APPENDIX NUCLEAR STRUCTURE

1. Spherical Shell Model

The stability of certain combinations of neutrons and protons was pointed out by Elsasser! in 1934.
Stability for light nuclei with N or Z values of 2 (*He), 8 (}°0), and 20 (*°Ca) became well known, and in
1948 Mayer? observed strong evidence for additional "magic numbers" at 50 and 82 for protons, and 50,
82, and 126 for neutrons. Mayer and Jensen?® explained this in terms of a "shell model", where nucleons

moved in a spherically symmetric potential well. This potential is most commonly taken as a harmonic
oscillator of the form

V(r)=-V, {1 - (r/R)Z] 1)

where V(1) is the potential at a distance r from the center of the nucleus and R is the nuclear radius. The
resulting quantum states can be characterized by n, the principal quantum number related to the number
of radial nodes in the wave function, and by /, the orbital angular momentum of the particle. By analogy to
atomic spectroscopy, states with / =0, 1, 2, 3, 4, 5, 6, ... are designated as s,p.d,f,g,h,i,..., respectively.
The states are identified by as 1s, 2f, 3p, etc, where, unlike in atomic spectroscopy, n is defined so that
each state has n-1 radial nodes.

The solution of the Schrddinger equation for the isotropic harmonic oscillator gives the level energies

E =huwy[2(n - 1) + ]+E,, (2
where
[ 2v, 1/2
W o7 | 3)

M is the nucleon mass, and Ey=3/2hwy,. Here states with the same value of N=2(n-1)+/ are degenerate,
and states of a given energy must all have either even or odd values of /. Thus, degenerate states must
have the same parity.

Mayer* and Haxel et al ® showed that the interaction between the intrinsic angular momentum (spin)
of the particles and their total angular momentum would split the orbitals into two substates with /+1/2 (e.qg.
1p.p and 1p5p). These states are no longer degenerate, and it was shown that if the "spin-orbit" interac-
tion is of the same order as the spacing between oscillator shells, and states with j=/+1/2 are more stable
than states with j=/-1/2, then the magic numbers can be reproduced. The evolution of shell model states
from the harmonic oscillator model is depicted in Figure 1.

2. Collective Model

The shell model succeeds in describing nuclei near the magic numbers, but it fails to adequately
describe nuclei outside the closed shells. This may be attributed to a breakdown in the assumption of

spherical symmetry. Rainwater® proposed that, in odd-A nuclei, the motion of the odd nucleon could
polarize the even-even core allowing all nucleons to move collectively, thus increasing the static electric
guadrupole moments and enhancing quadrupole transition (E2) rates. The implications of spheroidal
rather than spherical shape were studied by Bohr and Mottelson’ who developed a collective model for
nuclei.

For a spheroidal nucleus, the orbital angular momentum of the odd nucleon is no longer conserved.
Since total angular momentum for the nuclear system must be conserved, the core must have angular
momentum coupled to that of the odd nucleon. Addition of more nucleons outside the closed shells can
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form spheroidal nuclei whose angular momentum states reflect the coherent motion of all nucleons rather
than just a few nucleons moving in single-particle shell model orbitals. The quantization of this coherent
motion forms the basis of the collective model.

This collective motion can be quantized by assuming that the even-even core is an incompressible
liquid and quantizing the classical hydrodynamical equations that describe its oscillations. Borrowing from
the well-known analysis of rotational states in symmetric-top molecules, we expect the level energy rela-
tion

1) — K2 242
E:ﬁZ[‘J(J 1) - K7 +ﬁ K @)

2, 2J 5
where [J(J + 1)]¥?A is the total angular momentum of the nucleus, and K7 is the component of angular
momentum along the symmetry axis of the nucleus, as shown in Figure 2. J; and J ; are the moments of

inertia perpendicular and parallel to the symmetry axis, respectively. For low-lying rotational bands in
even-even nuclei, K=0 and Eq. (4) reduces to

J(J +1)]

g=peldI 1

21, ®)
States with K#0 arise when one or more pairs of nucleons are broken and unpaired nucleons are excited

to higher shell-model states. Low-lying rotational levels with K=0 are characterized by a sequence of
states with J =0, 2, 4, 6, 8, . .. and positive parity, often referred to as the ground-state (GS) band. An

example of the GS band for *2Sm is shown in Figure 3. Excited vibrational states of three kinds are also
shown for 1%2Sm in Figure 3. The B-vibration preserves spheroidal symmetry, and the y-vibration goes

through an ellipsoidal symmetry. The octupole vibration produces a low-lying J"™=3" state in spherical
nuclei, but can also couple to core quadrupole excitations in deformed nuclei to give a family of low-lying

states with J™=17, 27, 37,47, and 5".

3. Deformed Shell Model

A unified model for the effect of deformation on shell-model states has been developed by Nilsson!

and by Mottelson and Nilsson?>. The deformation breaks the 2 + 1 degeneracy of the spherical shell-
model states. Asymptotic quantum numbers needed to describe these states are shown in Figure 2. In
addition to K, they include N, the total oscillator shell quantum number; n,, the number of oscillator
guanta in the z direction; M, the projection of total angular momentum J on the laboratory axis; R, the
angular momentum from the collective motion of the nucleus; Q, the projection of total angular momentum
J (orbital / plus spin s) of the odd nucleon on the symmetry axis; and A, the projection of angular momen-
tum along the symmetry axis where Q=A+% and X is the projection of intrinsic spin along the symmetry
axis. Levels are labeled by the asymptotic quantum numbers QNn,A]. The Nilsson orbitals which
derive from the axially deformed harmonic oscillator potential, labeled as described by Davidson®, are
shown in Figure 1. A more realistic calculation can be performed using a Woods-Saxon potential
V(r) = Yo

1+exp(%) ’ (©)

where a=0.67 fm. Considerable mixing of Nilsson configurations with AQ=0, AN=2, and similar excitation
energies may occur leaving only Q as a good quantum number. Representative Nilsson level diagrams,

for various mass regions and deformations, calculated as described by Bengtsson and Ragnarsson?, are
shown in Figures 4-14. In these figures, single-particle energies are plotted in units of the oscillator fre-
guency

fiw, = 41A7% MeV (7)

as a function of deformation €,, with ¢, chosen as described in the figure captions. The Nilsson quadru-

pole deformation parameter g, can be defined in terms of 6= where R, s is the root mean

r.m.s.
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Figure 2. Asymptotic quantum numbers for the deformed shell model

square nuclear radius and AR is the difference between the semi-major and semi-minor axes of the
nuclear ellipsoid, as'?

1o,, 543, 37 &4
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=0+ g0+ 185" 216 ®
The deformation parameter (3, is related to &; by
—=| 4 4 4 4
BZZN/TV5§£2+§£22+E€23+§€§+... (9)

The intrinsic quadrupole moment Q, (or transition quadrupole moment QrEQ,) is related to B, by
Qo = V16T5ZeRE B,. (10)
If the partial photon half-life for the E2 transition is known, the experimental transition strength B(E2) is
given by
B(E2) = 0.05659

2
" taE2EYE (a1

12 K.E.G. Lébner, M. Vetter, and V. Honig, Nucl. Data Tables A7, 495 (1970).



where t; ,(E2) is in picoseconds, and E isin MeV. B(E?2)is related to Qg by
2
B(E2) = B(JK - J-2 K) = %Q§<JK20|J—2 K>’ (eb)2. (12)

Assuming a constant charge distribution in the nucleus, Q=0 for spherical nuclei, Q,>0 for prolate (foot-
ball or cigar shaped) nuclei, and Q<0 for oblate (disk shaped) nuclei. The spectroscopic quadrupole

moment Q is related to the intrinsic moment by *?
3KZ2-J(J +1)

EN o AL LA By 13
Q=i+ (13)
For M1 transitions, the transition strength B(M 1) is given by
2
B(M1) = B(JK - J+1 K) = %H(QK—QR)ZK2<JK10|J11 K> 2, (14)

where gx and g are nuclear g-factors. The rotational g-factor, gg, arises from the collective rotation of
the core, and is defined as

~Z
9r = A (15)

The intrinsic g-factor, gy, arises from the orbital motion of the valence nucleons, and the total magnetic
dipole moment is given by

K2

=gpJ + - 16
M =0r (9x = 9r) i1 (16)
If the partial photon half-life for the M1 transition is known, then B(M 1) can be calculated from
_ 0.0394 2
B(M1) = —————Uj. (17)
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Figure 3. Ground-state, and -, y-, and octupole-vibrational bands in 152sm.
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Additional quantities of interest for describing a rotational band include the rotational frequency
E((J+2)-J) + E(J - (J-2))

hw(J) = 2 MeV, (18)
the kinetic moment of inertia
2J -1
1,(J)= —""—"——R%>MeV?
W= E G g2y " Me (19)
and the dynamic moment of inertia
1,0J) = 4 A2 MeV! . (20)

E((J+2) = J) - E[(J - (J-2))

An experimental Routhian plot is often prepared to compare rotational bands with theory. This plot is res-
tricted to sequences with AJ=2 when defining a band. The frequency parameter «J) is defined as

E(J+1) - E(J-1)

)= ) = 5,0 (1)
where the x-component of angular momentum J, is
J(J) = (T +127-K>. (22)
The experimental Routhian®® is defined by
E(J) = 1R[E(J+1)+E(J-1)] - (J)Jx(J). (23)
These Routhians are normally referenced to even-even nuclei where the quantities
e (w) = E (w)-Eg(w) , (24)

/((*)) =Jx (w)_‘]xg (w) .

Here Eg'(oo) and J,,(w) are the Routhian and the x-component of the angular momentum of the reference
configuration, respectively. For an odd-A nucleus, the Routhian becomes

e(A,w)=E(Aw+A-12[E,(A+Lw) + E4(A-1,0)], (25)

where A is the mass number and A is the average even-odd mass difference.

4. Signature Splitting

The lowest energy state of each single-particle Nilsson configuration will have J=K=Q (Q#1/2). For
each configuration there is a rotational band of levels where K=Q and the energies are given by equation
4 with J taking on the values K, K+1, K+2, K+3, ... Coriolis and centrifugal forces introduce an addi-
tional term to the matrix element which involves a phase factor 0=(-1)"*X called the signature. This term
alternates sign for successive values of J and implies that rotational bands with K#0 divide into two fami-
lies distinguished from each other by the quantum number . Bengtsson and Frauendorf*® have redefined
the signature quantity for single particle states as a=x1/2, where a is an additive quantity where r=e™™.
The total signature a, for a configuration restricts the angular momentum to

J=a;mod2, (26)
determining whether the band has odd or even particle number N, where
N =2a,mod?2 . (27)
For even-A nuclei, we obtain the 2-quasiparticle sequences:
ifa, =0(r=+1), J=0,2,4,6,..., (28)

ifa,=+1(r=-1), J=1,3,57,... .

1 R. Bengtsson and S. Frauendorf, Nucl. Phys. A327, 139 (1979).



Similarly, for odd-A nuclei:
ifo, =+12 (r =-i), J=1R2,5R,92,..., (29)

ifo, ==12(r =+i), J=32,72,112,... .
An example of signature splitting is shown in Figure 15.

Collective particle configurations can also be discussed in terms of the alignment of the particle’s
intrinsic angular momentum with the angular momentum of the core. The "favored" (lowest energy)
configuration occurs when these momenta are aligned to the maximum value. Decreasing the alignment
by 1h produces the "unfavored" configuration. These two configurations are analogous to the signature
partners described above.

In octupole deformed nuclei, rotational states may be characterized by eigenvalues s of the simplex

operator'* J=PR™ where R corresponds to reflection by 180° about an axis perpendicular to the symmetry
axis and P is the parity operator. The spin J and parity p of a state in a rotational band which can be
described by this "reflection" symmetry are related by p=e” ™. Accordingly, s=+1 for even particle
number (integral J), and s=xi for odd particle number (half-integral J). These reflection-asymmetric
deformations (octupole-quadrupole deformed) lead to bands of alternating parity, connected by enhanced
E 1 transitions, with levels nearly degenerate in energy for the same spin but opposite parity (parity doub-

lets). Examples of parity doublets for an odd-particle system (?*!Ra)'® and an even-particle system
(?*Ac)*® are shown in Figure 16.

5. Superdeformation and Hyperdeformation

In 1968, Strutinski'’ predicted a second minimum in the potential well for a deformed nucleus. This
phenomenon was subsequently identified with fission isomers in the actinides, first observed by Polikanov

et al.*® The associated shell gaps, calculated with an axially symmetric harmonic oscillator potential by

Nix*® and by Bohr and Mottelson?®, are shown in Figure 17. These gaps occur with varying magic
numbers for ratios of the semi-major to semi-minor axis of 3/2 and 2 (superdeformation), and 3 (hyperde-

formation). In 1986, Twin et al 2?2 reported the first evidence, for a superdeformed band in *°2Dy. Six
superdeformed bands have been found in 1%°Dy and are shown in Figure 18. Tentative evidence for a
hyperdeformation in '°2Dy was reported by Galindo-Uribarri et al 2> who observed a OE,~+30 keV ridge
structure in coincidence data for 1°Dy. Discrete transitions, possibly from a hyperdeformed band in *>3Dy,
were reported by Viesti et al %,

14 W. Nazarewicz, P. Olanders, |. Ragnarsson, J. Dudek, and G.A. Leander, Phys. Rev. Lett. 52, 1272 (1984).
15 J. Fernandez-Niello, C. Mittag, F. Riess, E. Ruchowska, and M. Stallknecht, Nucl. Phys. A531, 164 (1991).
16 p.C. Sood, D.M. Headly, R.K. Sheline, and R.W. Hoff, At. Data Nucl. Data Tables 58, 167 (1994).

17/ M. Strutinski, Nucl. Phys. A95, 420 (1967); ibid A122, 1 (1968).

18 S.M. Polikanov, V.A. Druin, V.A. Karnaukhov, V.L. Mikheev, A.A. Pleve, N.K. Skobelev, G.M. Ter-Akopyan, and V.A. Fomi-
chev, Zhur. Ekspti. i Teoret. Fiz. 42, 1464 (1962); Soviet Phys. JETP 15, 1016 (1962).

19 J.R. Nix, Ann. Rev. Nucl. Sci. 22, 65 (1972).
20 A, Bohr and B.R. Mottelson, Nuclear Structure, Vol. Il, p. 591, Benjamin, New York (1975).

21 pJ. Twin, B.M. Nyako, A.H. Nelson, J. Simpson, M.A. Bentley, H.W. Cranmer-Gordon, P.D. Forsyth, D. Howe, A.R.
Mokhtar, J.D. Morrison, J.F. Sharpey-Shafer, and G. Sletten, Phys. Rev. Lett. 57, 811 (1986).

22 p J. Dagnall, C.W. Beausang, P.J. Twin, M.A. Bentley, F.A. Beck, Th. Byrski, S. Clarke, D. Curien, G. Duchene, G. de
France, P.D. Forsyth, B. Haas, J.C. Lisle, E.S. Paul, J. Simpson, J. Styczen, J.P. Vivien, J.N. Wilson, and K. Zuber, Phys. Lett.
B335, 313 (1994).

2 A. Galindo-Uribarri, H.R. Andrews, G.C. Ball, T.E. Drake, V.P. Janzen, J.A. Kuehner, S.M. Mullins, L. Persson, D. Prevost,
D.C. Radford, J.C. Waddington, D. Ward, and R. Wyss, Phys. Rev. Lett. 71, 231 (1993).

24 G. Viesti, M. Lunardon, D. Bazzacco, R. Burch, D. Fabris, S. Lunardi, N.H. Medina, G. Nebbia, C. Rossi-Alvarez, G. de
Angelis, M. De Poli, E. Fioretto, G. Prete, J. Rico, P. Spolaore, G. Vedovato, A. Brondi, G. La Rana, R. Moro, and E. Vardaci, Phys.
Rev. C51, 2385 (1995).
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Figure 15. Signature splitting observed in 163Er.
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Figure 16. Examples of parity doublets arising from reflection asymmetry in 221Ra and 224Ac.

Figure 17. Single-particle level energies calculated for an axially symmetric harmonic oscillator (from reference 18).
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Figure 18. Superdeformed rotational bands for 152Dy
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