5. X-ray Energies and Intensities

Tables 7a, 7b, 7c, and 7d list energies and intensities for x-rays with intensities greater than 0.001 per 100 primary vacancies in the K, L_1 , L_2 , and L_3 atomic shells, respectively. The first column shows the Siegbahn notations for the x-ray transitions (the associations with initial and final atomic-shell vacancies are given in Table 6). The following columns give, for each element, the x-ray energies in *keV* (boldface) rounded to the nearest *eV*, and their corresponding intensities directly below. Intensities for the L x-rays are totals from both primary and secondary atomic-shell vacancies.

X-ray energies have been determined from differences between the corresponding atomic-shell binding energies reported by Larkins.¹ Energies of complex x-ray transitions, e.g., $L_{\beta_{2,15}}$, are unweighted averages of those for the single-line components.

X-ray intensities have been determined from the experimental relative emission probabilities of Salem, *et al*,² and the atomic yields of Krause.³ The theoretical emission probabilities of Scofield⁴ were occasionally used whenever experimental values were not available.

The relative intensities of x-rays from the same initial atomic shells are independent of the processes creating the shell vacancies. Tables 7a-7d may, therefore, be used to separate experimentally unresolved or complex x-ray intensities from the photon tables of the *Table of Isotopes*. Table 5 shows the initial atomic shells and their associated x-rays, and the procedure below illustrates the separation of an x-ray peak.

Table 5

Atomic Shell	Associated x-rays	
К	$K_{\alpha_{1}},K_{\alpha_{2}},K_{\alpha_{3}},K_{\beta_{1}},K_{\beta_{2}},K_{\beta_{3}},K_{\beta_{4}},K_{\beta_{5}},KO_{2,3},KP_{2,3}$	
L ₁	$L_{\boldsymbol{\beta}_3},L_{\boldsymbol{\beta}_4},L_{\boldsymbol{\gamma}_2},L_{\boldsymbol{\gamma}_3}$	
L ₂	$L_{\beta_1}, L_{\eta}, L_{\gamma_1}, L_{\gamma_6}$	
L ₃	$L_{\alpha_1}, L_{\alpha_2}, L_{\beta_{2,15}}, L_{\beta_5}, L_{\beta_6}, L_{\beta_6}$	

The single-line x-ray intensity of a specific transition *i* from an initial atomic shell *j* is

$$I(ji) = \frac{1}{l^0} I^0(ji)$$
(1)

where *I* is the measured (or photon-table) intensity value of a single or complex x-ray transition from atomic-shell *j*, I^0 is the intensity of the same x-ray transition from Tables 7a-7d, and $I(ji)^0$ is the intensity of the specific *i* x-ray transition from atomic-shell *j*, also from Tables 7a-7d. As an example, the uranium K_{β_1} intensity per 100 disintegrations of ²³⁵Np is⁵

$$I(K_{\beta_{\eta}}) = \frac{I(K_{\alpha_{\eta}})}{I(K_{\alpha_{\eta}}^{0})} I(K_{\beta_{\eta}}^{0}) = \frac{0.957}{45.1} 10.70 = 0.227\%.$$
⁽²⁾

 $I(K_{\alpha_1})$ is from the photons table for ²³⁵Np, and $I(K_{\alpha_1}^0)$, and $I(K_{\beta_1}^0)$ are from Table 7a. Calculations for the L₁ atomic shell may be more complex, because none of the x-ray transitions in the photon tables of reference 5 is associated exclusively with this shell.

¹F.B. Larkins, At. Data and Nucl. Data Tables **20**, 313 (1977).

²S.I. Salem, S.L. Panossian, and R.A. Krause, Atomic Data and Nucl. Data Tables 14, 91 (1974).

³M.O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).

⁴J.H. Scofield, *Atomic Data and Nucl. Data Tables* **14**, 121 (1974).

⁵ E. Browne and R.B. Firestone, *Table of Radioactive Isotopes*, John Wiley & Sons, Inc. (1986).

Classical designation	Associated initial - final
(Siegbahn notation)	shell vacancies
K.	K - L ₂
K ^a 1	K - L
κ ^α 2	K - L.
κ ^α 3	K - M.
κ ^β 1	K - N N
κ ^β 2	K - M
κ ^β 3	K - N N
κ ^β 4	$\mathbf{K} = \mathbf{M} \mathbf{M}$
κ0 ⁵	K - 0 0
KO _{2,3}	$\mathbf{K} = \mathbf{P} \mathbf{P}$
2,3	
Γ _{α1}	$L_3 = M_5$
	$L_3 = M_4$
^{-β} 1	$L_2 = N_4$
Δβ2,15	$L_3 = M_4 N_5$
^μ β ₃	$L_1 = W_3$
	$L_1 - M_2$
	$L_3 - O_4 O_5$
	$L_3 = N_1$
	$L_2 = N_4$
L _{γ2}	$L_1 - N_2$
L _{γ3}	$L_1 - N_3$
Γ, ^γ 6	$L_2 - O_4$
L	$L_2 - M_1$
L	L ₃ - M ₁
Group designation	Associated transitions
κ _{β.}	$K_{R1} + K_{R2} + K_{R5}$
$K_{\beta_{2}}^{S_{1}}$	$ K_{B2}^{p3} + K_{B4}^{p3} +$
L'	$ L_{\alpha_{-}}^{\mu_{-}} + L_{\alpha_{-}}^{\mu_{+}}$
L _B	$L_{\beta_{1}}^{\sim 1} + L_{\beta_{2}}^{\sim 2} + L_{\beta_{2}} + L_{\beta_{1}} + L_{\beta_{2}} + L_{\beta_{3}}$
L _v	$\begin{bmatrix} L_{\gamma_4}^{r_1} + L_{\gamma_2}^{r_2, 15} L_{\gamma_2} + L_{\gamma_2} \end{bmatrix} = L_{\gamma_2}^{r_3} + L_{\gamma_2}^{r_4} = L_{\gamma_2}^{r_5} + L_{\gamma_2}^{r_5}$
	1 '1 '2 '3 '6

Table 6. Notations for X-ray Transitions