APPENDIX F. ATOMIC DATA

1. Theoretical Internal Conversion Coefficients

The following graphs provide selected theoretical conversion coefficients for M_1, M_2, M_3, M_4, E_1, E_2, E_3, and E_4 transitions to an accuracy of 3% to 5%. For atomic numbers $Z=3$, 6, 10, and 20, the graphs show K-shell and L-subshell conversion coefficients from Band et al.1 For $Z=30$ through $Z=100$, they show K-shell, L-subshell, and total conversion coefficients from calculations by Rösel et al.2

Smooth curves have been drawn through the calculated data points by using a cubic spline fit to the logarithms of both energy and conversion coefficient. Discontinuities in the plots of total conversion coefficients occur at the binding energies of the K atomic shells, and the graphs at these energies indicate only the change in the conversion coefficient due to the presence of the K-shell edge. One should be aware that the cubic spline fit may not adequately represent this region and interpolation near the K-shell edge may be unreliable.

The K binding energies used by Rösel et al.2 for calculating conversion coefficients are from Bearden and Burr.3 The newer and generally more precise K binding energies of Porter and Freedman4 are somewhat different and, for some elements with $Z \geq 84$,5 differ by more than 2 keV. One should be aware that these differences may significantly affect conversion coefficients near the K binding energy.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Appendix_F_ATOMIC_DATA.pdf}
\caption{Graphs of theoretical internal conversion coefficients for $Z=3$ and $Z=6$ atomic shells.}
\end{figure}

1I.M. Band, M.B. Trzhaskovskaya, and M.A. Listengarten, \textit{At. Data and Nucl. Data Tables} \textbf{18}, 433 (1976).
5M.R. Schmorak, private communication (1982).