CONTENTS

CHAPTER 1	The Formation of Amorphous Solids					
	1.1	Freezi	ng into the Solid State: Glass Formation			
		versus	Crystallization	1		
	1.2		ration of Amorphous Solids	5		
	1.3	Struct	ure, Solidity, and Respectability	10		
	1.4	The G	lass Transition	16		
	1.5	Applications of Amorphous Solids				
CHAPTER 2		-	Morphology: The Geometry and	33		
	Topology of Disorder					
	2.1	Introd	uction: Geometry, Chemistry, and the			
		Prima	cy of Short-Range Order	33		
	2.2	Review of Crystalline Close Packing				
	2.3	Partial	Characterizations of Structures	38		
		2.3.1		38		
			Radial Distribution Function	40		
			EXAFS	43		
		2.3.4	Froth—The Honeycomb of Aggregated			
			Atomic Cells	45		
		2.3.5	Atomic Polyhedra versus Polyhedral			
			Holes	47		
	2.4		om Close Packing	49		
		2.4.1	Empirical rcp Structure	49		
		2.4.2	, 1	51		
		2.4.3	Characterizations of the rcp Structure	54		
		2.4.4		56		
		2.4.5	Dimensionality Considerations and the			
			Extendability of Local Close Packing	58		
	2.5		nuous Random Network	60		
		2.5.1	The Simplicial Graph	60		
		2.5.2	Mathematical Bonds and Chemical			
			Bonds: The Covalent Graph	60		
		2.5.3	The Continuous-Random-Network			
			Model of Covalent Glasses	63		
		2.5.4	Prototype Elemental crn: Amorphous			
			Silicon	67		

X CONTENTS

		2.5.5 Prototype Binary crn: Fused Silica	72	
	2.6	Experimental RDFs versus rcp and crn Models	73	
CHAPTER 3	Chalcogenide Glasses and Organic Polymers			
	3.1	Molecular Solids and Network Dimensionality	86	
	3.2	One- and Two-Dimensional-Network Solids	90	
	3.3	Compositional Freedom in Chalcogenide		
		Glasses and in Oxides	97	
	3.4	The 8 - n Rule and the "Ideal Glass"	101	
	3.5	Topological Defects and Valence Alternation	104	
	3.6	The Random Coil Model of Organic Glasses	107	
	3.7	Random Walks, Drunken Birds, and	110	
	9.0	Configurations of Flexible Chains	113	
	3.8	SAWs, Mean Fields, and Swollen Coils	100	
	3.9	in Solution Why Overlanding Coils are "Ideal"	120 127	
		Why Overlapping Coils are "Ideal" Scaling Exponents and Fractal Dimensions	129	
	3.10	Scaling Exponents and Fractal Dimensions	149	
CHAPTER 4	The Percolation Model			
	4.1	Introduction	135	
	4.2	An Example: The Vandalized Grid	136	
	4.3	The Percolation Path	139	
	4.4	Applications to Phase Transitions	146	
	4.5	Close to Threshold: Critical Exponents, Scaling, and Fractals	153	
	4.6	Trees, Gels, and Mean Fields	167	
	4.7	Continuum Percolation and the Critical		
		Volume Fraction	183	
	4.8	Generalizations and Renormalizations	191	
CHAPTER 5	Localization → Delocalization Transitions			
	5.1	Localized-to-Extended Transitions in		
		Amorphous Solids	205	
	5.2	Dynamic Modeling: Monte Carlo		
		Simulations of the Glass Transition	206	
	5.3	The Free-Volume Model of the Glass Transition	212	
	5.4	Free Volume, Communal Entropy, and		
		Percolation	218	
	5.5	Electron States and Metal → Insulator		
		Transitions	223	

		CONTENTS	xi
	5.6	Disorder-Induced Localization: The Anderson	
		Transition	231
	5.7	Scaling Aspects of Localization	242
CHAPTER 6	Optical and Electrical Properties		
	6.1	Local Order and Chemical Bonding	252
	6.2	Optical Properties	260
	6.3	Electrical Properties	274
	6.4	Native Defects and Useful Impurities	289
	Inde	ex	297

 I				