

Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

A Highly Efficient and Practical Method for Catalytic Asymmetric Vinylogous Mannich (AVM) Reactions

Emma L. Carswell, Marc L. Snapper,* and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

Table of Contents	Page
General	S 2
Representative procedure for preparation of phosphine amino acid-based ligands	S 2
Analytical data for ligands 1a-1d	S 3
Table 1. Ag-catalyzed AVM with siloxyfuran 3	S 5
Representative procedure for Ag-catalyzed asymmetric vinylogous	
Mannich reactions	S 5
Analytical data for Mannich products 4a-4i (Table 1)	S 6
Analytical data for Mannich products 6a,b,d,h,j (Table 2)	S14
Analytical data for Mannich products 8a,b,d,h (Table 3)	S17
Procedures and analytical data for compounds 13-16 (Scheme 2)	S19
Proof of absolute stereochemistry of Mannich product 4a	S22
Proof of absolute stereochemistry of Mannich product 8a	S24
X-ray crystal structure of Mannich product 4a	S25
X-ray crystal structure of Mannich product 6j	S40

General. Infared (IR) spectra were recorded on a Nicolet 210 spectrophotometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ¹H NMR spectra were recorded on a Varian Unity INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 77.16 ppm). High-resolution mass spectrometry was preformed on a Micromass LCT ESI-MS (positive mode) at the Mass Spectrometry Facility, Boston College and at the University of Illinois Mass Spectrometry Laboratories (Urbana, Illinois). Elemental microanalyses were performed at Robertson Microlit Laboratories (Madison, NJ). Enantiomeric ratios were determined by chiral HPLC analysis (Chiral Technologies Chiralcel OD column, 25 cm x 0.46 cm) in comparison with authentic racemic materials. Optical rotations were measured on a Rudolph Research Analytical Autopol IV Polarimeter.

Unless otherwise noted, all reactions were carried out under an air atmosphere using reagent grade solvents. Reagent grade THF containing 250 ppm BHT, was purchased from Aldrich and used without purification. Fisherbrand HPLC grade 2-propanol was used without further purification. CH₂Cl₂ and Et₂O were purified under a positive pressure of dry Ar by a modified Innovative Technologies purification system; CH₂Cl₂ and Et₂O were purged with Ar and purified by being passed through two alumina columns. All work-up and purification procedures were carried out with reagent solvents in air. All solvents were purchased from Doe and Ingalls. 2-(Trimethylsilyloxy)furan and AgOAc were purchased from Aldrich and used as PhI(OAc)₂ was purchased from Acros and used as received. received. 4-Methyl-2-(trimethylsilyloxy)furan and 3-methyl-2-(trimethylsilyloxy)furan were prepared from the respective furanones (purchased from TCI America and Aldrich) by established methods.¹ EDC•HCl, HOBt•H₂O, Boc-protected amino acids, *p*-anisidine, and 2-(diphenylphosphino)benzaldehyde were purchased from commercial sources (Advanced Chemtech, Nova Biochem, Aldrich) and used without purification. Unless otherwise stated, substrates were synthesized from commercially available starting materials through previously reported protocols.

Representative experimental procedure for the synthesis of phosphine amino acid-based ligands. Boc-L-Ile-OH (4.98 g, 20.0 mmol) was dissolved in 100 mL of CH_2Cl_2 , and $HOBt \cdot H_2O$ (3.37 g, 22.0 mmol), EDC \cdot HCl (4.22 g, 22.0 mmol) and *p*-anisidine (7.39 g, 60.0 mmol) were added successively at 22 °C. The resulting solution was allowed to stir at 22 °C for 4 h. Citric acid (50 mL of a 10 wt. % aqueous solution) was added and the two layers separated. The

^[1] G. Casiraghi, G. Rassu, *Synthesis* **1995**, 607–626.

aqueous layer was washed twice with 50 mL of CH₂Cl₂ and the combined organic layers were washed with 50 mL 10 wt. % aqueous citric acid and 50 mL of saturated aqueous NaHCO₃, followed by 50 mL of a saturated solution of NaCl. The organic layer was dried over MgSO4 before removal of the volatiles in vacuo to afford a light brown solid (5.60 g, 16.8 mmol, 84%) yield). Trifluoroacetic acid was added drop-wise to the solid (0.900 g, 2.69 mmol) until complete dissolution was achieved. The resulting solution was allowed to stir for 45 min. H₂O (10 mL) and CH₂Cl₂ (10 mL) were added and the solution cooled to 0 °C. NaOH (1.0 N solution) was added drop-wise until pH = >10 is achieved, after which the aqueous solution was washed with EtOAc (3 x 20 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo to afford the free amine as red oil (0.57 g, 2.5 mmol, 91% yield). The dissolved in CH₂Cl₂ (20 mL), followed by amine was the addition of 2-(diphenylphosphino)benzaldehyde (0.71 mg, 2.5 mmol) and MgSO₄. The resulting solution was allowed to stir for 16 h at 22 °C, after which MgSO₄ was removed by filtration and the organic filtrate was concentrated in vacuo to afford a light brown oil that was purified by silica gel column chromatography (4:1 hexanes:EtOAc) to deliver 808 mg (1.60 mmol, 65% yield) of 1a as a light yellow solid.

(*S*,*S*)-(+)-2-[2-(Diphenylphosphinobenzylidene)-amino]-3-methylpentanoic acid (4methyoxyphenyl)-amide (1a). mp = 120 °C. IR (neat): 3263 (b), 2967 (m), 1690 (s), 1514 (s), 1476 (m), 1444 (m), 1306 (m), 1243 (s) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 9.57 (1H, d, *J* = 5.6 Hz), 8.40 (1H, d, *J* = 2.8 Hz), 7.74-7.66 (3H, m), 7.47 (1H, td, *J* = 7.2, 1.2 Hz), 7.37-7.23 (9H, m), 7.17-7.13 (2H, m), 6.91 (1H, dd, *J* = 7.6, 4.4 Hz), 6.84 (2H, dt, *J* = 8.8, 2.0 Hz), 3.77 (3H, s), 3.72 (1H, dd, *J* = 4.0, 1.6 Hz), 1.92-1.87 (1H, m), 1.11-1.05 (1H, m), 0.64 (3H, d, *J* = 6.8 Hz), 0.56 (3H, t, *J* = 7.6 Hz), 0.30-0.22 (1H, m). ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 162.4, 156.3, 138.6, 138.4, 138.1, 137.9, 137.1, 136.9, 136.8, 135.0, 134.8, 133.3, 133.1, 132.4, 132.0, 130.7, 129.3, 129.0, 129.0, 128.9, 128.7, 128.7, 128.6, 121.5, 121.4, 114.2, 81.3, 55.7, 39.6, 23.8, 15.9, 12.0. Anal Calcd for C₃₂H₃₃N₂O₂P: C, 75.57%; H, 6.54%; N, 5.51%; Found C, 75.81%; H, 6.29%; N, 5.41%. Optical rotation: [α]_D²⁰+127.2 (*c* = 1.470, CHCl₃).

(*S*)-(+)-2-[2-Diphenylphosphinobenzylidene)-amino]-N-(4-methoxyphenyl)-3,3-dimethylbutyramide (1b). 1b was obtained as a white solid. mp = 150-151 °C. IR (neat): 3269 (b), 2955 (m), 1683 (s), 1520 (s), 1476 (m), 1444 (m), 1306 (m), 1255 (s) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 9.23 (1H, d, J = 4.4 Hz), 8.43 (1H, d, J = 2.8 Hz), 7.73 (1H, ddd, J = 7.6, 3.6, 1.2 Hz), 7.58 (2H, dt, J = 6.8, 2.0 Hz), 7.46 (1H, td, J = 7.2, 1.2 Hz), 7.36-7.24 (9H, m), 7.18-7.14 (2H, m), 6.91 (1H, dd, J = 7.6, 4.4 Hz), 6.83 (2H, dt, J = 8.8, 2.0 Hz), 3.77 (3H, s), 3.52 (1H, d, J = 1.6 Hz), 0.72 (9H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 162.3, 162.2, 156.2, 138.8, 138.6, 137.9, 137.1, 136.8, 135.1, 134.9, 134.8, 133.4, 133.2, 132.3, 131.8, 130.8, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 121.8, 121.7, 113.2, 85.9, 55.7, 35.6, 27.2. Anal Calcd for C₃₂H₃₃N₂O₂P: C, 75.57%; H, 6.54%; N, 5.51%; Found C, 75.55%; H, 6.29%; N, 5.38%. Optical rotation: [α]_D²⁰ +123.4 (c = 0.4700, CHCl₃).

(S)-(+)-2-[2-Diphenylphosphinobenzylidene)-amino]-N-(4-methoxyphenyl)-3-methyl-

butyramide (1c). 1c was obtained as a yellow solid. mp = 118-119 °C. IR (neat): 3263 (b), 2955 (m), 1683 (s), 1526 (s), 1432 (m), 1249 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 9.45 (1H, d, J = 4.4 Hz), 8.42 (1H, d, J = 2.8 Hz), 7.74 (1H, dd, J = 6.8, 3.6 Hz), 7.62 (2H, dt, J = 6.8, 2.0 Hz), 7.47 (1H, td, J = 7.6, 1.2 Hz), 7.36-7.22 (9H, m), 7.18-7.13 (2H, m), 6.93 (1H, ddd, J = 7.6, 4.4, 1.2 Hz), 6.84 (2H, dt, J = 8.8, 1.6 Hz), 3.73 (3H, s), 3.67 (1H, dd, J = 4.4, 1.6 Hz), 2.20-2.16 (1H, m), 0.69 (3H, d, J = 6.8 Hz), 0.37 (3H, d, J = 6.8 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 162.5, 162.4, 156.3, 138.4, 135.0, 134.9, 134.7, 133.4, 133.2, 132.3, 132.2, 131.9, 130.7, 129.3, 129.0, 128.9, 128.8, 128.8, 128.7, 121.7, 121.6, 114.2, 81.5, 55.7, 32.9, 19.5, 16.9. Anal Calcd for C₃₁H₃₁N₂O₂P: C, 75.28%; H, 6.32%; N, 5.66%; Found C, 75.27%; H, 6.12%; N, 5.56%. Optical rotation: [α]_D²⁰ +152.4 (c = 0.5000, CHCl₃).

(*S*,*R*)-(+)-*3-tert*-Butoxy-2-[(2-diphenylphosphinobenzylidene)amino]-N-(4-methoxyphenyl)butyramide (1d). 1d was obtained as a light yellow solid. mp = 68-70 °C. IR (neat): 3288 (b), 2974 (m), 1677 (s), 1514 (s), 1469 (m), 1438 (m), 1255 (s), 1193 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 9.00 (1H, bs), 8.64 (1H, d, *J* = 4.0 Hz), 7.91 (1H, ddd, *J* = 7.6, 4.0, 1.2 Hz), 7.53 (2H, dt, *J* = 8.8, 2.0 Hz), 7.44 (1H, td, *J* = 7.6, 1.2 Hz), 7.34-7.22 (11H, m), 6.94 (1H, ddd, *J* = 7.6, 4.4, 0.8 Hz), 6.83 (2H, dt, *J* = 8.8, 2.0 Hz), 3.91 (1H, dd, *J* = 6.4, 4.4 Hz), 3.77 (3H, s), 3.70 (1H, d, *J* = 4.0 Hz), 0.99 (9H, s), 0.90 (3H, d, *J* = 6.0 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 162.9, 162.8, 156.2, 138.6, 138.0, 137.2, 136.4, 134.5, 134.3, 134.2, 134.0, 131.7, 130.8, 130.1, 129.1, 129.1, 129.0, 128.9, 128.8, 128.7, 121.5, 114.2, 81.7, 74.1, 69.3, 55.7, 28.8, 20.3. Anal Calcd for C₃₄H₃₇N₂O₃P: C, 73.89%; H, 6.75%; N, 5.07%; Found C, 73.66%; H, 6.79%; N, 4.82%. Optical rotation: [α]_D²⁰ +35.5 (*c* = 0.670, CHCl₃). Table 1:Ag-Catalyzed AVM with Siloxyfuran 3.

MeO N Ar	2 $1 for more statement$ 2 $1 a R = s$	ol % ← N ← Bu; ← Bu; 1Š5 r equiv ed TH	R H 2 1 b R = <i>t</i> -Bu; mol % AgOAc undistilled i-F HF, Š78 %C, 1	1c <i>R</i> = <i>i</i> - c, PrOH, 8 h, in air	Me le H Pr Ar 4		
	Ar		ligand (mol %)	Conv. [%] ^[a]	Yield [%] ^[b]	ee [%] ^[b]	
	Ph	а	1a , 1	91	82	95	
	Ph	а	1b , 1	94	82	96	
	Ph	а	1c , 1	85	77	92	
	p-OMeC ₆ H ₄	b	1a , 1	85	76	93	
	p-OMeC ₆ H ₄	b	1b , 1	90	85	97	
	$p-NO_2C_6H_4$	с	1a , 1	>98	98	91	
	$p-NO_2C_6H_4$	с	1b, 1	>98	96	96	
	p-CIC ₆ H ₄	d	1a , 1	94	89	93	
	p-CIC ₆ H ₄	d	1b , 1	96	91	96	
	p-CIC ₆ H ₄	d	1c , 1	98	86	92	
	<i>m</i> -NO ₂ C ₆ H ₄	е	1a , 1	94	75	93	
	<i>m</i> -NO ₂ C ₆ H ₄	е	1b , 1	93	76	94	
	2-napth	f	1a , 1	96	94	98	
	2-napth	f	1b , 1	>98	94	>98	
	o-MeC ₆ H ₄	g	1a , 5	86	73	93	
	o-MeC ₆ H ₄	g	1b , 5	73	65	94	
	o-BrC ₆ H ₄	h	1a , 3	89	60	93	
	o-BrC ₆ H ₄	h	1b , 3	98	62	95	
	2-furyl	i	1a , 1	98	77	84	
	2-furyl	i	1b , 1	98	78	90	

^aConversions determined by 400 MHz ¹H NMR analysis. ^bIsolated yields of purified products. ^cDetermined by chiral HPLC analysis (see SI for details).

Representative experimental procedure for Ag-catalyzed asymmetric vinylogous Mannich reaction with 2-(trimethylsilyloxy)furans. Chiral phosphine 1a (2.0 mg, 0.0040 mmol) and AgOAc (0.7 mg, 0.004 mmol) were weighed into a 13x100 mm test tube. The contents were dissolved in THF (0.5 ml) and allowed to stir for 5 min at 22 °C. A solution of imine 2a (84 mg, 0.40 mmol) in THF (1.5 mL) was added followed by addition of *i*-PrOH (34 μ L, 0.44 mmol) and the test tube capped with a septum. The mixture was allowed to cool to -78 °C before the addition of trimethylsiloxyfuran 3 (74 μ L, 0.44 mmol), and allowed to stir at -78 °C for 18 h. At this time, the reaction was quenched by the addition of a saturated aqueous solution of NaHCO₃ (0.4 mL). The mixture was allowed to warm to 22 °C with vigorous stirring for 10 min. The mixture was filtered through silica gel and washed with 1:1 hexanes:Et₂O (50 mL) followed by 95:5 CH₂Cl₂:MeOH (50 mL). The filtrate was concentrated to afford a yellow solid that was purified by silica gel column chromatography (7:3 hexanes:Et₂O) to deliver 97 mg (0.33 mmol, 82% yield) of **4a** as a white solid.

(*R*)-(+)-5-[(*S*)-(2-Methoxyphenyl)amino]-phenylmethyl]furan-2(*5H*)-one (4a) (Table 1, entry 1). mp = 141-143 °C. IR (neat): 3420 (b), 1753 (s), 1602 (m), 1513 (s), 1457 (m), 1350 (m), 1243 (s), 1224 (s) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (1H, dd, *J* = 5.6, 1.6 Hz), 7.32-7.25 (5H, m), 6.75 (1H, dd, *J* = 7.2, 1.6 Hz), 6.72-6.63 (2H, m), 6.37 (1H, dd, *J* = 7.2, 1.6 Hz), 6.08 (1H, dd, *J* = 5.6, 2.0 Hz), 5.44 (1H, ddd, *J* = 4.0, 1.6, 1.6 Hz), 4.90 (1H, bs), 4.83 (1H, d, *J* = 4.4 Hz), 3.86 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.5, 153.3, 147.3, 137.4, 136.2, 129.0, 128.5, 127.4, 123.4, 121.2, 117.9, 111.5, 109.8, 85.7, 59.5, 55.8. Anal Calcd for C₁₈H₁₇NO₃: C, 73.20%; H, 5.80%; N, 4.74%; Found C, 72.98%; H, 5.46%; N, 4.59%. Optical rotation: [*a*]_D²⁰ +101.8 (*c* = 1.000, CHCl₃) for a 95% ee sample.

Optical purity of **4a** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 28.71 \text{ min}$, $R_t(major) = 42.96 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(2-Methoxyphenyl)amino]-phenylmethyl]furan-2(5*H*)-one (4a) (Table 1, entry 2). Optical purity of 4a was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 29.77$ min, $R_t(major) = 42.21$ min), 96% ee.

(*R*)-(+)-5-[(*S*)-(2-Methoxyphenyl)amino]-phenylmethyl]furan-2(5*H*)-one (4a) (Table 1, entry 3). Optical purity of 4a was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 27.21 \text{ min}$, $R_t(major) = 39.61 \text{ min}$, 92% ee.

(*R*)-(+)-5-[(*S*)-(4-Methoxyphenyl)-(2-methoxyphenylamino)methyl]furan-2(5*H*)-one (4b) (Table 1, entry 4). 4b was obtained as a white solid. mp = 112-114 °C. IR (neat): 3427 (b), 1759 (s), 1602 (m), 1514 (s), 1451 (m), 1243 (s), 1218 (s) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.37 (1H, dd, *J* = 5.6, 1.6 Hz), 7.22 (2H, ddd, *J* = 9.6, 2.8, 2.8 Hz), 6.82 (2H, ddd, *J* = 9.6, 2.8, 2.8 Hz), 6.75 (1H, dd, *J* = 7.6, 1.6 Hz), 6.72-6.63 (2H, m), 6.38 (1H, dd, *J* = 7.6, 1.6 Hz), 6.06 (1H, dd, *J* = 5.6, 2.0 Hz), 5.41 (1H, ddd, *J* = 4.0, 2.0, 2.0 Hz), 4.70 (1H, bs), 4.78 (1H, d, *J* = 4.4 Hz), 3.84 (3H, s), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.6, 159.6, 153.4, 147.3, 136.2, 129.1, 128.5, 123.4, 121.2, 117.9, 114.4, 111.6, 109.8, 85.8, 59.0, 55.7, 55.4. Anal Calcd for C₁₉H₁₉NO₄: C, 70.14%; H, 5.89%; N, 4.31%; Found C, 70.28%; H, 5.79%; N, 4.17%. Optical rotation: [α]_D²⁰ +131.6 (*c* = 1.000, CHCl₃) for a 93% ee sample.

Optical purity of **4b** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 23.72 \text{ min}$, $R_t(major) = 26.85 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(4-Methoxyphenyl)-(2-methoxyphenylamino)methyl]furan-2(5*H*)-one (4b) (Table 1, entry 5). Optical purity of 4b was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 1 mL/min, R_t (minor) = 23.65

min, $R_t(major) = 26.74 \text{ min}$), 97% ee.

Optical purity of **4c** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 44.54 \text{ min}$, $R_t(major) = 57.11 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(4-Chlorophenyl)-2-methoxyphenylamino)methyl]furan-2(5*H*)-one (4d) (Table 1, entry 7). 4d was obtained as a light yellow solid. mp = 55-57 °C. IR (neat): 3401 (b), 1759 (s), 1602 (m), 1514 (s), 1451 (m), 1243 (m), 1218 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.37 (1H, dd, *J* = 5.6, 1.6 Hz), 7.29-7.23 (4H, m), 6.76 (1H, dd, *J* = 7.2, 2.0 Hz), 6.71-6.65 (2H, m), 6.31 (1H, dd, *J* = 7.2, 1.6 Hz), 6.09 (1H, dd, *J* = 6.0, 2.0 Hz), 5.42 (1H, ddd, *J* = 4.0, 2.0, 2.0 Hz), 4.89 (1H, bs), 4.78 (1H, d, *J* = 4.0 Hz), 3.86 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.2, 152.9, 147.3, 135.8, 134.3, 129.2, 128.8, 123.7, 121.2, 118.3, 111.6, 109.9, 85.3, 59.1, 55.8. Anal

Calcd for C₁₈H₁₆ClNO₃: C, 65.56%; H, 4.89%; N, 4.25%; Found C, 65.69%; H, 4.90%; N, 4.06%. Optical rotation: $[\mathbf{a}]_D^{20}$ +102.4 (*c* = 1.000, CHCl₃) for a 93% ee sample.

Optical purity of **4d** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 32.23$ min, $R_t(major) = 41.95$ min).

(*R*)-(+)-5-[(*S*)-(4-Chlorophenyl)-2-methoxyphenylamino)methyl]furan-2(5*H*)-one (4d) (Table 1, entry 8). Optical purity of 4d was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 34.67$ min, $R_t(major) = 41.82$ min), 92% ee.

(*R*)-(+)-5-[(*S*)-2-Methoxyphenylamino)-(3-nitrophenyl)methyl]furan-2(*5H*)-one (4e) (Table 1, entry 9). 4e was obtained as a yellow solid. mp = 154-155 °C. IR (neat): 3408 (b), 1759 (s), 1602 (m), 1526 (s), 1457 (m), 1350 (m), 1249 (m) 1218 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (1H, t, *J* = 2.0 Hz), 8.12 (1H, ddd, *J* = 8.4, 2.0, 0.8 Hz), 7.68 (1H, d, *J* = 8.0 Hz), 7.49 (1H, t, *J* = 8.0 Hz), 7.46 (1H, dd, *J* = 5.6, 2.0 Hz), 6.79-6.77 (1H, m), 6.72-6.67 (2H, m), 6.34-6.31 (1H, m), 6.11 (1H, dd, *J* = 5.6, 2.0 Hz), 5.48 (1H, ddd, *J* = 4.4, 2.0, 2.0 Hz), 5.07 (1H, bs), 4.90 (1H, d, *J* = 4.4 Hz), 3.89 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 171.9, 152.8, 148.6, 147.4, 139.8, 135.3, 133.7, 130.1, 123.9, 123.6, 122.6, 121.2, 118.8, 111.6, 110.1, 84.8, 59.4, 55.8. Anal

Calcd for C₁₈H₁₆N₂O₅: C, 63.52%; H, 4.74%; N, 8.23%; Found C, 63.59%; H, 4.91%; N, 8.03%. Optical rotation: $[\alpha]_D^{20}$ +56.2 (*c* = 1.00, CHCl₃) for a 93% ee sample.

Optical purity of **4e** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 43.33 \text{ min}$, $R_t(major) = 50.89 \text{ min}$).

(*R*)-(+)-5-[(*S*)-2-Methoxyphenylamino)naphthalene-2-yl-methyl]furan-2(*5H*)-one (4f) (Table 1, entry 10). 4f was obtained as a white solid. mp = 75-78 °C. IR (neat): 3415 (b), 1753 (s), 1602 (m), 1507 (s), 1457 (m), 1243 (m), 1218 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.82-7.78 (4H, m), 7.49-7.43 (3H, m), 7.41 (1H, dd, *J* = 5.6, 1.6 Hz), 6.77-6.75 (1H, m), 6.68-6.63 (2H, m), 6.41-6.39 (1H, m), 6.08 (1H, dd, *J* = 5.6, 2.0 Hz), 5.54 (1H, ddd, *J* = 4.0, 2.0, 2.0 Hz), 5.10 (1H, bs), 5.00 (1H, d, *J* = 4.0 Hz), 3.88 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.5, 153.2, 147.3, 136.3, 134.9, 133.5, 133.4, 129.0, 128.2, 127.9, 126.6, 126.5, 124.9, 123.5, 121.2, 118.1, 111.7, 109.8, 85.7, 59.8, 55.8. Anal Calcd for C₂₂H₁₉NO₃: C, 76.50%; H, 5.54%; N, 4.06%; Found C, 76.50%; H, 5.45%; N, 3.97%. Optical rotation: [α]_D²⁰ +131.6 (*c* = 1.000, CHCl₃) for a 98% ee sample.

Optical purity of **4f** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 52.11$ min, $R_t(major) = 56.29$ min).

(*R*)-(+)-5-[(*S*)-2-Methoxyphenylamino)naphthalene-2-yl-methyl]furan-2(5*H*)-one (4f) (Table 1, entry 11). Optical purity of 4f was established by chiral HPLC analysis (Chiral

Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 52.32$ min, $R_t(major) = 56.50$ min), >98% ee.

(*R*)-(+)-5-[(*S*)-2-Methoxyphenylamino)-2-tolyl-methyl]furan-2(5*H*)-one (4g) (Table 1, entry **12**). 4g was obtained as a white solid. mp = 138-140 °C. IR (neat): 3415 (b), 1759 (s), 1602 (m), 1514 (s), 1457 (m), 1249 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.44 (1H, dd, *J* = 5.6, 1.6 Hz), 7.38 (1H, ddd, *J* = 4.4, 2.0, 2.0 Hz), 7.20-7.17 (3H, m), 6.74 (1H, dd, *J* = 7.6, 1.6 Hz), 6.70 (1H, ddd, *J* = 7.6, 7.6, 1.6 Hz), 6.65 (1H, ddd, *J* = 7.2, 7.2, 1.6 Hz), 6.26 (1H, dd, *J* = 7.6, 1.6 Hz), 6.19 (1H, dd, *J* = 5.6, 1.6 Hz), 5.35 (1H, ddd, *J* = 3.6, 1.6, 1.6 Hz), 5.02 (1H, dd, *J* = 6.0, 6.0 Hz), 4.69 (1H, d, *J* = 6.4 Hz), 3.84 (3H, s), 2.47 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.5, 153.2, 147.3, 136.4, 135.9, 135.6, 131.2, 128.2, 127.0, 126.4, 123.7, 121.3, 117.9, 111.1, 109.8, 84.8, 55.8, 55.7, 19.6. Anal Calcd for C₁₉H₁₉NO₃: C, 73.77%; H, 6.19%; N, 4.53%; Found C, 73.60%; H, 6.06%; N, 4.54%. Optical rotation: [α]_D²⁰ +125.4 (*c* = 1.000, CHCl₃) for a 93% ee sample.

Optical purity of **4g** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 20.30$ min, $R_t(major) = 37.34$ min).

(*R*)-(+)-5-[(*S*)-2-Methoxyphenylamino)-2-tolyl-methyl]furan-2(5*H*)-one (4g) (Table 1, entry 13). Optical purity of 4g was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 80/20 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 21.88 \text{ min}$, $R_t(major) = 38.57 \text{ min}$), 94% ee.

(*R*)-(+)-5-[(*S*)-(2-Bromophenyl)-2-methoxyphenylamino)methyl]furan-2(*5H*)-one (4h) (Table 1, entry 14). 4h was obtained as a light yellow solid. mp = 60-63 °C. IR (neat): 3415 (b), 1766 (s), 1602 (m), 1513 (s), 1457 (m), 1249 (m), 1237 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (1H, dd, *J* = 5.6, 1.6 Hz), 7.51 (1H, dd, *J* = 8.0, 1.2 Hz), 7.36 (1H, dd, *J* = 8.0, 1.6 Hz), 7.21 (1H, ddd, *J* = 7.6, 7.6, 1.2 Hz), 7.10 (1H, ddd, *J* = 7.6, 7.6, 2.0 Hz), 6.76-6.63 (3H, m), 6.32 (1H, dd, *J* = 7.6, 1.6 Hz), 5.20 (1H, dd, *J* = 5.6, 2.0 Hz), 5.56 (1H, ddd, *J* = 4.0, 1.6, 1.6 Hz), 5.40 (1H, d, *J* = 3.6 Hz), 5.20 (1H, bs), 3.86 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 152.4, 147.3, 135.7, 135.6, 133.1, 130.0, 129.2, 128.3, 124.1, 123.5, 121.3, 118.1, 111.4, 109.8, 84.6, 57.9, 55.7. Anal Calcd for C₁₈H₁₆BrNO₃: C, 57.77%; H, 4.31%; N, 3.74%; Found C, 58.02%; H, 4.25%; N, 3.66%. Optical rotation: [α]_D²⁰ +1.80 (*c* = 1.00, CHCl₃) for a 93% ee sample.

Optical purity of **4h** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 83/17 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 18.42 \text{ min}$, $R_t(major) = 37.51 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(Furan-2-yl)-2-methoxyphenylamino)methyl]furan-2(5*H*)-one (4i) (Table 1, entry 15). 4i was obtained as a white solid. mp = 93-95 °C. IR (neat): 3402 (b), 1759 (s), 1602 (m), 1514 (s), 1457 (m), 1249 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.48 (1H, dd, J = 6.0, 1.6 Hz), 7.33 (1H, dd, J = 2.0, 1.2 Hz), 6.81-6.68 (3H, m), 6.56 (1H, dd, J = 7.6, 1.6 Hz), 6.28-6.25 (2H, m), 6.12 (1H, dd, J = 5.6, 2.0 Hz), 5.47 (1H, ddd, J = 3.6, 1.6, 1.6 Hz), 4.92 (1H, bs), 4.78 (1H, bs), 3.83 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.6, 153.3, 150.9, 147.4,

142.5, 136.0, 123.3, 121.3, 118.5, 111.5, 110.8, 110.1, 108.5, 84.1, 55.7, 54.2. Anal Calcd for $C_{16}H_{15}NO_4$: C, 67.36%; H, 5.30%; N, 4.91%; Found C, 67.33%; H, 5.38%; N, 4.77%. Optical rotation: $[\alpha]_D^{20}$ +153.0 (c = 1.000, CHCl₃) for an 84% ee sample.

Optical purity of **4i** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 92/8 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(major) = 76.50 \text{ min}$, $R_t(minor) = 90.53 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(Furan-2-yl)-2-methoxyphenylamino)methyl]furan-2(5*H*)-one (4i) (Table 1, entry 16). Optical purity of 4i was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 92/8 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(major) = 76.47 \text{ min}$, $R_t(minor) = 90.72 \text{ min}$), 90% ee.

(*R*)-(+)-5-[(*S*)-(2-Methoxyphenylamino)phenylmethyl]-4-methylfuran-2(5*H*)-one (6a) (Table 2, entry 1). 6a was obtained as a white solid. mp = 194-196 °C. IR (neat): 3427 (b), 1746 (s), 1595 (m), 1507 (s), 1451 (m), 1249 (m), 1218 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.29-7.20 (5H, m), 6.76-6.62 (3H, m), 6.45 (1H, dd, *J* = 8.0, 1.6 Hz), 5.62 (1H, dd, *J* = 1.6, 1.6 Hz), 5.36-5.35 (1H, m), 5.33-5.31 (1H, m), 4.82 (1H, bs), 3.89 (3H, s), 2.09 (3H, d, *J* = 0.8 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 172.7, 165.5, 147.4, 136.1, 136.0, 128.7, 128.4, 127.7, 121.1, 119.3, 117.9, 111.3, 109.9, 86.8, 58.7, 55.7, 14.8. Anal Calcd for C₁₉H₁₉NO₃: C, 73.77%; H, 6.19%; N, 4.53%; Found C, 73.60%; H, 6.06%; N, 4.54%. Optical rotation: [α]_D²⁰ +18.2 (*c* = 1.00, CHCl₃) for an 87% ee sample.

Optical purity of **6a** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 0.95 mL/min, $R_t(minor) = 19.16 \text{ min}$, $R_t(major) = 66.31$

(*R*)-(+)-5-[(*S*)-(4-Methoxyphenyl)-(2-methoxyphenylamino)methyl]-4-methylfuran-2(*5H*)one (6b) (Table 2, entry 2). 6b was obtained as a white solid. mp = 134-135 °C. IR (neat): 3420 (b), 1759 (s), 1602 (m), 1507 (s), 1457 (m), 1249 (m), 1231 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.18 (2H, d, *J* = 8.4 Hz), 6.77-6.69 (4H, m), 6.63 (1H, ddd, *J* = 7.6, 7.6, 1.2 Hz), 6.45 (1H, d, *J* = 7.6 Hz), 5.63 (1H, s), 5.33-5.24 (2H, m), 4.77 (1H, d, *J* = 2.4 Hz), 3.86 (3H, s), 3.72 (3H, s), 2.09 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 165.5, 159.5, 147.4, 136.1, 128.8, 127.8, 121.1, 119.2, 117.8, 114.1, 111.4, 109.9, 86.9, 58.1, 55.7, 55.3, 14.8. Anal Calcd for $C_{20}H_{21}NO_4$: C, 70.78%; H, 6.24%; N, 4.13%; Found C, 70.61%; H, 5.99%; N, 3.93%. Optical rotation: [α]_D²⁰ +45.0 (*c* = 1.00, CHCl₃) for an 83% ee sample.

Optical purity of **6b** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 0.95 mL/min, $R_t(minor) = 25.17 \text{ min}$, $R_t(major) = 80.13 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(4-Chlorophenyl)-(2-methoxyphenylamino)methyl]-4-methylfuran-2(5*H*)one (6d) (Table 2, entry 3). 6d was obtained as a light yellow solid. mp = 150-151 °C. IR (neat): 3415 (b), 1753 (s), 1602 (m), 1507 (s), 1457 (m), 1249 (m), 1218 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.24-7.20 (4H, m), 6.75 (1H, dd, *J* = 7.6, 1.6 Hz), 6.72-6.63 (2H, m), 6.39 (1H, dd, *J* = 7.6, 1.6 Hz), 5.65 (1H, s), 5.33 (2H, s), 4.79 (1H, d, *J* = 2.8 Hz), 3.86 (3H, s), 2.10

(3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 165.1, 147.4, 135.7, 134.6, 134.3, 129.1, 128.9, 121.1, 119.5, 118.2, 111.4, 109.9, 86.5, 58.2, 55.7, 14.8. Anal Calcd for C₁₉H₁₈ClNO₃: C, 66.38%; H, 5.28%; N, 4.07%; Found C, 66.38%; H, 5.18%; N, 3.94%. Optical rotation: $[\alpha]_D^{20}$ +33.8 (*c* = 1.00, CHCl₃) for a 90% ee sample.

Optical purity of **6d** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 0.95 mL/min, $R_t(minor) = 26.62 \text{ min}$, $R_t(major) = 78.59 \text{ min}$).

(*R*)-(-)-5-[(*S*)-(2-Bromophenyl)-(2-methoxyphenylamino)methyl]-4-methylfuran-2(5*H*)-one (6h) (Table 2, entry 4). 6h was obtained as a light yellow solid. mp = 204-206 °C. IR (neat): 3408 (b), 1772 (s), 1608 (m), 1520 (s), 1457 (m), 1432 (m), 1249 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (2H, td, *J* = 9.2, 1.2 Hz), 7.24-7.20 (1H, m), 7.09 (1H, td, *J* = 7.6, 2.0 Hz), 6.76-6.75 (2H, m), 6.66 (1H, dt, *J* = 7.6, 1.6 Hz), 6.54-6.51 (1H, m), 5.75 (1H, t, *J* = 1.6 Hz), 5.43-4.42 (1H, m), 5.37 (1H, dd, *J* = 8.4, 3.6 Hz), 5.17 (1H, d, *J* = 8.0 Hz), 3.85 (3H, s), 2.15 (3H, d, *J* = 1.2 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 166.3, 147.4, 136.0, 135.8, 133.3, 129.9, 129.8, 128.2, 124.0, 121.3, 119.4, 118.2, 111.8, 109.9, 86.2, 57.3, 55.8, 15.6. Anal Calcd for C₁₉H₁₈BrNO₃: C, 58.78%; H, 4.67%; N, 3.61%; Found C, 58.45%; H, 4.69%; N, 3.30%. Optical rotation: [α]_D²⁰ –50.4 (*c* = 0.500, CHCl₃) for an 89% ee sample.

Optical purity of **6h** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 90/10 hexanes/*i*-PrOH eluent, 1.0 mL/min, $R_t(minor) = 19.92 \text{ min}$, $R_t(major) = 54.61 \text{ min}$).

(*R*)-(+)-5-[(*S*)-(4-Bromophenyl)-(2-methoxyphenylamino)methyl]-4-methylfuran-2(*5H*)-one (6j) (Table 2, entry 5). 6j was obtained as a white solid. mp = 162-163 °C. IR (neat): 3408 (b), 1759 (s), 1602 (m), 1514 (s), 1463 (m), 1432 (m), 1249 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.35 (2H, d, *J* = 8.4 Hz), 7.13 (2H, d, *J* = 8.4 Hz), 6.73 (1H, dd, *J* = 7.6, 1.6 Hz), 6.70-6.61 (2H, m), 6.37 (1H, dd, *J* = 7.6, 1.6 Hz), 5.64 (1H, t, *J* = 1.2 Hz), 5.32-5.28 (2H, m), 4.75 (1H, dd, *J* = 9.2, 2.8 Hz), 3.85 (3H, s), 2.08 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.3, 165.0, 147.3, 135.6, 135.0, 131.8, 129.3, 122.3, 121.0, 119.4, 118.1, 111.3, 109.9, 86.4, 58.2, 55.6, 14.7. Anal Calcd for C₁₉H₁₈BrNO₃: C, 58.78%; H, 4.67%; N, 3.61%; Found C, 58.98%; H, 4.76%; N, 3.52%. Optical rotation: [α]_D²⁰ +33.2 (*c* = 0.500, CHCl₃) for a >98% ee sample.

Optical purity was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t(minor) = 20.75 \text{ min}$, $R_t(major) = 58.20 \text{ min}$), 88% ee.

(*R*)-(+)-5-[(*R*)-(2-Methoxyphenylamino)phenylmethyl]-3-methylfuran-2(5*H*)-one (8a) (Table 3, entry 1). 8a was obtained as a colorless oil. IR (neat): 3408 (b), 1765 (s), 1514 (m), 1451 (m), 1249 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.43-7.41 (2H, m), 7.38-7.29 (3H, m), 6.83 (1H, dd, *J* = 1.6, 1.6 Hz), 6.76-6.73 (1H, m), 6.66-6.64 (2H, m), 6.34-6.32 (1H, m), 5.10 (1H, ddd, *J* = 6.8, 1.6, 1.6 Hz), 5.06 (1H, d, *J* = 4.4 Hz), 4.39 (1H, dd, *J* = 6.8, 4.4 Hz), 3.86 (3H, s), 1.86 (3H, t, *J* = 1.6 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 173.9, 147.4, 146.2, 138.9, 136.8, 131.5, 129.2, 128.5, 127.5, 121.1, 118.0, 111.9, 109.7, 83.8, 61.8, 55.7, 10.9. Anal Calcd for C₁₉H₁₉NO₃: C, 73.77%; H, 6.19%; N, 4.53%; Found C, 73.53%; H, 5.94%; N, 4.41%. Optical rotation: [a]_D²⁰ +103.8 (*c* = 0.5200, CHCl₃) for an 85% ee sample.

Optical purity of **8a** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 92/8 hexanes/*i*-PrOH eluent, 1.0 mL/min, $R_t(major) = 18.01 \text{ min}$, $R_t(minor) = 31.92 \text{ min}$).

(*R*)-(+)-5-[(*R*)-(4-Methoxyphenyl)-(2-methoxyphenylamino)methyl]-3-methylfuran-2(5*H*)one (8b) (Table 3, entry 2). 8b was obtained as a colorless oil. IR (neat): 3408 (b), 1772 (s), 1608 (m), 1507 (s), 1457 (m), 1249 (m), 1231 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.34-7.32 (2H, m), 6.90-6.86 (2H, m), 6.83 (1H, dd, *J* = 1.6, 1.6 Hz), 6.76-6.73 (1H, m), 6.67-6.64 (2H, m), 6.35-6.32 (1H, m), 5.06 (1H, ddd, *J* = 6.8, 1.6, 1.6 Hz), 5.02 (1H, d, *J* = 3.6 Hz), 4.33 (1H, dd, *J* = 6.8, 3.6 Hz), 3.86 (3H, s), 3.78 (3H, s), 1.86 (3H, t, *J* = 1.6 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 173.9, 159.7, 147.4, 146.3, 136.9, 131.5, 130.7, 128.6, 121.1, 118.0, 114.5, 111.9, 109.6, 83.9, 61.3, 55.7, 55.5, 11.0. Anal Calcd for C₂₀H₂₁NO₄: C, 70.78%; H, 6.24%; N, 4.13%; Found C, 70.51%; H, 6.14%; N, 3.91%. Optical rotation: [**a**]_D²⁰ +97.8 (*c* = 0.370, CHCl₃) for an 88% ee sample.

Optical purity of **8b** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 95/5 hexanes/*i*-PrOH eluent, 1.0 mL/min, $R_t(major) = 39.63$ min, $R_t(minor) = 49.12$ min).

(*R*)-(+)-5-[(*R*)-(4-Chlorophenyl)-(2-methoxyphenylamino)methyl]-3-methylfuran-2(*5H*)-one (8d) (Table 3, entry 3). 8d was obtained as a colorless oil. IR (neat): 3408 (b), 1759 (s), 1602 (m), 1514 (s), 1457 (m), 1256 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.37-7.31 (4H, m), 6.85 (1H, dd, *J* = 1.6, 1.6 Hz), 6.76-6.74 (1H, m), 6.67-6.65 (2H, m), 6.29-6.27 (1H, m), 5.08 (1H, ddd, *J* = 6.4, 1.6, 1.6 Hz), 4.98 (1H, d, *J* = 4.8 Hz), 4.41 (1H, dd, *J* = 6.4, 5.2 Hz), 3.86 (3H, s), 1.87 (3H, t, *J* = 1.6 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 173.6, 147.4, 145.7, 137.4, 136.4,

134.2, 131.9, 129.3, 128.9, 121.1, 118.3, 111.9, 109.7, 83.4, 60.9, 55.7, 10.9. Anal Calcd for $C_{19}H_{18}$ ClNO₃: C, 66.38%; H, 5.28%; N, 4.07%; Found C, 66.66%; H, 4.99%; N, 3.87%. Optical rotation: $[\alpha]_D^{20}$ +95.0 (*c* = 1.00, CHCl₃) for an 83% ee sample.

Optical purity of **8d** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 92/8 hexanes/*i*-PrOH eluent, 1.0 mL/min, $R_t(major) = 21.91 \text{ min}$, $R_t(minor) = 28.20 \text{ min}$).

(*R*)-(+)-5-[(*R*)-(2-Bromophenyl)-(2-methoxyphenylamino)methyl]-3-methylfuran-2(*5H*)-one (8h) (Table 3, entry 4). 8h was obtained as colorless oil. IR (neat): 3408 (b), 1765 (s), 1608 (m), 1514 (s), 1457 (m), 1256 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (1H, dd, *J* = 7.6, 1.6 Hz), 7.51 (1H, dd, *J* = 7.6, 1.6 Hz), 7.28 (1H, td, *J* = 7.2, 1.2 Hz), 7.15 (1H, td, *J* = 8.0, 1.6 Hz), 6.94 (1H, t, *J* = 1.6 Hz), 6.74 (1H, dd, *J* = 7.2, 1.6 Hz), 6.71-6.63 (2H, m), 6.27 (1H, dd, *J* = 7.6, 2.0 Hz), 5.20-5.17 (1H, m), 5.00-5.07 (2H, m), 3.85 (3H, s), 1.92 (3H, t, *J* = 1.6 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 174.0, 147.3, 146.6, 137.9, 136.0, 133.2, 131.5, 129.9, 129.3, 128.5, 123.5, 121.3, 118.2, 111.8, 109.7, 82.9, 58.7, 55.7, 10.9. Anal Calcd for C₁₉H₁₈ BrNO₃: C, 58.78%; H, 4.67%; N, 3.61%; Found C, 58.94%; H, 4.91%; N, 3.48%. Optical rotation: [α]_D²⁰ +210.4 (*c* = 0.4600, CHCl₃) for a 79% ee sample.

Optical purity of **8h** was established by chiral HPLC analysis (Chiral Technologies Chiralcel OD, 254 nm, 85/15 hexanes/*i*-PrOH eluent, 1.0 mL/min, $R_t(major) = 8.13$ min, $R_t(minor) = 11.60$ min).

(5R,6S)-(+)-5-(Aminomethylphenyl)-furan-2(5H)-one (13) (Scheme 2). To a solution of PhI(OAc)₂ (23.35 g, 72.50 mmol) in MeOH (200 mL) under an atmosphere of N₂ at 0 °C was added a solution of 4a (5.350 g, 18.12 mmol) in 1:1 MeOH:CH₂Cl₂ (100 mL) through a pressure-equalizing addition funnel over 30 min. The mixture was allowed to stir at 0 °C for an additional 30 min upon which time a 1.0 M aqueous solution of HCl (270 mL) was added. The resulting solution was allowed to warm to 22 °C and allowed to stir for 1 h. The mixture was diluted with CH₂Cl₂ (150 mL) and the layers separated. The aqueous layer was washed with CH₂Cl₂ (3 x 100 mL) and the combined organic portions washed with 1.0 M aqueous HCl (100 mL). The combined aqueous layers were neutralized with solid Na_2CO_3 until a pH = 7 was obtained. CH₂Cl₂ (100 mL) was added, the layers were separated, and the aqueous layer was washed with CH₂Cl₂ (4 x 100 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄, and concentrated in vacuo to deliver 2.61 g (13.8 mmol, 76%) of 15 as orange oil. IR (neat): 3377 (b), 3314 (b), 1753 (s), 1608 (m), 1495 (m), 1457 (m), 1168 (s), 1092 (m), 1029 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.30 (5H, m), 7.28 (1H, dd, J = 5.6, 1.6 Hz), 6.12 (1H, dd, *J* = 5.6, 1.6 Hz), 5.20 (1H, ddd, *J* = 4.4, 1.6, 1.6 Hz), 4.45 (1H, d, *J* = 4.4 Hz), 1.57 (2H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 153.4, 139.6, 129.1, 128.4, 126.9, 123.5, 87.2, 57.2. Optical rotation: $[\alpha]_D^{20}$ +98.5 (*c* = 0.930, CHCl₃) for a 92% ee sample.

(+)-[(5-Oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid benzyl ester (14) (Scheme 2). To a solution of PhI(OAc)₂ (436 mg, 1.35 mmol) in MeOH (5 mL) under an atmosphere of nitrogen at 0 °C was added a solution of 4a (100 mg, 0.340 mmol) in 1:1 MeOH:CH₂Cl₂ (5 mL) through a pressure-equalizing addition funnel over 15 min. The mixture was allowed to stir at 0 °C for an additional 30 min upon which time a 1.0 M aqueous solution of HCl (5 mL) was added. The mixture was allowed to warm to 22 °C and allowed to stir for 1 h. The mixture was diluted with CH₂Cl₂ (20 mL) and the layers separated. The aqueous layer was washed with CH₂Cl₂ (3 x 15 mL) and the combined organic portions washed with 1.0 M aqueous HCl (10 mL). The combined aqueous layers were neutralized with solid Na_2CO_3 until a pH = 7 was obtained. CH₂Cl₂ (30 mL) was added, followed by CbzCl (0.190 mL, 1.35 mmol) and the biphasic mixture stirred vigorously for 4 h at 22 °C. After this time, the layers were separated and the aqueous layer was washed with CH₂Cl₂ (3 x 25 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated in vacuo to afford a yellow oil that product was purified by silica gel column chromatography (7:3 hexanes:Et₂O) to deliver 83 mg (0.26 mmol, 76%) of 13 as a white solid. mp = 106-107 °C. IR (neat): 3313 (b), 1765 (s), 1721 (s), 1533 (m), 1331 (w), 1249 (m), 1161 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.31-7.24 (9H, m), 7.19-7.17 (2H, m), 5.92 (1H, d, J = 4.4 Hz), 5.58 (1H, d, J = 8.0 Hz), 5.39 (1H, s), 5.14-5.03 (3H, m). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 155.9, 152.9, 136.2, 135.5, 129.1, 128.9, 128.8, 128.6, 128.4, 127.4, 123.5, 84.5, 67.6, 57.1. Anal Calcd for C₁₉H₁₇NO₄: C, 70.58%; H, 5.30%; N, 4.33%; Found C, 70.31%; H, 5.30%; N, 4.20%. Optical rotation: $[\alpha]_D^{20}$ +62.4 (*c* = 0.500, $CHCl_3$) for a 92% ee sample.

(+)-N-[(5-Oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-acetamide (extra data; not shown in text). To a solution of PhI(OAc)₂ (436 mg, 1.35 mmol) in MeOH (5 mL) under an atmosphere of N₂ at 0 °C was added a solution of **4a** (100 mg, 0.340 mmol) in 1:1 MeOH:CH₂Cl₂ (5 mL) through a pressure-equalizing addition funnel over 15 min. The mixture was allowed to stir at 0 °C for an additional 30 min upon which time a 1.0 M aqueous solution of HCl (5 mL) was added. The resulting solution was allowed to warm to 22 °C and stir for 1 h. The mixture was diluted with CH_2Cl_2 (20 mL) and the layers separated. The aqueous layer was washed with CH_2Cl_2 (3 x 15 mL) and the combined organic portions were washed with 1.0 M aqueous HCl (10 mL). The combined aqueous layers were neutralized by addition of solid Na₂CO₃ until a pH = 7 was obtained. CH₂Cl₂ (30 mL) was added, followed by Ac₂O (0.13 mL, 1.35 mmol) and the biphasic mixture was allowed to stir vigorously for 2 h at 22 °C. After this time, the layers were separated and the aqueous layer was washed with CH₂Cl₂ (3 x 25 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated in vacuo to afford yellow oil that was purified by silica gel column chromatography (CH₂Cl₂ to 98:2 CH₂Cl₂:MeOH) to deliver 59 mg (0.26 mmol, 75%) of 14 as a white solid. mp = 164-165 °C. IR (neat): 3301 (b), 1790 (m), 1759 (s), 1658 (m), 1495 (m), 1161 (m), 1111 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.33-7.27 (4H, m), 7.22-7.19 (2H, m), 6.47 (1H, d, *J* = 8.0 Hz), 5.89 (1H, dd, J = 5.6, 2.0 Hz), 5.46-5.40 (2H, m), 2.04 (3H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 172.6, 169.9, 153.3, 135.0, 129.1, 128.9, 127.6, 123.1, 84.5, 55.2, 23.5. Anal Calcd for C₁₃H₁₃NO₃: C, (67.52%; H, 5.67%; N, 6.06%; Found C, (67.27%; H, 5.52%; N, 5.94%). Optical rotation: $[\alpha]_D^{20}$ +136.4 (*c* = 0.5000, CHCl₃) for a 90% ee sample.

(5*R*,6*S*)-(–)-5-[(2-Methoxyphenylamino)-phenylmethyl]-dihydrofuran-2-one. To a solution of **4a** (300 mg, 1.01 mmol) in EtOAc (30 mL) was added 10% Pd(C) (30 mg, 10% w/w). The head space of the solution was purged with H₂ and the mixture allowed to stir at 22 °C under 1 atm of H₂ for 4 h. After this time, the mixture was filtered through celite and washed with EtOAc (50 mL) followed by MeOH (50 mL). The filtrate was concentrated *in vacuo* and the resulting yellow oil purified by silica gel column chromatography (7:3 hexanes/Et₂O) to deliver 285 mg (0.960 mmol, 95%) of 5-[(2-methoxyphenylamino)-phenylmethyl]-dihydrofuran-2-one as a white solid. mp = 101 °C. IR (neat): 3427 (b), 2955 (m), 2924 (m), 2854 (m), 1785 (s), 1602 (m), 1514 (s), 1463 (m), 1255 (m), 1224 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.24 (5H, m), 6.75 (1H, dd, *J* = 7.6, 1.6 Hz), 6.70-6.60 (2H, m), 6.39 (1H, dd, *J* = 7.6, 1.6 Hz), 5.18 (1H, d, *J* = 6.0 Hz), 4.99-4.95 (1H, m), 4.52 (1H, dd, *J* = 6.0, 3.6 Hz), 3.86 (3H, s), 2.32-2.21 (2H, m), 2.11-2.05 (1H, m), 1.85-1.79 (1H, m). ¹³C NMR (CDCl₃, 100 MHz): δ 177.1, 147.3, 137.5, 136.3, 129.0, 128.4, 128.3, 121.2, 117.6, 111.5, 109.7, 82.4, 60.7, 55.7, 27.9, 24.1. Anal Calcd for C₁₈H₁₉NO₃: C, 72.71%; H, 6.44%; N, 4.71%; Found C, 72.89%; H, 6.35%; N, 4.58%. Optical rotation: [α]_D²⁰ –18.8 (*c* = 0.500, CHCl₃) for a 92% ee sample.

(5R,6S)-(+)-5-(Aminophenylmethyl)-dihydrofuran-2-one. To a solution of PhI(OAc)₂ (390 mg, 1.21 mmol) in MeOH (5 mL) at 0 °C was added a solution of 5-[(2-methoxyphenylamino)phenylmethyl]-dihydrofuran-2-one (90 mg, 0.30 mmol) in 1:1 MeOH:CH₂Cl₂ (5 mL) by a pressure-equalizing addition funnel over 15 min. The mixture was allowed to stir at 0 °C for an additional 30 min upon which time a 1.0 M aqueous solution of HCl (5 mL) was added. The mixture was allowed to warm to 22 °C and stir for 1 h. The mixture was diluted with CH₂Cl₂ (20 mL) and the layers separated. The aqueous layer was washed with CH₂Cl₂ (3 x 15 mL) and the combined organic portions were washed with 1.0 M aqueous HCl (10 mL). The combined aqueous layers were neutralized with solid Na₂CO₃ until a pH = 7 was obtained. CH₂Cl₂ (30 mL) was added, the layers were separated, and the aqueous layer was washed with CH₂Cl₂ (4 x 25 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄ and concentrated in vacuo to deliver 41 mg (0.21 mmol, 71%) of 5-(aminophenylmethyl)dihydrofuran-2-one as orange oil. IR (neat): 3364 (b), 3308 (b), 2936 (b), 1772 (s), 1658 (m), 1463 (m), 1174 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.35-7.28 (5H, m), 4.68 (1H, td, J = 7.2, 4.0 Hz), 4.34 (1H, d, J = 4.0 Hz), 2.45-2.30 (2H, m), 2.28-2.18 (1H, m), 1.99-1.91 (1H, m), 1.56 (2H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 177.5, 140.0, 128.9, 128.2, 127.3, 84.0, 57.5, 28.8, 22.1. HRMS calcd for $C_{11}H_{13}NO_2$: 191.0946, Found: 191.0950. Optical rotation: $[\alpha]_D^{20}$ +22.0 $(c = 0.500, CHCl_3)$ for a 92% ee sample.

(5*R*,6*S*)-(–)-5-Hydroxy-6-phenyl-piperidin-2-one (15) (Scheme 2). 5-(Aminophenylmethyl)dihydrofuran-2-one (20.0 mg, 0.104 mmol) was dissolved in DBU (0.5 mL, 3.34 mmol) and heated to 120 °C for 18 h. The mixture was allowed to cool to 22 °C and the mixture purified by silica gel column chromatography (98:2 CH₂Cl₂/MeOH) to deliver 14 mg (0.073 mmol, 70%) of 16 as a white solid. mp = 173 °C. IR (neat): 3295 (b), 2917 (m), 1595 (m), 1576 (m), 1495 (m), 1457 (m), 1362 (m), 1338 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.30 (5H, m), 5.75 (1H, s), 4.33 (1H, d, *J* = 6.8 Hz), 3.84 (1H, ddd, *J* = 9.6, 6.8, 3.2 Hz), 2.64-2.57 (1H, m), 2.53-2.45 (1H, m), 2.16 (1H, s), 2.08-2.00 (1H, m), 1.93-1.84 (1H, m). ¹³C NMR (CDCl₃, 100 MHz): δ 171.7, 139.6, 129.3, 128.9, 127.3, 71.0, 64.3, 28.8, 27.1. HRMS calcd for C₁₁H₁₃NO₂: 191.0946, Found: 191.0953. Optical rotation: $[\alpha]_D^{20}$ –25.9 (*c* = 0.270, MeOH) for a 92% ee sample.

n Proof of absolute stereochemistry. For (R)-(+)-5-[(S)-(2-methoxyphenyl)amino]-phenylmethyl]furan-2(*5H*)-one (**4a**):

[(5-Oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid *tert*-butyl ester. To a solution of PhI(OAc)₂ (436 mg, 1.35 mmol) in MeOH (5 mL) under an atmosphere of N_2 at 0 °C was

added a solution of **4a** (100 mg, 0.340 mmol) in 1:1 MeOH:CH₂Cl₂ (5 mL) through a pressureequalizing addition funnel over 15 min. The mixture was allowed to stir at 0 °C for an additional 30 min upon which time a 1.0 M aqueous solution of HCl (5 mL) was added. The mixture was allowed to warm to 22 °C and stir for 1 h. The mixture was diluted with CH₂Cl₂ (20 mL) and the layers separated. The aqueous layer was washed with CH₂Cl₂ (3x15 mL) and the combined organic portions washed with 1.0 M aqueous HCl (10 mL). The combined aqueous layers were neutralized with solid Na₂CO₃ until a pH = 7 was obtained. CH₂Cl₂ (30 mL) was added, followed by Boc₂O (295 mg, 1.35 mmol) and the biphasic mixture was allowed to stir vigorously for 16 h at 22 °C. After this time, the layers were separated, and the aqueous layer was washed with CH₂Cl₂ (3 x 25 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated *in vacuo* to afford brown oil that was purified by silica gel column chromatography (80:20 hexanes:Et₂O) to deliver 25 mg (0.086 mmol, 26%) of [(5-oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid *tert*-butyl ester as white solid.

(2*S*,*SS*)-3-(*tert*-Butoxycarbonylamino)-3-phenyl-1,2-propanediol. Ozone was bubbled through a solution of [(5-oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid *tert*-butyl ester (32 mg, 0.11 mmol) in Et₂O/CH₂Cl₂ (1:1, 10 mL) at -78 °C for 5 min. The flask was purged with N₂ before the addition of LiBH₄ (7.2 mg, 0.33 mmol). The resulting solution was allowed to warm to 22 °C and stir for 4 h. The reaction was quenched by the addition of 1.0 M aqueous HCl (5 mL), the layers were separated, and the aqueous portion washed with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to afford yellow oil that was purified by silica gel column chromatography (1:1 EtOAc/hexanes) to deliver 12 mg (0.045 mmol, 40%) of 3-(*tert*-butoxycarbonylamino)-3-phenyl-1,2-propanediol as white solid. mp = 107-108 °C. IR (neat): 3370 (b), 2986 (m), 2930 (m), 1696 (s), 1495 (m), 1400 (m), 1369 (m), 1161 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.37-7.26 (5H, m), 5.13 (1H, bs), 4.65 (1H, t, *J* = 8.0 Hz), 3.84-3.76 (1H, m), 3.66 (2H, bs), 3.04 (1H, bs), 2.40 (1H, d, *J* = 7.6 Hz), 1.40 (9H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 156.4, 136.9, 128.9, 128.1, 127.4, 80.5, 74.2, 63.0, 56.8, 28.3. HRMS calcd for C₁₄H₂₂NO₄ (M+H⁺): 268.1549, Found: 268.1556. Optical rotation: [α]_D²⁰ +42.9 (*c* = 0.730, CHCl₃) for a >98% ee sample.

Comparison with authentic materials. The spectral data for (2S,3S)-3-(*tert*-butoxycarbonylamino)-3-phenyl-1,2-propanediol are fully consistent with those reported in the literature.² Moreover, as summarized in the table below, the optical rotation measurements correspond to the (2S,3S)-enantiomer being formed as the major isomer with chiral ligand **1a**.

study	product ee (%)	specific rotation ($[\alpha]_D$)	absolute configuration	NHBoc
Merino (ref 2a)	>98	+51 (c = 0.65, CHCl ₃)	2S,3S	
Matsuura (ref 2b)	>98	-42.4 (c = 1.02, CHCl ₃)	2 <i>R</i> ,3 <i>R</i>	Ph's 0
this study	>98	+42.9 (<i>c</i> = 0.73, CHCl ₃)	2S,3S	ŌН

² (a) P. Merino, E. Castillo, S. Franco, F. L. Merchán, T. Tejero, *Tetrahedron* **1998**, *54*, 12301–12322. (b) F. Matsuura, Y. Hamada, T. Shiori, *Tetrahedron* **1993**, *49*, 8211–8222.

(*R*)-(+)-5-[(*S*)-(4-Bromophenyl)-(2-methoxyphenylamino)methyl]-4-methylfuran-2(5*H*)-one (6j) (Table 2, entry 5). AVM product 6j (88% ee) was dissolved in hot Et₂O (5 mL) and hexanes added (1 mL) to yield upon cooling to 22 °C single crystals suitable for X-ray crystallography. The identity of the single crystal used for X-ray crystallography was established by chiral HPLC analysis as the major enantiomer (Chiral Technologies Chiralcel OD, 254 nm, 70/30 hexanes/*i*-PrOH eluent, 1 mL/min, $R_t = 60.71$ min).

(*R*,*R*)-[(4-Methyl-5-oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid *tert*-butyl ester. To a solution of PhI(OAc)₂ (354 mg, 1.10 mmol) in MeOH (5 mL) under an atmosphere of N₂ at 0 °C was added a solution of 8a (85 mg, 0.275 mmol) in 1:1 MeOH:CH₂Cl₂ (5 mL) through a pressure-equalizing addition funnel over 15 min. The mixture was allowed to stir at 0 °C for an additional 30 min upon which time a 1.0 M aqueous solution of HCl (5 mL) was added. The mixture was allowed to warm to 22 °C and stir for 1 h. The mixture was diluted with CH₂Cl₂ (20 mL) and the layers separated. The aqueous layer was washed with CH₂Cl₂ (3 x 15 mL) and the combined organic portions washed with 1.0 M aqueous HCl (10 mL). The combined aqueous layers were neutralized with solid Na_2CO_3 until a pH = 7 was obtained. CH₂Cl₂ (30 mL) was added, followed by Boc₂O (240 mg, 1.10 mmol) and the biphasic mixture was allowed to stir vigorously for 16 h at 22 °C. At this time, the layers were separated and the aqueous layer was washed with CH₂Cl₂ (3 x 25 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄ and concentrated in vacuo to afford brown oil that was purified by silica gel column chromatography (80:20 hexanes:Et₂O) to deliver 24 mg (0.079 mmol, 29%) of [(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid tert-butyl ester as white solid.

(2*S*,3*R*)-3-(*tert*-Butoxycarbonylamino)-3-phenyl-1,2-propanediol. Ozone was introduced through a solution of [(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)-phenylmethyl]-carbamic acid *tert*-butyl ester (24 mg, 0.080 mmol) in Et₂O/CH₂Cl₂ (1:1, 10 mL) at -78 °C for 5 min. The flask was then purged with N₂ before the addition of LiBH₄ (5.2 mg, 0.24 mmol). The mixture was allowed to warm to room temperature and allowed to stir for 4 h. The reaction was quenched by the addition of 1.0 M aqueous HCl (5 mL), the layers separated, and the aqueous portion washed with CH₂Cl₂ (3x15 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo to afford yellow oil that was purified by silica gel column chromatography (1:1 Et₂O/hexanes) to deliver 6.0 mg (0.022 mmol, 28%) of 3-(*tert*-butoxycarbonylamino)-3-phenyl-1,2-propanediol as white solid. mp = 74 °C. IR (neat): 3389 (b), 2974 (m), 2923 (m), 1690 (s), 1495 (m), 1400 (m), 1369 (m), 1161 (m) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.36-7.25 (5H, m), 5.13 (1H, d, *J* = 8.4 Hz), 4.80 (1H, bs), 3.93 (1H, bs), 3.58-3.50 (2H, m), 2.70-2.60 (2H, m), 1.41 (9H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 157.0, 139.6, 129.1, 128.0, 126.9, 80.6, 75.4, 63.9, 56.1, 28.5. HRMS calcd for C₁₄H₂₂NO₄ (M+H⁺): 268.1549, Found: 268.1557. Optical rotation: [α]_D²⁰ –19.99 (*c* = 0.4000, CHCl₃) for an 80% ee sample.

The spectral data for (2S,3R)-3-(*tert*-butoxycarbonylamino)-3-phenyl-1,2-propanediol are consistent with those reported in the literature.^{2a} Moreover, as summarized in the table below, the optical rotation measurements correspond to the (2S,3R) enantiomer being formed as the major enantiomer with chiral ligand **1d**.

study	product ee (%)	specific rotation ($[\alpha]_D$)	absolute configuration	NHBoc
Merino (ref 2a)	>98	-23.4 (<i>c</i> = 0.82, CHCl ₃)	2S,3R	Ph R S
this study	80	-19.99 (<i>c</i> = 0.40, CHCl ₃)	2S,3R	OH N

X-ray crystal structure of Mannich product 4a.

Table 1. Crystal data and structure ref	inement for 4a		
Identification code	ec01t		
Empirical formula	C18 H17 N O3		
Formula weight	295.33		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)		
Unit cell dimensions	a = 6.6940(9) Å	$\alpha = 90^{\circ}$.	
	b = 19.100(3) Å	$\beta = 102.025(2)^{\circ}$	
	c = 12.0820(16) Å	$\gamma = 90^{\circ}$	
Volume	1510.9(4) Å ³		
Z	4		
Density (calculated)	1.298 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹		
F(000)	624		
Crystal size	0.20 x 0.10 x 0.10 mm	n ³	
Theta range for data collection	1.72 to 28.35°		
Index ranges	-8<=h<=8, -13<=k<=	=25, -15<=l<=16	
Reflections collected	11365		
Independent reflections	5206 [R(int) = 0.0317	7]	
Completeness to theta = 28.35°	99.4 %		
Absorption correction	None		
Refinement method	Full-matrix least-squa	ares on F ²	
Data / restraints / parameters	5206 / 1 / 407		
Goodness-of-fit on F ²	0.861		
Final R indices [I>2sigma(I)]	R1 = 0.0367, wR2 = 0.037, wR2 = 0.03767, wR2 = 0.037677, wR2 = 0.0376777, wR2 = 0.03767777, wR2 = 0.03767777, wR2 = 0.03767777, wR2 = 0.03767777777777777777777777777777777777	0.0764	
R indices (all data)	R1 = 0.0466, wR2 = 0	R1 = 0.0466, $wR2 = 0.0804$	
Absolute structure parameter	-0.7(8)		
Largest diff. peak and hole	0.214 and -0.140 e.Å	-3	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for EC01t. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
O(1)	6162(2)	539(1)	1393(1)	38(1)	
O(4)	11500(2)	2940(1)	6953(1)	41(1)	
C(23)	7923(3)	3230(1)	6142(1)	32(1)	
N(1)	2802(2)	1530(1)	676(2)	45(1)	
O(3)	3618(2)	2870(1)	855(1)	49(1)	
N(2)	8246(2)	3974(1)	6285(1)	39(1)	
O(2)	8780(2)	-151(1)	1218(1)	55(1)	
C(12)	1200(3)	1990(1)	333(1)	32(1)	
C(24)	7970(3)	2959(1)	4963(1)	33(1)	
C(4)	4109(2)	441(1)	1563(1)	35(1)	
O(5)	14108(2)	2252(1)	6760(2)	69(1)	
C(5)	2544(2)	778(1)	606(1)	32(1)	
C(1)	7084(3)	-93(1)	1387(1)	36(1)	
C(22)	9415(2)	2842(1)	7069(1)	35(1)	
C(30)	6802(3)	4451(1)	5741(1)	35(1)	
C(25)	6388(3)	2549(1)	4391(2)	45(1)	
O(6)	9400(2)	5271(1)	6152(1)	58(1)	
C(3)	3922(3)	-326(1)	1675(1)	36(1)	
C(6)	2601(2)	466(1)	-544(1)	30(1)	
C(17)	1599(3)	2713(1)	456(1)	35(1)	
C(11)	1013(3)	45(1)	-1077(2)	42(1)	
C(29)	9551(3)	3124(1)	4440(2)	45(1)	
C(13)	-801(3)	1780(1)	-91(1)	38(1)	
C(21)	9164(3)	2068(1)	7056(1)	37(1)	
C(7)	4202(3)	586(1)	-1079(2)	41(1)	
C(14)	-2356(3)	2272(1)	-353(2)	43(1)	
C(20)	10867(3)	1760(1)	6944(2)	40(1)	
C(35)	7382(3)	5153(1)	5703(1)	39(1)	
C(16)	53(3)	3193(1)	190(2)	41(1)	
C(15)	-1940(3)	2970(1)	-209(2)	45(1)	
C(2)	5658(3)	-631(1)	1598(1)	39(1)	
C(19)	12368(3)	2302(1)	6872(2)	44(1)	
C(34)	5994(3)	5658(1)	5247(2)	49(1)	

C(10)	1041(4)	-258(1)	-2112(2)	56(1)	
C(18)	4108(3)	3566(1)	1239(2)	51(1)	
C(8)	4232(4)	279(1)	-2113(2)	55(1)	
C(32)	3389(3)	4793(1)	4845(2)	60(1)	
C(26)	6385(4)	2309(1)	3314(2)	67(1)	
C(33)	3982(4)	5475(1)	4820(2)	61(1)	
C(28)	9549(4)	2877(1)	3360(2)	62(1)	
C(27)	7962(5)	2475(1)	2805(2)	70(1)	
C(9)	2657(4)	-141(1)	-2626(2)	59(1)	
C(31)	4787(3)	4279(1)	5294(2)	48(1)	
C(36)	10055(4)	5976(1)	6323(2)	65(1)	

O(1)-C(1)	1.356(2)	
O(1)-C(4)	1.4434(19)	
O(4)-C(19)	1.363(2)	
O(4)-C(22)	1.443(2)	
C(23)-N(2)	1.442(2)	
C(23)-C(24)	1.523(2)	
C(23)-C(22)	1.528(2)	
C(23)-H(23)	1.0000	
N(1)-C(12)	1.381(2)	
N(1)-C(5)	1.447(2)	
N(1)-H(2)	0.87(2)	
O(3)-C(17)	1.370(2)	
O(3)-C(18)	1.423(2)	
N(2)-C(30)	1.390(2)	
N(2)-H(1)	0.888(19)	
O(2)-C(1)	1.200(2)	
C(12)-C(13)	1.390(2)	
C(12)-C(17)	1.409(2)	
C(24)-C(25)	1.381(3)	
C(24)-C(29)	1.377(2)	
C(4)-C(3)	1.479(3)	
C(4)-C(5)	1.531(2)	
C(4)-H(4)	1.0000	
O(5)-C(19)	1.204(2)	
C(5)-C(6)	1.519(2)	
C(5)-H(5)	1.0000	
C(1)-C(2)	1.461(3)	
C(22)-C(21)	1.486(3)	
C(22)-H(22)	1.0000	
C(30)-C(31)	1.384(3)	
C(30)-C(35)	1.401(3)	
C(25)-C(26)	1.380(3)	
C(25)-H(25)	0.9500	
O(6)-C(35)	1.365(2)	

Table 3. Bond lengths [Å] and angles $[\circ]$ for EC01t.

O(6)-C(36)	1.418(3)
C(3)-C(2)	1.321(3)
C(3)-H(3)	0.9500
C(6)-C(11)	1.381(2)
C(6)-C(7)	1.381(2)
C(17)-C(16)	1.369(3)
C(11)-C(10)	1.381(3)
C(11)-H(11)	0.9500
C(29)-C(28)	1.387(3)
C(29)-H(29)	0.9500
C(13)-C(14)	1.389(3)
C(13)-H(13)	0.9500
C(21)-C(20)	1.315(2)
C(21)-H(21)	0.9500
C(7)-C(8)	1.384(3)
C(7)-H(7)	0.9500
C(14)-C(15)	1.366(3)
C(14)-H(14)	0.9500
C(20)-C(19)	1.458(3)
C(20)-H(20)	0.9500
C(35)-C(34)	1.371(3)
C(16)-C(15)	1.388(3)
C(16)-H(16)	0.9500
C(15)-H(15)	0.9500
C(2)-H(37)	0.9500
C(34)-C(33)	1.383(3)
C(34)-H(34)	0.9500
C(10)-C(9)	1.374(3)
C(10)-H(10)	0.9500
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(8)-C(9)	1.366(3)
C(8)-H(8)	0.9500
C(32)-C(33)	1.364(3)
C(32)-C(31)	1.386(3)

C(32)-H(32)	0.9500
C(26)-C(27)	1.365(4)
C(26)-H(26)	0.9500
C(33)-H(33)	0.9500
C(28)-C(27)	1.368(4)
C(28)-H(28)	0.9500
C(27)-H(27)	0.9500
C(9)-H(9)	0.9500
C(31)-H(31)	0.9500
C(36)-H(36A)	0.9800
C(36)-H(36B)	0.9800
C(36)-H(36C)	0.9800
C(1)-O(1)-C(4)	109.47(14)
C(19)-O(4)-C(22)	109.00(14)
N(2)-C(23)-C(24)	114.50(14)
N(2)-C(23)-C(22)	109.41(14)
C(24)-C(23)-C(22)	112.51(14)
N(2)-C(23)-H(23)	106.6
C(24)-C(23)-H(23)	106.6
C(22)-C(23)-H(23)	106.6
C(12)-N(1)-C(5)	122.53(15)
C(12)-N(1)-H(2)	116.5(15)
C(5)-N(1)-H(2)	117.5(15)
C(17)-O(3)-C(18)	117.56(15)
C(30)-N(2)-C(23)	121.14(15)
C(30)-N(2)-H(1)	112.4(13)
C(23)-N(2)-H(1)	117.1(14)
N(1)-C(12)-C(13)	123.76(17)
N(1)-C(12)-C(17)	118.24(16)
C(13)-C(12)-C(17)	117.96(16)
C(25)-C(24)-C(29)	118.89(17)
C(25)-C(24)-C(23)	119.83(16)
C(29)-C(24)-C(23)	121.27(16)
O(1)-C(4)-C(3)	104.04(14)
O(1)-C(4)-C(5)	111.09(14)

C(3)-C(4)-C(5)	115.36(14)
O(1)-C(4)-H(4)	108.7
C(3)-C(4)-H(4)	108.7
C(5)-C(4)-H(4)	108.7
N(1)-C(5)-C(6)	114.72(14)
N(1)-C(5)-C(4)	108.62(14)
C(6)-C(5)-C(4)	112.44(14)
N(1)-C(5)-H(5)	106.9
C(6)-C(5)-H(5)	106.9
C(4)-C(5)-H(5)	106.9
O(2)-C(1)-O(1)	122.06(18)
O(2)-C(1)-C(2)	129.82(19)
O(1)-C(1)-C(2)	108.12(15)
O(4)-C(22)-C(21)	103.77(15)
O(4)-C(22)-C(23)	111.30(14)
C(21)-C(22)-C(23)	114.82(14)
O(4)-C(22)-H(22)	108.9
C(21)-C(22)-H(22)	108.9
C(23)-C(22)-H(22)	108.9
C(31)-C(30)-N(2)	123.72(18)
C(31)-C(30)-C(35)	117.92(18)
N(2)-C(30)-C(35)	118.24(17)
C(24)-C(25)-C(26)	120.7(2)
C(24)-C(25)-H(25)	119.7
C(26)-C(25)-H(25)	119.7
C(35)-O(6)-C(36)	117.67(17)
C(2)-C(3)-C(4)	109.77(16)
C(2)-C(3)-H(3)	125.1
C(4)-C(3)-H(3)	125.1
C(11)-C(6)-C(7)	118.38(17)
C(11)-C(6)-C(5)	119.47(16)
C(7)-C(6)-C(5)	122.16(15)
C(16)-C(17)-O(3)	125.31(17)
C(16)-C(17)-C(12)	120.91(17)
O(3)-C(17)-C(12)	113.78(15)
C(6)-C(11)-C(10)	120.8(2)

C(6)-C(11)-H(11)	119.6
C(10)-C(11)-H(11)	119.6
C(24)-C(29)-C(28)	120.2(2)
C(24)-C(29)-H(29)	119.9
C(28)-C(29)-H(29)	119.9
C(14)-C(13)-C(12)	120.54(18)
C(14)-C(13)-H(13)	119.7
C(12)-C(13)-H(13)	119.7
C(20)-C(21)-C(22)	110.37(17)
C(20)-C(21)-H(21)	124.8
C(22)-C(21)-H(21)	124.8
C(6)-C(7)-C(8)	120.73(19)
C(6)-C(7)-H(7)	119.6
C(8)-C(7)-H(7)	119.6
C(15)-C(14)-C(13)	120.50(18)
C(15)-C(14)-H(14)	119.7
C(13)-C(14)-H(14)	119.8
C(21)-C(20)-C(19)	108.10(18)
C(21)-C(20)-H(20)	125.9
C(19)-C(20)-H(20)	125.9
O(6)-C(35)-C(34)	125.12(19)
O(6)-C(35)-C(30)	113.75(17)
C(34)-C(35)-C(30)	121.13(19)
C(17)-C(16)-C(15)	120.09(19)
C(17)-C(16)-H(16)	120.0
C(15)-C(16)-H(16)	120.0
C(14)-C(15)-C(16)	119.97(19)
C(14)-C(15)-H(15)	120.0
C(16)-C(15)-H(15)	120.0
C(3)-C(2)-C(1)	108.54(18)
C(3)-C(2)-H(37)	125.7
C(1)-C(2)-H(37)	125.7
O(5)-C(19)-O(4)	121.04(19)
O(5)-C(19)-C(20)	130.2(2)
O(4)-C(19)-C(20)	108.75(15)
C(35)-C(34)-C(33)	119.9(2)

C(35)-C(34)-H(34)	120.1
C(33)-C(34)-H(34)	120.1
C(11)-C(10)-C(9)	120.1(2)
C(11)-C(10)-H(10)	119.9
C(9)-C(10)-H(10)	119.9
O(3)-C(18)-H(18A)	109.5
O(3)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(3)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(9)-C(8)-C(7)	120.2(2)
C(9)-C(8)-H(8)	119.9
C(7)-C(8)-H(8)	119.9
C(33)-C(32)-C(31)	120.6(2)
C(33)-C(32)-H(32)	119.7
C(31)-C(32)-H(32)	119.7
C(27)-C(26)-C(25)	119.9(2)
C(27)-C(26)-H(26)	120.0
C(25)-C(26)-H(26)	120.0
C(32)-C(33)-C(34)	119.9(2)
C(32)-C(33)-H(33)	120.1
C(34)-C(33)-H(33)	120.1
C(27)-C(28)-C(29)	120.0(2)
C(27)-C(28)-H(28)	120.0
C(29)-C(28)-H(28)	120.0
C(26)-C(27)-C(28)	120.3(2)
C(26)-C(27)-H(27)	119.9
C(28)-C(27)-H(27)	119.9
C(8)-C(9)-C(10)	119.78(19)
C(8)-C(9)-H(9)	120.1
C(10)-C(9)-H(9)	120.1
C(32)-C(31)-C(30)	120.6(2)
C(32)-C(31)-H(31)	119.7
C(30)-C(31)-H(31)	119.7
O(6)-C(36)-H(36A)	109.5

O(6)-C(36)-H(36B)109.5H(36A)-C(36)-H(36B)109.5O(6)-C(36)-H(36C)109.5H(36A)-C(36)-H(36C)109.5H(36B)-C(36)-H(36C)109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for EC01t. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U^{11}	U ²²	U ³³	U ²³	U^{13}	U^{12}	
O(1)	33(1)	36(1)	44(1)	-2(1)	5(1)	-7(1)	
O(4)	34(1)	40(1)	47(1)	2(1)	3(1)	-8(1)	
C(23)	33(1)	31(1)	34(1)	-4(1)	8(1)	-1(1)	
N(1)	30(1)	26(1)	78(1)	-14(1)	8(1)	-2(1)	
O(3)	41(1)	29(1)	73(1)	-12(1)	3(1)	-4(1)	
N(2)	35(1)	32(1)	47(1)	-8(1)	5(1)	0(1)	
O(2)	32(1)	65(1)	69(1)	0(1)	13(1)	-1(1)	
C(12)	33(1)	30(1)	35(1)	-5(1)	10(1)	3(1)	
C(24)	42(1)	26(1)	30(1)	3(1)	6(1)	4(1)	
C(4)	33(1)	39(1)	35(1)	-9(1)	10(1)	-1(1)	
O(5)	36(1)	75(1)	99(1)	20(1)	21(1)	6(1)	
C(5)	29(1)	23(1)	45(1)	-8(1)	10(1)	-3(1)	
C(1)	32(1)	41(1)	34(1)	-1(1)	3(1)	-2(1)	
C(22)	36(1)	41(1)	30(1)	-4(1)	10(1)	-1(1)	
C(30)	41(1)	35(1)	31(1)	-5(1)	11(1)	5(1)	
C(25)	57(1)	35(1)	40(1)	-4(1)	-2(1)	1(1)	
O(6)	58(1)	35(1)	76(1)	1(1)	1(1)	-6(1)	
C(3)	36(1)	42(1)	30(1)	6(1)	7(1)	-7(1)	
C(6)	36(1)	20(1)	35(1)	2(1)	6(1)	4(1)	
C(17)	40(1)	32(1)	34(1)	-3(1)	11(1)	0(1)	
C(11)	52(1)	30(1)	42(1)	1(1)	7(1)	-3(1)	
C(29)	58(1)	40(1)	41(1)	8(1)	18(1)	3(1)	
C(13)	34(1)	37(1)	43(1)	-6(1)	10(1)	-1(1)	

C(21)	35(1)	41(1)	35(1)	9(1)	8(1)	-4(1)
C(7)	42(1)	39(1)	43(1)	9(1)	10(1)	6(1)
C(14)	33(1)	53(1)	43(1)	6(1)	9(1)	4(1)
C(20)	39(1)	36(1)	45(1)	7(1)	6(1)	2(1)
C(35)	50(1)	38(1)	32(1)	-2(1)	12(1)	4(1)
C(16)	53(1)	30(1)	43(1)	3(1)	14(1)	5(1)
C(15)	45(1)	45(1)	46(1)	13(1)	14(1)	14(1)
C(2)	41(1)	35(1)	40(1)	6(1)	2(1)	-1(1)
C(19)	36(1)	46(1)	48(1)	10(1)	7(1)	2(1)
C(34)	69(2)	37(1)	43(1)	7(1)	18(1)	10(1)
C(10)	86(2)	38(1)	40(1)	-8(1)	1(1)	-6(1)
C(18)	60(1)	28(1)	64(1)	-5(1)	11(1)	-8(1)
C(8)	66(1)	60(2)	43(1)	15(1)	22(1)	20(1)
C(32)	47(1)	65(2)	63(1)	8(1)	2(1)	13(1)
C(26)	102(2)	47(1)	42(1)	-10(1)	-11(1)	7(2)
C(33)	63(2)	60(2)	58(1)	16(1)	13(1)	26(1)
C(28)	96(2)	53(2)	48(1)	18(1)	37(1)	26(1)
C(27)	128(2)	49(2)	31(1)	2(1)	11(1)	30(2)
C(9)	98(2)	47(1)	30(1)	4(1)	12(1)	22(1)
C(31)	43(1)	47(1)	54(1)	0(1)	8(1)	3(1)
C(36)	79(2)	41(1)	68(2)	8(1)	3(1)	-13(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for EC01t.

	Х	у	Z	U(eq)	
H(23)	6522	3133	6272	39	
H(4)	3995	665	2295	42	
H(5)	1163	674	758	38	
H(22)	9267	3024	7823	42	
H(25)	5291	2430	4744	54	
H(3)	2731	-564	1785	43	
H(11)	-111	-38	-727	50	
H(29)	10646	3408	4820	54	

H(13)	-1107	1296	-203	45
H(21)	7947	1831	7119	44
H(7)	5294	882	-733	49
H(14)	-3721	2121	-634	51
H(20)	11082	1269	6915	48
H(16)	346	3679	278	50
H(15)	-3014	3303	-381	54
H(37)	5934	-1119	1669	47
H(34)	6415	6132	5224	59
H(10)	-60	-548	-2468	68
H(18A)	3699	3893	607	76
H(18B)	5583	3603	1534	76
H(18C)	3380	3680	1840	76
H(8)	5352	360	-2467	65
H(32)	2005	4669	4552	72
H(26)	5287	2029	2926	81
H(33)	3014	5824	4510	73
H(28)	10651	2987	3006	75
H(27)	7957	2311	2062	84
H(9)	2679	-350	-3336	70
H(31)	4358	3805	5294	57
H(36A)	9820	6220	5593	97
H(36B)	11514	5987	6670	97
H(36C)	9282	6208	6823	97
H(1)	9520(30)	4129(11)	6349(15)	45(6)
H(2)	4030(30)	1696(12)	709(17)	60(7)

Table 6. Torsion angles [°] for EC01t

C(24)-C(23)-N(2)-C(30)	68.4(2)
C(22)-C(23)-N(2)-C(30)	-164.24(15)
C(5)-N(1)-C(12)-C(13)	1.2(3)
C(5)-N(1)-C(12)-C(17)	178.78(16)
N(2)-C(23)-C(24)-C(25)	-128.63(18)
C(22)-C(23)-C(24)-C(25)	105.63(18)

N(2)-C(23)-C(24)-C(29) C(22)-C(23)-C(24)-C(29)C(1)-O(1)-C(4)-C(3)C(1)-O(1)-C(4)-C(5)C(12)-N(1)-C(5)-C(6)C(12)-N(1)-C(5)-C(4)O(1)-C(4)-C(5)-N(1)C(3)-C(4)-C(5)-N(1)O(1)-C(4)-C(5)-C(6)C(3)-C(4)-C(5)-C(6)C(4)-O(1)-C(1)-O(2) C(4)-O(1)-C(1)-C(2) C(19)-O(4)-C(22)-C(21)C(19)-O(4)-C(22)-C(23) N(2)-C(23)-C(22)-O(4) C(24)-C(23)-C(22)-O(4)N(2)-C(23)-C(22)-C(21) C(24)-C(23)-C(22)-C(21)C(23)-N(2)-C(30)-C(31)C(23)-N(2)-C(30)-C(35)C(29)-C(24)-C(25)-C(26)C(23)-C(24)-C(25)-C(26)O(1)-C(4)-C(3)-C(2)C(5)-C(4)-C(3)-C(2)N(1)-C(5)-C(6)-C(11)C(4)-C(5)-C(6)-C(11)N(1)-C(5)-C(6)-C(7)C(4)-C(5)-C(6)-C(7)C(18)-O(3)-C(17)-C(16) C(18)-O(3)-C(17)-C(12)N(1)-C(12)-C(17)-C(16) C(13)-C(12)-C(17)-C(16)N(1)-C(12)-C(17)-O(3) C(13)-C(12)-C(17)-O(3)C(7)-C(6)-C(11)-C(10)C(5)-C(6)-C(11)-C(10)

50.3(2)
-75.4(2)
0.78(16)
-123.94(15)
83.6(2)
-149.60(16)
-67 37(18)
174 56(15)
60 69(18)
57 A(2)
-37.4(2)
2 09(17)
-2.08(17)
0.46(17)
-123.57(15)
-65.70(18)
62.76(19)
176.79(15)
-54.8(2)
18.2(3)
-165.87(16)
-0.2(3)
178.80(18)
0.95(18)
122.90(16)
-126.57(17)
108.66(18)
53.8(2)
-70.9(2)
13.4(3)
-166.60(16)
-176.30(16)
1.4(3)
3.7(2)
-178.59(14)
0.9(3)
-178.71(17)

C(25)-C(24)-C(29)-C(28) C(23)-C(24)-C(29)-C(28)N(1)-C(12)-C(13)-C(14)C(17)-C(12)-C(13)-C(14)O(4)-C(22)-C(21)-C(20)C(23)-C(22)-C(21)-C(20)C(11)-C(6)-C(7)-C(8)C(5)-C(6)-C(7)-C(8)C(12)-C(13)-C(14)-C(15)C(22)-C(21)-C(20)-C(19)C(36)-O(6)-C(35)-C(34) C(36)-O(6)-C(35)-C(30)C(31)-C(30)-C(35)-O(6) N(2)-C(30)-C(35)-O(6) C(31)-C(30)-C(35)-C(34)N(2)-C(30)-C(35)-C(34) O(3)-C(17)-C(16)-C(15)C(12)-C(17)-C(16)-C(15)C(13)-C(14)-C(15)-C(16) C(17)-C(16)-C(15)-C(14)C(4)-C(3)-C(2)-C(1)O(2)-C(1)-C(2)-C(3)O(1)-C(1)-C(2)-C(3)C(22)-O(4)-C(19)-O(5)C(22)-O(4)-C(19)-C(20)C(21)-C(20)-C(19)-O(5)C(21)-C(20)-C(19)-O(4)O(6)-C(35)-C(34)-C(33) C(30)-C(35)-C(34)-C(33)C(6)-C(11)-C(10)-C(9)C(6)-C(7)-C(8)-C(9)C(24)-C(25)-C(26)-C(27)C(31)-C(32)-C(33)-C(34)C(35)-C(34)-C(33)-C(32)C(24)-C(29)-C(28)-C(27)C(25)-C(26)-C(27)-C(28)

-0.4(3)
-179.33(18)
175.86(17)
-1.8(2)
-0.20(19)
121 50(16)
121.30(10)
-1.5(5)
1/8.32(1/)
0.7(3)
-0.1(2)
10.3(3)
-169.75(18)
-179.35(16)
4.5(2)
0.6(3)
-175.57(16)
179.99(16)
-0.1(3)
0.7(3)
-1 1(3)
2.21(10)
-2.21(17)
-170.48(18)
2.72(19)
1/9.38(1/)
-0.54(18)
-179.5(2)
0.4(2)
-179.72(18)
0.3(3)
-0.1(3)
0.9(3)
0.3(3)
-0.1(4)
-0.6(3)
0.8(3)
0.3(3)
0.2(7)

C(29)-C(28)-C(27)-C(26)	-0.7(3)
C(7)-C(8)-C(9)-C(10)	-0.1(3)
C(11)-C(10)-C(9)-C(8)	-0.3(3)
C(33)-C(32)-C(31)-C(30)	1.0(3)
N(2)-C(30)-C(31)-C(32)	174.66(18)
C(35)-C(30)-C(31)-C(32)	-1.3(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for EC01t [Å and $^{\circ}$]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

X-ray crystal structure of Mannich product 6j.

Table 7. Crystal data and structure refinement for 6j			
Identification code	ec106t		
Empirical formula	C19 H18 Br N O3		
Formula weight	388.25		
Temperature	193(2) K		
Wavelength	0.71073 Å		

Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 7.1751(16) Å	$\alpha = 90^{\circ}$	
	b = 7.4936(16) Å	$\beta = 92.840(4)^{\circ}$	
	c = 16.863(4) Å	$\gamma = 90^{\circ}$	
Volume	905.6(3) Å ³		
Z	2		
Density (calculated)	1.424 mg/m^3		
Absorption coefficient	2.285 mm ⁻¹		
F(000)	396		
Crystal size	0.20 x 0.10 x 0.10 mm ³		
Theta range for data collection	1.21 to 27.90°		
Index ranges	-9<=h<=5, -9<=k<=9, -22<=l<=21		
Reflections collected	6309		
Independent reflections	4143 [R(int) = 0.0224]		
Completeness to theta = 27.90°	99.6 %		
Absorption correction	Empirical		
Max. and min. transmission	0.8037 and 0.6579		
Refinement method	Full-matrix least-square	s on F ²	
Data / restraints / parameters	4143 / 1 / 219		
Goodness-of-fit on F ²	0.967		
Final R indices [I>2sigma(I)]	R1 = 0.0518, $wR2 = 0.1513$		
R indices (all data)	R1 = 0.0637, $wR2 = 0.1621$		
Absolute structure parameter	0.012(12)		
Largest diff. peak and hole	1.271 and -0.495 e.Å ⁻³		

	Х	У	Z	U(eq)	
Br(1)	3446(1)	9493(1)	-300(1)	103(1)	
O(1)	7131(3)	4513(5)	2457(2)	63(1)	
O(2)	4542(3)	4779(3)	3141(1)	39(1)	
O(3)	3036(3)	9705(4)	4486(1)	46(1)	
N(1)	1696(4)	7112(4)	3582(2)	35(1)	
C(1)	5525(5)	4107(5)	2536(2)	43(1)	
C(2)	4282(5)	2948(4)	2061(2)	41(1)	
C(3)	2579(4)	3024(4)	2325(2)	34(1)	
C(4)	2593(4)	4286(4)	3017(2)	33(1)	
C(5)	853(5)	2088(4)	2025(2)	42(1)	
C(6)	1440(4)	6000(4)	2874(2)	30(1)	
C(7)	521(4)	8527(4)	3703(2)	33(1)	
C(8)	-1299(5)	8643(5)	3391(2)	42(1)	
C(9)	-2420(6)	10078(6)	3571(3)	55(1)	
C(10)	-1732(6)	11411(6)	4080(3)	58(1)	
C(11)	63(5)	11333(5)	4398(2)	45(1)	
C(12)	1196(5)	9918(4)	4211(2)	38(1)	
C(13)	3774(7)	11005(6)	5028(3)	57(1)	
C(14)	1916(4)	6918(4)	2110(2)	29(1)	
C(15)	3612(5)	7773(4)	2032(2)	36(1)	
C(16)	4077(5)	8506(5)	1311(2)	46(1)	
C(17)	2810(7)	8437(6)	676(2)	54(1)	
C(18)	1104(7)	7640(6)	739(2)	57(1)	
C(19)	691(5)	6863(5)	1451(2)	42(1)	

Table 8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for ec106t. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Br(1)-C(17)	1.901(4)	
O(1)-C(1)	1.206(5)	
O(2)-C(1)	1.366(5)	
O(2)-C(4)	1.451(4)	
O(3)-C(12)	1.387(4)	
O(3)-C(13)	1.421(4)	
N(1)-C(7)	1.376(4)	
N(1)-C(6)	1.461(4)	
N(1)-H(1)	0.8800	
C(1)-C(2)	1.457(5)	
C(2)-C(3)	1.323(5)	
C(2)-H(2)	0.9500	
C(3)-C(5)	1.490(4)	
C(3)-C(4)	1.502(4)	
C(4)-C(6)	1.541(4)	
C(4)-H(4)	1.0000	
C(5)-H(5A)	0.9800	
C(5)-H(5B)	0.9800	
C(5)-H(5C)	0.9800	
C(6)-C(14)	1.513(4)	
C(6)-H(6)	1.0000	
C(7)-C(8)	1.386(5)	
C(7)-C(12)	1.419(5)	
C(8)-C(9)	1.386(5)	
C(8)-H(8)	0.9500	
C(9)-C(10)	1.391(6)	
C(9)-H(9)	0.9500	
C(10)-C(11)	1.372(6)	
C(10)-H(10)	0.9500	
C(11)-C(12)	1.382(5)	
C(11)-H(11)	0.9500	
C(13)-H(13A)	0.9800	
C(13)-H(13B)	0.9800	
C(13)-H(13C)	0.9800	

Table 9. Bond lengths [Å] and angles $[\circ]$ for ec106t

C(14)-C(19)	1.384(4)
C(14)-C(15)	1.387(5)
C(15)-C(16)	1.389(5)
C(15)-H(15)	0.9500
C(16)-C(17)	1.371(6)
C(16)-H(16)	0.9500
C(17)-C(18)	1.371(7)
C(18)-C(19)	1.380(6)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(1)-O(2)-C(4)	109.2(2)
C(12)-O(3)-C(13)	117.0(3)
C(7)-N(1)-C(6)	120.5(3)
C(7)-N(1)-H(1)	119.8
C(6)-N(1)-H(1)	119.8
O(1)-C(1)-O(2)	121.4(3)
O(1)-C(1)-C(2)	130.7(4)
O(2)-C(1)-C(2)	107.8(3)
C(3)-C(2)-C(1)	109.8(3)
C(3)-C(2)-H(2)	125.1
C(1)-C(2)-H(2)	125.1
C(2)-C(3)-C(5)	129.1(3)
C(2)-C(3)-C(4)	108.6(3)
C(5)-C(3)-C(4)	122.3(3)
O(2)-C(4)-C(3)	104.0(2)
O(2)-C(4)-C(6)	108.4(2)
C(3)-C(4)-C(6)	114.8(2)
O(2)-C(4)-H(4)	109.8
C(3)-C(4)-H(4)	109.8
C(6)-C(4)-H(4)	109.8
C(3)-C(5)-H(5A)	109.5
C(3)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(3)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5

H(5B)-C(5)-H(5C)	109.5
N(1)-C(6)-C(14)	114.3(3)
N(1)-C(6)-C(4)	107.6(2)
C(14)-C(6)-C(4)	111.7(2)
N(1)-C(6)-H(6)	107.6
C(14)-C(6)-H(6)	107.6
C(4)-C(6)-H(6)	107.6
N(1)-C(7)-C(8)	124.4(3)
N(1)-C(7)-C(12)	117.5(3)
C(8)-C(7)-C(12)	118.0(3)
C(9)-C(8)-C(7)	120.7(3)
C(9)-C(8)-H(8)	119.6
C(7)-C(8)-H(8)	119.6
C(8)-C(9)-C(10)	120.0(4)
C(8)-C(9)-H(9)	120.0
C(10)-C(9)-H(9)	120.0
C(11)-C(10)-C(9)	120.5(4)
C(11)-C(10)-H(10)	119.7
C(9)-C(10)-H(10)	119.7
C(10)-C(11)-C(12)	119.7(3)
C(10)-C(11)-H(11)	120.2
C(12)-C(11)-H(11)	120.2
C(11)-C(12)-O(3)	125.0(3)
C(11)-C(12)-C(7)	121.0(3)
O(3)-C(12)-C(7)	114.1(3)
O(3)-C(13)-H(13A)	109.5
O(3)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
O(3)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(19)-C(14)-C(15)	117.5(3)
C(19)-C(14)-C(6)	120.6(3)
C(15)-C(14)-C(6)	121.8(3)
C(14)-C(15)-C(16)	121.1(3)
C(14)-C(15)-H(15)	119.5

C(16)-C(15)-H(15)	119.5
C(17)-C(16)-C(15)	119.3(3)
C(17)-C(16)-H(16)	120.3
C(15)-C(16)-H(16)	120.3
C(18)-C(17)-C(16)	121.1(4)
C(18)-C(17)-Br(1)	120.1(3)
C(16)-C(17)-Br(1)	118.8(3)
C(17)-C(18)-C(19)	118.8(4)
C(17)-C(18)-H(18)	120.6
C(19)-C(18)-H(18)	120.6
C(18)-C(19)-C(14)	122.1(4)
C(18)-C(19)-H(19)	118.9
C(14)-C(19)-H(19)	118.9

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Br(1)	139(1)	116(1)	60(1)	47(1)	42(1)	42(1)	
O(1)	32(1)	59(2)	99(2)	-22(2)	4(1)	-1(1)	
O(2)	36(1)	37(1)	42(1)	-5(1)	-10(1)	4(1)	
0(3)	53(1)	49(1)	36(1)	-14(1)	-4(1)	-6(1)	
N(1)	40(1)	35(1)	28(1)	-9(1)	0(1)	3(1)	
C(1)	34(2)	35(2)	60(2)	-7(2)	-3(2)	6(1)	
C(2)	36(2)	30(1)	58(2)	-12(2)	10(2)	4(1)	
C(3)	36(2)	25(1)	40(2)	-3(1)	1(1)	-1(1)	
C(4)	39(2)	25(1)	33(1)	1(1)	2(1)	-1(1)	
C(5)	36(2)	28(1)	63(2)	-11(2)	1(2)	-5(1)	
C(6)	32(1)	31(1)	28(1)	-5(1)	5(1)	-2(1)	
C(7)	38(2)	33(1)	28(1)	-1(1)	10(1)	-3(1)	
C(8)	40(2)	40(2)	48(2)	-11(2)	10(2)	-5(1)	
C(9)	41(2)	52(2)	71(3)	-11(2)	8(2)	5(2)	
C(10)	64(3)	40(2)	73(3)	-16(2)	25(2)	7(2)	
C(11)	63(2)	33(2)	40(2)	-9(1)	15(2)	-4(2)	
C(12)	49(2)	35(2)	30(1)	-2(1)	14(1)	-4(1)	
C(13)	75(3)	50(2)	45(2)	-13(2)	-17(2)	-7(2)	
C(14)	32(1)	25(1)	29(1)	-4(1)	2(1)	5(1)	
C(15)	39(2)	31(1)	38(2)	2(1)	2(1)	1(1)	
C(16)	53(2)	33(2)	53(2)	6(2)	17(2)	3(2)	
C(17)	80(3)	47(2)	35(2)	10(2)	16(2)	19(2)	
C(18)	73(3)	63(2)	33(2)	1(2)	-6(2)	13(2)	
C(19)	48(2)	43(2)	34(2)	-11(1)	-4(1)	6(2)	

Table 10. Anisotropic displacement parameters (Å²x 10³) for ec106t. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	х	У	Z	U(eq)	
H(1)	2608	6875	3935	41	
H(2)	4641	2242	1626	49	
H(4)	2162	3651	3496	39	
H(5A)	1148	1305	1583	64	
H(5B)	-80	2970	1841	64	
H(5C)	357	1374	2453	64	
H(6)	95	5650	2822	36	
H(8)	-1783	7728	3049	51	
H(9)	-3658	10152	3347	66	
H(10)	-2512	12383	4208	70	
H(11)	525	12246	4745	54	
H(13A)	3047	11008	5505	86	
H(13B)	3706	12186	4778	86	
H(13C)	5079	10719	5175	86	
H(15)	4469	7858	2478	43	
H(16)	5260	9050	1259	55	
H(18)	222	7622	299	68	
H(19)	-473	6272	1489	50	

Table 11. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for ec106t

C(4)-O(2)-C(1)-O(1)	171.2(4)
C(4)-O(2)-C(1)-C(2)	-7.8(4)
O(1)-C(1)-C(2)-C(3)	-174.0(4)
O(2)-C(1)-C(2)-C(3)	4.9(4)
C(1)-C(2)-C(3)-C(5)	179.5(3)
C(1)-C(2)-C(3)-C(4)	0.0(4)
C(1)-O(2)-C(4)-C(3)	7.6(3)
C(1)-O(2)-C(4)-C(6)	-115.0(3)
C(2)-C(3)-C(4)-O(2)	-4.5(3)
C(5)-C(3)-C(4)-O(2)	176.0(3)
C(2)-C(3)-C(4)-C(6)	113.8(3)
C(5)-C(3)-C(4)-C(6)	-65.7(4)
C(7)-N(1)-C(6)-C(14)	70.1(4)
C(7)-N(1)-C(6)-C(4)	-165.2(3)
O(2)-C(4)-C(6)-N(1)	-60.9(3)
C(3)-C(4)-C(6)-N(1)	-176.7(3)
O(2)-C(4)-C(6)-C(14)	65.4(3)
C(3)-C(4)-C(6)-C(14)	-50.4(3)
C(6)-N(1)-C(7)-C(8)	26.0(5)
C(6)-N(1)-C(7)-C(12)	-157.0(3)
N(1)-C(7)-C(8)-C(9)	177.0(4)
C(12)-C(7)-C(8)-C(9)	0.0(5)
C(7)-C(8)-C(9)-C(10)	-0.9(6)
C(8)-C(9)-C(10)-C(11)	0.9(7)
C(9)-C(10)-C(11)-C(12)	0.0(6)
C(10)-C(11)-C(12)-O(3)	179.1(4)
C(10)-C(11)-C(12)-C(7)	-1.0(5)
C(13)-O(3)-C(12)-C(11)	2.9(5)
C(13)-O(3)-C(12)-C(7)	-177.0(3)
N(1)-C(7)-C(12)-C(11)	-176.2(3)
C(8)-C(7)-C(12)-C(11)	1.0(5)
N(1)-C(7)-C(12)-O(3)	3.7(4)
C(8)-C(7)-C(12)-O(3)	-179.1(3)
N(1)-C(6)-C(14)-C(19)	-130.9(3)

Table 12. Torsion angles [°] for ec106t

C(4)-C(6)-C(14)-C(19)	106.5(3)
N(1)-C(6)-C(14)-C(15)	51.9(4)
C(4)-C(6)-C(14)-C(15)	-70.6(4)
C(19)-C(14)-C(15)-C(16)	-1.6(5)
C(6)-C(14)-C(15)-C(16)	175.7(3)
C(14)-C(15)-C(16)-C(17)	2.3(5)
C(15)-C(16)-C(17)-C(18)	-0.7(6)
C(15)-C(16)-C(17)-Br(1)	178.6(3)
C(16)-C(17)-C(18)-C(19)	-1.5(6)
Br(1)-C(17)-C(18)-C(19)	179.1(3)
C(17)-C(18)-C(19)-C(14)	2.3(6)
C(15)-C(14)-C(19)-C(18)	-0.8(5)
C(6)-C(14)-C(19)-C(18)	-178.0(3)

Symmetry transformations used to generate equivalent atoms: