3. Beta Transition Probabilities

For an n^{th} -forbidden beta decay (n=0 for allowed), the transition probability can be written as¹

$$\frac{\ln 2}{t_{1/2}} = \frac{g^2}{2\pi^3} \int_{1}^{W_0} pW(W_0 - W)^2 S_n(Z, W) dW , \qquad (1)$$

where *g* is the weak interaction coupling constant, *Z* is the atomic number of the daughter nucleus, *W* is the total energy of the β -particle in units of electron mass, $p=\sqrt{W^2-1}$ is the momentum of the β -particle, and W_0 is the maximum β -particle energy. For β^- decay $W_0=Q+1$, and for β^+ decay $W_0=Q-1$, where Q is the mass difference between initial and final states in neutral atoms. For an n^{th} -forbidden β -branch, $\Delta J=n$ (nonunique) or $\Delta J=n+1$ (unique), and $\Delta \pi=(-1)^n$. $\Delta J=0$ is allowed for n=1.

 $S_n(Z,W)$ is the shape factor defined as

$$S_{n}(Z,W) = \sum_{k_{o},k_{v}=1}^{\infty} [\lambda_{k} M_{L}^{2} + \lambda_{k}^{'} m_{L}^{2} - 2\lambda_{k}^{''} M_{L} m_{L}]$$
(2)

where λ_k , λ'_k , and λ''_k are bilinear combinations of the radial components of the continuum electron or positron wavefunctions. M_L and m_L contain the nuclear matrix elements. L is the orbital angular momentum carried off by the electron and the neutrino. For k_e and k_v , $k = |\kappa|$, where $\kappa = l$ for j = l-1/2, and $\kappa = -l-1$ for j = l+1/2. For allowed and unique forbidden transitions, a single nuclear matrix element is dominant, while a combination of nuclear matrix elements contribute to non-unique forbidden transitions.

The partial half-life $t_{1/2}^{\beta}$ for an n^{th} -forbidden decay can be obtained from equation (1). A reduced half-life $f_n t$ is defined as

$$f_n t = \frac{2\pi^3 \ln 2}{g^2 \eta^2} ,$$
 (3)

where

$$f_n = \int_{1}^{W_0} pW(W_0 - W)^2 \frac{S_n(Z, W)}{\eta^2} dW , \qquad (4)$$

and η^2 contains the nuclear matrix elements. For allowed decays,

$$\eta^2 = \frac{S_0(Z,W)}{\lambda_1(Z,W)} \tag{5}$$

and

$$f_0 = \int_{1}^{W_0} pW(W_0 - W)^2 \lambda_1(Z, W) dW .$$
 (6)

More generally, for unique forbidden decays,

$$f_n = (2n+1)! \int_{1}^{W_0} pW(W_0 - W)^2 \sum_{k=1}^{n+1} \frac{\lambda_k(Z, W) p^{2(k-1)} (W_0 - W)^{2(n-k+1)}}{(2k-1)! [2(n-k-1)+1]!} dW$$
(7)

For first-forbidden unique decay, equation (7) reduces to

$$f_{1} = \int_{1}^{W_{0}} pW(W_{0} - W)^{2} [\lambda_{1}(Z, W)(W_{0} - W)^{2} + \lambda_{2}(Z, W)p^{2}]dW .$$
(8)

The *f* function can be calculated with corrections for finite nuclear size and screening by atomic electrons. Values of f_0 and f_1 for β^- decay with Z=10-100 are plotted in Figure 6. Electron-capture decay always competes with β^+ decay. Equation (4) applies to electron capture, except that the function *f* is written as a combination of the radial components of the bound-state electron wavefunctions $g_i(Z)$, $f_i(Z)$ corresponding to electron capture from *i*th atomic state.

¹N.B. Gove and M.J. Martin, Nucl. Data Tables A10, 205 (1971)

For allowed decay,

$$f_0^{EC} = \frac{\pi}{2} \left[q_K^2 g_K^2 B_K + q_{L1}^2 g_{L1}^2 B_{L1} + q_{L2}^2 f_{L2}^2 B_{L2} + \sum_i q_i^2 g_i^2 B_i + \sum_j q_j^2 f_j^2 B_j \right].$$
(9)

 B_i are the atomic exchange and overlap corrections, and $q_i=Q_{EC}-E_B$ are the neutrino energies where Q_{EC} is the mass difference between the initial and final state and E_B is the electron binding energy in the daughter nucleus. For first-forbidden unique transitions,

$$f_{1}^{EC} = \frac{\pi}{2} \left[q_{K}^{4} g_{K}^{2} B_{K} + q_{L1}^{4} g_{L1}^{2} B_{L1} + q_{L2}^{4} g_{L2}^{2} B_{L2} + \sum_{i} q_{i}^{4} g_{i}^{2} B_{i} + \sum_{j} q_{j}^{4} f_{j}^{2} B_{j} + \frac{9}{R^{2}} \left\{ q_{L3}^{2} g_{L3}^{2} B_{L3} + \sum_{m} q_{m}^{2} g_{m}^{2} B_{m} \right\} \right]$$
(10)

where *i*, *j*, *m* refer to the *s*, *p*, *d* electrons, respectively. The functions f_0^{EC} and f_1^{EC} are plotted for Z=10-100 in Figure 7.

If the available electron-capture decay energy q is greater that $2m_ec^2$ (1022 keV), both positron emission and electron-capture decay will compete. The nuclear matrix elements are identical for both modes and cancel in the ratio $\frac{EC}{\beta^+} = \frac{f_n^{EC}}{f_n^{\beta^+}}$ for unique transitions. The electron-capture to positron decay ratios for

allowed and first forbidden transitions are plotted in Figure 8.

Because *ft* values vary over several orders of magnitude, it is customary to consider the quantity log*ft* rather than *ft*. The log*ft* values for non-unique forbidden transitions cannot be calculated directly, so it is conventional to use the allowed log*ft* value for systematic comparisons. Table 5 outlines the systematics of beta transitions^{2,3} as a function of log*ft*.

Logft	Transitions
<3.5	0 ⁺ →0 ⁺ Superallowed (Δ T=0) and n, ³ H, ⁶ He, ¹⁸ Ne decays
3.6-5.9 [†]	Allowed ($\Delta J=0,1$; no parity change)
≤6.4	Not 0 ⁺ →0 ⁺ (∆T>0)
≤8.5 ^{1u}	∆J=0,1
<11.0	$\Delta J=0,1; \Delta J=2$, parity change
<12.8	∆J=0,1,2

Table 5. Systematics of Logft Values

[†]For heavier nuclei, higher-order nuclear matrix elements, especially those proportional to αZ^2 , become important. This leads to anomalously low log*ft* values for forbidden transitions. For the *Z*~82 mass region, the upper limit for allowed transitions should be lowered to ~5.1.

² S. Raman and N.B. Gove, *Phys. Rev.* C7, 1995 (1973).

³ M.J. Martin, Nucl. Data Sheets 74, ix (1995).

Figure 6. Allowed and first-forbidden unique $f^{\beta-}$ function for Z=10-100

Figure 7. Allowed and first-forbidden unique f^{EC} function for Z=10-100

Figure 8. EC/ β ⁺ for allowed and first-forbidden unique decays with Z=10-100