen atom (E1 = −me4∕2ℏ2) in the
following limits:

(a) ℏ → 0, (b) m → ∞?

First, state your prediction—taking care to explain your rationale—and
then check whether it is correct.

1.8 Apply Bohr’s quantization condition to obtain the allowed energies of a
particle in a central force field, like the one in hydrogen, but with a force
law F = −kr, known as a three-dimensional harmonic oscillator. Do the
same for F = −gr3.

1.9 In a Davisson–Germer experiment—where d = 2.15Å (nickel crystal)—the
electrons of the incident beam have energy 64 eV. What is the angle of
oblique reflection in this case?

1.10 In the (hypothetical) double-slit experiment of the figure, you are asked to

υ = 7 cm/s
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2

A

r 1
=2 cm

r 2
=
2.

5 
cm

decide whether point A on the screen will
be a local maximum or a local minimum
of the expected interference pattern. Use
the rounded values h ≈ 7 × 10−27erg s,
me ≈ 10−27g for simplicity. What happens
when the speed of the electrons becomes
(a) two times greater and (b) four times
greater?

1.4 Dimensional Analysis and Quantum Physics

1.4.1 The Fundamental Theorem and a Simple Application

In its simplest version, dimensional analysis is merely a test of the dimensional
correctness of a physics formula (i.e., whether both sides of the formula have
the same physical dimension). Let us call this the passive use of the dimensional
method: Given a formula, we simply check whether it is dimensionally correct.
But here we wish to speak of the active use of the method: how to use dimensional
analysis to find a formula that describes a physical phenomenon without even
knowing its underlying theory! The conditions under which we can do this are
expressed in the following fundamental theorem of dimensional analysis.
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Theorem 1.1 If a physical quantity—say, D —depends only on three others—let
us call them A,B,C —then the dependence of D on A,B,C is determined on purely
dimensional grounds up to a dimensionless multiplicative constant. In particular,
we will have

D = 𝜎A𝛼B𝛽C𝛾 , (1.50)

where 𝜎 is an arbitrary dimensionless constant and 𝛼, 𝛽, and 𝛾 are suitable expo-
nents that are determined by equating the physical dimensions of length, mass,
and time of both sides of the equation.

Let us see how the method works in a simple problem from elementary physics.

Example 1.6 Use dimensional analysis to find the formula for the angular
frequency 𝜔 of a harmonic oscillation as a function of the parameters of the
problem.

Solution: The crucial step appears at the very end of the statement of the
problem. On which parameters of the problem do we expect the quantity
𝜔 to depend? Two obvious candidates are k and m: the spring constant that
determines the restoring force via the known relation F = −kx and the mass m
of the oscillating body. Is there a third parameter? Come to think of it, this ought
to be the maximum displacement a of the body from its equilibrium position;
that is, its oscillation amplitude. At this point, the reader may object that the
amplitude does not appear in the familiar formula 𝜔 =

√
k∕m. But recall that we

are not supposed to know anything about this formula, so we should consider
all reasonable options. Based now on this theorem and the dependence of the
frequency 𝜔 on the three quantities k,m, and a, we have

𝜔 = 𝜎k𝛼m𝛽a𝛾 . (1)

To determine 𝛼, 𝛽, and 𝛾 , we start from the expressions
[𝜔] = T−1, [m] = M, [a] = L, (2)

while for k the definition F = −kx yields

[k] = [F]
L

= [M ⋅ acceleration]L−1 = (M ⋅ LT−2)L−1 = MT−2, (3)

where the brackets denote the physical dimension of a physical quantity with
respect to length, mass, and time—L,M, and T—which are the basic units in the
cgs system. By substituting now (2) and (3) into (1) we obtain

T−1 = (MT−2)𝛼M𝛽L𝛾 = L𝛾M𝛼+𝛽T−2𝛼. (4)

Upon equating the dimensions of length, mass, and time of both sides in (4),
we get

𝛾 = 0, 𝛼 + 𝛽 = 0, −2𝛼 = −1 ⇒ 𝛼 = 1∕2, 𝛽 = −1∕2, 𝛾 = 0,

which means that the desired formula has the form

𝜔 = 𝜎

√
k
m
,
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where 𝜎 is the anticipated dimensionless constant. The latter cannot be
determined on dimensional grounds alone, but we can calculate it with a single
experiment for two convenient values of k and m. It should also be stressed that
the independence of 𝜔 from the oscillation amplitude a—a very special feature
of the harmonic oscillator—emerged through purely dimensional arguments, so
it does not depend on the details of the theoretical description of the problem.
It is a purely dimensional result.

An equally useful exercise for the readers is to prove, using dimensional
arguments again, that for a nonlinear power law of the form F = −kx3, the
formula for 𝜔 becomes

𝜔 = 𝜎

√
k
m

a

whose characteristic feature is the linear dependence of 𝜔 on the amplitude of
oscillation. The greater the amplitude, the greater the frequency of oscillation
and thus the smaller its period. Can you explain why?

We hope the given example has also clarified the reason the fundamental
theorem of dimensional analysis holds. It does so because, upon equating
the dimensions L,M,T of both sides of (1.50), we obtain a system of three
equations with three unknowns from which the desired exponents 𝛼, 𝛽, and 𝛾

can be uniquely determined. It can also be easily shown that, among all possible
functional forms D = f (A,B,C), only the form (1.50)—that is, a product of
powers—can be compatible with the requirement that both sides of the equation
have the same dimension.11 Also, it goes without saying that the three quantities
A,B, and C in (1.50) are dimensionally independent. That is, none of them
can be expressed in terms of the other two. It is equally clear that when the
desired quantity D depends, not on three, but on four or more quantities, then
the dimensional method cannot by itself determine the desired formula, not
even up to a dimensionless multiplicative constant. And yet, even in those
cases, a suitable use of the dimensional method can lead to remarkable results,
depending on whether certain dimensionless parameters of the problem can be
considered small.

Closing, we cannot fail to note how advantageous the cgs system of units is
over SI, from the perspective of dimensional analysis. In cgs units, the basic
physical quantities are only three—L,M,T—while in SI units we should also
add the electric charge as an independent unit. Since this increase of the basic
quantities in SI units is completely artificial (as artificial as measuring tempera-
ture in nonmechanical units), it can easily be remedied. All it takes is to realize
that the two systems differ mainly with respect to Coulomb’s law, which—in

11 For example, if the function f (A,B,C) could be expanded in a Taylor series—normally this is not
possible—then we would have

D = f (A,B,C) =
∑
𝜇,𝜈,𝜆

𝜎
𝜇𝜈𝜆

A𝜇B𝜈C𝜆 (𝜆, 𝜇, 𝜈 are positive integers or zero).

However, given that of all the products of the series, only one can have the correct dimensions, the
form (1.50) emerges as the only possible choice.
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the hydrogen atom, for example—has the form e2∕r2 in cgs as opposed to
(1∕4𝜋𝜖0)e2∕r2 in SI units. Clearly, the (more elegant) results of the cgs system
are converted to their counterparts in the SI system upon the substitution

e2 → kCe2 (kC = 1∕4𝜋𝜖0).

A practical question remains. Is there a considerable number of physical
phenomena that depend only on three parameters so that one can use the
dimensional method to predict their behavior? The answer is yes. The most
fundamental physical phenomena have in almost all cases few—and quite often
only three—parameters, because by their nature they relate to the simplest
possible manifestations of fundamental laws. Two important examples we
discuss here pertain to this category.

1.4.2 Blackbody Radiation Using Dimensional Analysis

The thermal radiation of bodies—also known as blackbody radiation—is a fun-
damental physical phenomenon for a simple reason: It is completely independent
of the material the radiating body consists of. After all, it is for this reason that all
incandescent bodies “look” exactly the same; they are visually indistinguishable.
The physical explanation of this remarkable fact lies in the thermal nature
of their light. Namely, before being emitted by any hot body, light interacts
repeatedly with its material and eventually reaches thermal equilibrium with
the body. By the time light is emitted, it is thermal light. Therefore, the spectral
distribution of its intensity has a universal character, just like the distribution of
molecular speeds for a gas in thermal equilibrium with the walls of its container.
The experimental data for the thermal radiation of bodies—and the definitions
of the quantities needed for its description—are given in Figure 1.15.

As expected, experimental efforts to investigate thermal radiation focused,
right from the start, on its two most prominent features: the total intensity
(i.e., the surface area below the corresponding curve) and the location of its
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Figure 1.15 The spectral distribution curve of blackbody radiation. J = spectral intensity
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=

radiated energy, per unit time Δt, per unit frequency Δf , and per unit surface ΔS of the

radiating body = ΔE

ΔtΔfΔS
. I = total intensity

def
= ∫ ∞

0 J(f , T)df .



1.4 Dimensional Analysis and Quantum Physics 45

maximum value, as well as the dependence of these features on the temperature
of the radiating body. The following empirical laws summarize the major findings
on these quantities:

Stefan–Boltzmann law Wien’s law

I = 𝜎T4 𝜆max = b
T

The total intensity of the thermal radiation
emitted by a blackbody depends on the
fourth power of its absolute temperature

The wavelength at which maximum
emission occurs is inversely proportional to
the absolute temperature of the body

𝜎 = 5.67 × 10−8 W∕m2∕K4 b = 0.3 cm K ⇒ 𝜆max(cm) = 0.3
T(K)

By the end of 1899, Planck had succeeded—utilizing all prior knowledge—to
find the full mathematical formula for the spectral distribution J( f ,T):

J( f ,T) = 2𝜋h
c2

f 3

ehf ∕kT − 1
(Planck’s general empirical formula), (1.51)

where k is Boltzmann’s constant and c the speed of light. Immediately thereafter,
Planck also concluded that the only theoretical assumption that could explain his
formula was the quantization of light. Namely, that the energy of light is quantized
in integer multiples of 𝜖 = h f , where h is our familiar Planck’s constant.

In the following examples, we examine what conclusions we can draw on
thermal radiation using purely dimensional arguments.

Example 1.7 Use dimensional analysis to make a prediction within the context
of classical physics for the spectral distribution J( f ,T) of blackbody radiation and
comment on the result.

Solution: Our first step is to find the quantities that J depends on. Obviously,
two of these are the variables of the problem—the frequency f and temperature
T—but also the physical constants of the laws that govern the phenomenon. Such
constants are the speed of light c, since we are dealing with an EM phenomenon,
and Boltzmann’s constant k, since we are also dealing with thermodynamics. On
the other hand, J cannot depend on any properties of the light-emitting material
because thermal radiation does not depend on these either; it has a universal
character. It follows that J cannot depend on any parameters such as the mass and
charge of the electron or the nuclear masses, which determine atomic structure
and, concomitantly, all properties of macroscopic matter. We thus have

J = J( f ,T , k, c). (1)

It appears therefore that J depends on four parameters (not three), so the
dimensional method is not sufficient to determine the sought dependence.
But recall that k is not a truly fundamental constant, but more the result of a
historical accident: the fact that we discovered the concept of temperature before
figuring out its physical meaning as a measure of the thermal kinetic energy of
atoms or molecules in a gas. We thus had to devise, after the fact, the constant k
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to ensure that the product kT assigns to T its correct physical meaning and the
correct units. It is for this reason that T never appears on its own12 but always
together with k as the product kT .

In this spirit, we can equivalently write (1) as
J = J( f , kT , c) ⇒ J = 𝜎f 𝛼(kT)𝛽c𝛾 ,

with exponents to be calculated in the manner we presented earlier. We thus
obtain

𝛼 = 2, 𝛽 = 1, 𝛾 = −2 ⇒ J ∼ f 2kT∕c2, (2)
where we have used the proportionality symbol to avoid a repeated reference to
the dimensionless multiplicative constant 𝜎 that is always present in formulas
derived using dimensional analysis.

Relation (2)—known as the Rayleigh-Jeans law—is a truly profound result.
It tells us that applying classical physics to the problem of thermal radiation
inescapably leads us to the so-called ultraviolet catastrophe: the boundless
increase of radiated EM energy at high frequencies. Such an increase would
make the total radiated intensity I diverge. So classical physics is not simply
unable to explain the phenomenon: It produces an irrational prediction; a
catastrophe. But there is more. The fact that this prediction resulted solely
from dimensional requirements—and not from a detailed calculation that could
entail some revisable assumptions—should leave no doubt in our mind that
there is really no “cure” for this catastrophe. At least in the problem of thermal
radiation, classical physics is fundamentally wrong. And now we know why. In
the context of quantum theory, the UV catastrophe is avoided, because at high
frequencies the energy h f of the light quanta is so high (h f ≫ kT) that their
thermal excitation is impossible. (Again, quantization saves the day.)

Let us note, finally, that an alternative—and much simpler—way to arrive
at relation (2) is to combine the quantities f , kT , and c, to produce the units
of the desired quantity J . These units emerge directly from the definition of
J = ΔE∕(Δt ⋅ Δf ⋅ ΔS), whence we obtain [ J] = E∕L2. Of the given quantities, kT
has dimensions of energy, while a combination of the other two—c and f —that
has dimensions of length is c∕f , which, as we know, is the wavelength of the
radiation. At this point, we are only interested in the fact that c∕f has dimensions
of length (i.e., [c∕f ] = L), so the right combination of kT , f and c that yields the
correct dimensions E∕L2 for J is kT∕(c∕f )2 = f 2kT∕c2, as given. For the skeptical
readers—to whom this whole process may seem a bit arbitrary—we would stress
that, since there is one and only correct combination (according to the theorem),
then no matter how we arrived at it, it is bound to be the correct one.

Example 1.8 Use dimensional analysis to see if it can lead us to the abovemen-
tioned empirical laws of thermal radiation. That is, the laws of Stefan–Boltzmann
and Wien. Assume that we are dealing with a quantum phenomenon, so that
Planck’s constant ℏ appears in the formulas, as does the speed of light c.

12 Apart from obvious exceptions (e.g., the specific heat cV = (dQ∕dT)V ) where the temperature T ,
not kT , appears in the definition of the quantity. In this case, all we have to do is a trivial substitution
of T with kT and proceed as before.
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Solution: The first thing to note is this: Both desired quantities, I and 𝜆max,
do not depend on f , because I relates to the total radiated power—that is, the
integral of J over all f —while 𝜆max relates only to the position of maximum
radiation. But I and 𝜆max both depend on the temperature T—always in the form
of the product kT—and on c and ℏ as we saw earlier. We thus have

I = I(ℏ, c, kT), 𝜆max = 𝜆max(ℏ, c, kT)

so the conditions for the fundamental theorem are met, namely, the desired
quantity depends only on three physical parameters. Applying the theorem (in
the usual systematic manner) yields

I ∼ (kT)4

c2ℏ3 , 𝜆max ∼
ℏc
kT

, (1)

which are indeed the correct empirical laws—as far as dependence on
temperature is concerned—but also with realistic numerical values for the
coefficients, as the reader can verify. We can thus confirm the practical rule that
the dimensionless multiplicative constant in the dimensional method is never
a “very large” or a “very small” number. For order-of-magnitude estimates, the
undetermined multiplicative constant can safely be regarded as a number of the
order of unity.

Note, finally, that formulas (1) can also be derived in the nonsystematic way we
sketched earlier. Since [I] = E∕L2T , [𝜆max] = L, and kT provides an energy term,
we need combinations of kT , c, and ℏ with dimensions of length and time. Such
combinations can be obtained easily if we realize that [ℏ] = ET and [ℏc] = EL, so
we obtain[

ℏ

kT

]
= ET

E
= T ,

[
ℏc
kT

]
= EL

E
= L

and then

[I] = E
L2T

⇒ I ∼ kT(
ℏc
kT

)2
⋅
(

ℏ

kT

) = (kT)4

c2ℏ3 , [𝜆max] = L ⇒ 𝜆max =
ℏc
kT

.

1.4.3 The Hydrogen Atom Using Dimensional Analysis

It would be interesting to check whether dimensional analysis can tell us some-
thing about the two basic empirical quantities regarding the hydrogen atom: the
size of the atom—on the order of Å, as we know—and its ionization potential (or
energy) whose empirical value is 13.6 eV. We will take it as given that classical
physics cannot describe this or any other atom, since the very existence of
the atom would not be possible within the framework of classical physics: The
electron would have collapsed onto the nucleus. And even if such a collapse were
avoided somehow, classical physics cannot provide a mechanism for the atom to
have a definite size. Thus, our study will proceed within the quantum context, so
that the sought quantities a (atomic radius) and WI (ionization energy) will be
functions of the form

a = a(ℏ,m, e), WI = WI(ℏ,m, e) (1.52)
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that is, functions of Planck’s constant, the electron mass, and the electron
charge. Why not the proton mass? Because the proton, being much heavier than
the electron, is practically fixed at the center of the atom and its mass can be
regarded as infinite to a first approximation. But to the second approximation,
the proton mass does play a role, and to account for it we should substitute
the electron mass with the reduced mass of the electron–proton system. But
why would the speed of light not appear in formulas (1.52)? Since the quantum
atom—in its ground state—does not radiate, c need not appear and play a role
in determining this state. Therefore, the quantities we are interested in depend
only on the triplet ℏ,m, and e. We thus determine their dependence using
dimensional arguments as usual to obtain

a ∼ ℏ2

me2 , WI ∼
me4

ℏ2 . (1.53)

Since the combination e2∕cℏ—the fine structure constant—is dimensionless,
it is clear that e2∕ℏ has dimensions of speed. So the combination m(e2∕ℏ)2 =
m × (speed)2 has dimensions of energy and is thus the desired unique expression
for WI. Moreover, the ratio e2∕a has energy dimensions (it is the potential
energy of two electron charges separated by a distance a); if we equate it with
the expression for WI, we obtain the dimensionally correct formula for a. As
for the numerical values of the quantities in (1.53), we recall from previous
calculations that 0.5 Å is the value for a and 27.2 eV is the value for WI, both in
the correct order of magnitude for these quantities. Thus, the mere introduction
of Planck’s constant, aided by dimensional analysis, can give us plausible results
for the hydrogen atom (even without a detailed theory). Surely this is a strong
indication that in the correct theory for the atom, Planck’s constant will play a
key role. Note also that the expression me4∕ℏ2, apart from being correct as an
order of magnitude, is also exactly twice the ionization potential. Therefore, we
can comfortably assume that the formula

WI =
me4

2ℏ2 (1.54)

is exact and that the empirical relation for energies, En = −13.6 eV∕n2, can also
be written as

En = −me4

2ℏ2
1
n2 , (n = 1, 2,… ,∞) (1.55)

which is indeed the correct mathematical expression for the allowed energies of
the atom, as we shall see later.

If you now combine what we said here and our discussion in Section 1.3.9,
you will arrive at a plausible explanation of how Bohr was led to his theory.
As we shall see again and again in the book, dimensional analysis can be a
powerful tool.

Problems

1.11 Use dimensional analysis to predict—up to a multiplicative dimensionless
constant—the formula for the angular frequency𝜔 of a nonlinear oscillator
with a force law of the form F = −kx3. What is the most interesting feature
of your result?
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1.12 Use dimensional analysis to show that in a world of d dimensions,
the formulas for the quantities Jcl (classical prediction for the spectral
distribution of blackbody radiation), I, and 𝜆max will have the form

(a) Jcl ∼ kT
(

f
c

)d−1

,

(b) I ∼ (kT)d+1

ℏdcd−1 ,

(c) 𝜆max ∼
ℏc
kT

.

1.13 The Stefan–Boltzman law is, of course, expected to be a special conse-
quence of Planck’s general formula (1.51) for the spectral distribution
of blackbody radiation. Show that this is indeed the case and that the
theoretical prediction for 𝜎 is

𝜎 = 2𝜋5

15
k4

c2ℏ3 .

Does this prediction agree with the experimental value of 𝜎?

1.14 You suspect that you may have made an error in copying 𝜎 (i.e.,
the Stefan–Boltzmann constant) from some book as 𝜎 = 5.67 ×
10−4 W∕m2∕K4. Can you argue, using facts from everyday experience,
why this numerical value is completely wrong?

1.15 Consider a hypothetical universe where the value of Planck’s constant is
10 times lower compared to ours. Would the radiative intensity of a hot
body be different in such a universe compared to ours? If yes, then by how
much?

1.16 As the universe expands, the wavelength of cosmic microwave background
(CMB) photons—this wonderful thermal afterglow of the Big Bang—gets
“stretched” by the same factor. This is because, as space itself expands, the
distance between two successive crests (or troughs) of a propagating EM
wave increases. Given that the CMB is presently observed to have a tem-
perature of T ≈ 3 K, calculate the following: (a) The present intensity of
the CMB and (b) the intensity and peak-emission wavelength of the CMB
when the universe was 10 times smaller than its present size (i.e., when the
distance between two distant galaxies was 10 times smaller than what is
presently observed).

1.17 The energy of the photons corresponding to the peak emission of a hot
body is equal to 4 eV. Calculate the total emitted intensity from that body,
in units of W∕m2.

Further Problems

1.18 Consider the general case of Compton scattering, whereby the wavelength
𝜆 of the impinging photon is 𝜆 = k𝜆C, where k is an arbitrary dimensionless
number, and the scattering angle 𝜃 is also arbitrary. Use momentum and
energy conservation to calculate the quantities 𝜆′, p′

𝛾 , 𝜖′𝛾 (= wavelength,
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momentum, and energy of the scattered photon) as well as 𝜙, p, and
E (= scattering angle, momentum, and energy of the scattered electron).
Specifically, show that the following relations hold.
For the photon:

𝜆′ = 𝜆C(1 + k − cos 𝜃), p′
𝛾 =

mc
1 + k − cos 𝜃

, 𝜖′𝛾 =
mc2

1 + k − cos 𝜃
.

For the electron:

tan𝜙 = k
1 + k

1
tan(𝜃∕2)

, K ≡ E − mc2 = mc2 1 − cos 𝜃

k(1 + k − cos 𝜃)
,

p = mc 1 − cos 𝜃
k(1 + k − cos 𝜃)

√
k2

tan2(𝜃∕2)
+ (k + 1)2,

while for the photon before the “collision” we have

𝜆 = k𝜆C, p𝛾 =
mc
k
, 𝜖𝛾 =

mc2

k
.

Once you confirm that these general formulas reproduce the results of
Example 1.2, apply them to obtain the results in the following two special
cases:
(a) k = 1, 𝜃 = 𝜋∕2,
(b) k = 2, 𝜃 = 2𝜋∕3.

1.19 Aside from its historical role in the development of quantum theory,
Bohr’s quantization condition—that only those circular orbits are allowed
for which the angular momentum 𝓁 = m𝑣r of the electron is an integer
multiple of Planck’s constant ℏ—is still useful, as it provides a quick way
to approximately calculate the allowed energies for various central force
fields. In fact, these calculated energies—with a possible exception of the
first few of them—reflect the essential features of the energy spectrum. In
this spirit, apply Bohr’s condition 𝓁 = nℏ to show that for an attractive
central force of the form F = ±gr𝜈 (the sign depends on 𝜈 being positive
or negative, respectively, while g is assumed positive), the radii of the
allowed orbits, the speeds, and the energies of the particle on these orbits
are given by the formulas

rn = (ℏn)2∕(𝜈+3)

(mg)(𝜈+3) , 𝑣n = 1
m
(mg)1∕(𝜈+3)(nℏ)(𝜈+1)∕(𝜈+3), (1)

En = ±
g
2
𝜈 + 3
𝜈 + 1

(ℏn)2(𝜈+1)∕(𝜈+3)

(mg)(𝜈+1)∕(𝜈+3) . (2)

Do these formulas reproduce the known results for hydrogen? What about
the three-dimensional harmonic oscillator, where F = −gr?

1.20 It may sound hard to believe, but the temperature at the surface of the
sun—a very distant object—can actually be deduced with reasonable
accuracy on the basis of the following observations from everyday
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experience, in conjunction with the law I = 𝜎T4 and the known value for
𝜎 (𝜎 = 5.67 × 10−8 W∕m2∕K4).
Observation #1: A solar panel works! That is, it produces roughly the
same work (albeit a bit slower) as an electrical device (e.g., water heater)
that consumes power on the order of 2–3 kW, which is typical of all
energy-intensive home appliances. Needless to say, the light-collecting
surface of a solar panel is on the order of 1 m2.
Observation #2: The solar disk—whose apparent size is roughly equal to
that of the moon’s disk—can be blocked out (as you can verify yourselves)
by an object (e.g., part of our finger) of size 1 cm at the end of our stretched
arm, which is roughly 1 m away from our eyes.
Utilize these two observations to calculate—or, at least, estimate—the
temperature at the sun’s surface.

1.21 Given that life on earth is the outcome of a primordial evolutionary
adaptation to environment, a key element of which is sunlight (a source
of both energy and “information” about the world around us), it is not
unreasonable to assume that terrestrial living beings gradually “tuned in”
to the sun, to utilize the energetically richer region of its spectrum. After
all, this is the only way to explain the remarkable fact that the eyes of all
living beings “see” roughly in the same spectral range. Actually, the same
holds true for all light-collecting molecules (e.g., chlorophyll) of plants.

Use the given reasoning to estimate—in conjunction with the formula
𝜆max (cm) = 0.3∕T(K)—the temperature at the sun’s surface. Does your
result roughly agree with what you obtained in the previous problem?

1.22 Use dimensional analysis to predict (without referring to Bohr’s theory) the
dependence of the radius of the ground state orbit, and the corresponding
energy, on the parameters ℏ, m, and g for an arbitrary central potential of
the form V (r) = ±gr𝜈 for a given 𝜈. Do your results agree with those of
Problem 1.19?




