FIRE DESIGN OF STEEL STRUCTURES
ECCS EUROCODE DESIGN MANUALS

ECCS EDITORIAL BOARD
Luís Simões da Silva (ECCS)
António Lamas (Portugal)
Jean-Pierre Jaspart (Belgium)
Reidar Bjorhovde (USA)
Ulrike Kuhlmann (Germany)

DESIGN OF STEEL STRUCTURES
Luís Simões da Silva, Rui Simões and Helena Gervásio

FIRE DESIGN OF STEEL STRUCTURES
Jean-Marc Franssen and Paulo Vila Real

AVAILABLE SOON

DESIGN OF COLD-FORMED STEEL STRUCTURES
Dan Dubina, Viorel Ungureanu and Rafaelle Landolfo

DESIGN OF PLATED STRUCTURES
Darko Beg, Ulrike Kuhlmann, Benjamin Braun and Laurence Davaine

DESIGN OF CONNECTIONS IN STEEL AND COMPOSITE STRUCTURES
Jean-Pierre Jaspart

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES
Alain Nussbaumer, Luís Borges and Laurence Davaine

INFORMATION AND ORDERING DETAILS

For price, availability, and ordering visit our website www.steelconstruct.com.
For more information about books and journals visit www.ernst-und-sohn.de.
FIRE DESIGN OF
STEEL STRUCTURES

Eurocode 1: Actions on Structures
Part 1-2 – General actions – Actions on
structures exposed to fire
Eurocode 3: Design of Steel Structures
Part 1-2 – General rules – Structural fire design

Jean-Marc Franssen
Paulo Vila Real
Table of Contents

Foreword
Foreword: xiii
Preface
Preface: xv
Notations
Notations: xvii

Chapter 1
Introduction
1. Relations between different Eurocodes: 1
2. Scope of EN 1993-1-2: 3
3. Layout of the book: 3

Chapter 2
Mechanical Loading
1. General: 7
 - 2.1.1. General rule: 7
 - 2.1.2. Simplification 1: 10
 - 2.1.3. Simplification 2: 10
 - 2.1.4. Simplification 3: 12
2. Examples: 12
3. Indirect actions: 14

Chapter 3
Thermal Action
1. General: 17
2. Nominal temperature-time curves: 18
3. Parametric temperature-time curves: 21
4. Zone models: 29
TABLE OF CONTENTS

3.5. CFD models 31
3.6. Localised fires 32
3.7. External members 39

Chapter 4
TEMPERATURE IN STEEL SECTIONS 45
4.1. Introduction 45
4.2. The heat conduction equation and its boundary conditions 45
4.3. Advanced calculation model. Finite element solution of the heat conduction equation 47
4.3.1. Temperature field using the finite element method 48
4.4. Section factor 51
4.5. Temperature of unprotected steelwork exposed to fire 54
4.6. Temperature of protected steelwork exposed to fire 61
4.7. Internal steelwork in a void protected by heat screens 77
4.8. External steelwork 78
4.8.1. General principles 78
4.8.2. Example 80
4.9. View factors in the concave part of a steel profile 88
4.10. Temperature in steel members subjected to localised fires 91
4.10.1. Unprotected steel members 91
4.10.2. Protected steel members 93
4.11. Temperature in stainless steel members 94
4.11.1. Example 97

Chapter 5
MECHANICAL ANALYSIS 99
5.1. Basic principles 99
5.2. Mechanical properties of carbon steel 104
5.3. Classification of cross-sections 109
5.4. Fire resistance of structural members 118
5.4.1. General 118
5.4.2. Tension members 120
5.4.3. Compression members 121
5.4.4. Shear resistance 124
5.4.5. Laterally restrained beams 127
 5.4.5.1. Uniform temperature distribution 127
 5.4.5.2. Non-uniform temperature distribution 128
 5.4.5.3. Bending and shear 131
5.4.6. Laterally unrestrained beams 133
 5.4.6.1. The elastic critical moment for lateral-torsional buckling 133
 5.4.6.2. Resistance to lateral-torsional buckling 137
5.4.7. Members with Class 1, 2 or 3 cross-sections, subjected to combined bending and axial compression 140
5.4.8. Members with Class 4 cross-sections 143
5.4.9. Some verifications of the fire resistance not covered by EN 1993-1-2 143
 5.4.9.1. Shear buckling resistance for web without intermediate stiffeners 147
 5.4.9.2. Cross section verification of a member subjected to combined bending and axial force (compression or tension) 145
 5.4.9.2.1. Class 1 and 2 rectangular solid sections 146
 5.4.9.2.2. Class 1 and 2 doubly symmetrical I- and H-sections 147
 5.4.9.3. Bending, shear and axial force 149
5.5. Design in the temperature domain. Critical temperature 149
5.6. Design of continuous beams 160
 5.6.1. General 160
 5.6.2. Continuous beams at room temperature 161
 5.6.3. Continuous beams under fire conditions 164
5.7. Fire resistance of structural stainless steel members 166
5.8. Design examples 173
Table of Contents

Chapter 6

ADVANCED CALCULATION MODELS

6.1. General 235
6.2. Thermal response model 237
6.3. Mechanical response model 244

Chapter 7

JOINTS

7.1. General 251
7.2. Strength of bolts and welds at elevated temperature 252
7.3. Temperature of joints in fire 254
7.4. Bolted connections 255
7.4.1. Design fire resistance of bolts in shear 255
7.4.1.1. Category A: Bearing type 255
7.4.1.2. Category B (slip resistance at serviceability) and Category C (slip resistance at ultimate state) 256
7.4.2. Design fire resistance of bolts in tension 256
7.4.2.1. Category D and E: Non-preloaded and preloaded bolts 256
7.5. Design fire resistance of welds 256
7.5.1. Butt welds 256
7.5.2. Fillet welds 257
7.6. Design examples 257

Chapter 8

THE COMPUTER PROGRAM “ELEFIR-EN”

8.1. General 267
8.2. Brief description of the program 268
8.2.1. Available thermal calculations 268
8.2.2. Available mechanical calculations 273
8.3. Default constants used in the program 278
8.4. Design example 279
Chapter 9

CASE STUDY 293

9.1. Description of the case study 293
9.2. Fire resistance under standard fire 294
 9.2.1. Thermal calculations 294
 9.2.2. Structural calculation 295
 9.2.2.1. Loading 295
 9.2.2.2. Fire resistance by the simple calculation model 300
 9.2.2.3. Fire resistance by the general calculation model 302
9.3. Fire resistance under natural fire 304
 9.3.1. Temperature development in the compartment 304

REFERENCES 311

Annex A

THERMAL DATA FOR CARBON STEEL AND STAINLESS STEEL SECTIONS 319

A.1. Thermal properties of carbon steel 319
 A.1.1. Specific heat 319
 A.1.2. Thermal conductivity 320
 A.1.3. Thermal elongation 321
A.2. Section factor \(\frac{A_m}{V} [\text{m}^{-1}] \) for unprotected steel members 322
A.3. Section factor \(\frac{A_p}{V} [\text{m}^{-1}] \) for protected steel members 324
A.4. Tables and nomograms for evaluating the temperature in unprotected steel members subjected to the standard fire curve ISO 834 325
A.5. Tables and nomograms for evaluating the temperature in protected steel members subjected to the standard fire curve ISO 834 331
A.6. Thermal properties of some fire protection materials 335
A.7. Thermal properties of stainless steel 336
 A.7.1. Specific heat 336
 A.7.2. Thermal conductivity 336
 A.7.3. Thermal elongation 337
Table of Contents

A.8. Tables and nomograms for evaluating the temperature in unprotected stainless steel members subjected to the standard fire curve ISO 834 339
A.9. Thermal properties of some fire compartment lining materials 345

Annex B

INPUT DATA FOR NATURAL FIRE MODELS 347

B.1. Introduction 347
B.2. Fire load density 347
B.3. Rate of heat release density 350
B.4. Ventilation control 354
B.5. Flash-over 358

Annex C

MECHANICAL PROPERTIES OF CARBON STEEL AND STAINLESS STEEL 359

C.1 Mechanical properties of carbon steel 359
 C.1.1. Mechanical properties of carbon steel at room temperature (20°C) 359
 C.1.2. Stress-strain relationship for carbon steel at elevated temperatures (without strain-hardening) 361
 C.1.3. Stress-strain relationship for carbon steel at elevated temperatures (with strain-hardening) 370
 C.1.4. Mechanical properties to be used with Class 4 cross-section and simple calculation models 372
C.2. Mechanical properties of stainless steel 374

Annex D

TABLES FOR SECTION CLASSIFICATION AND EFFECTIVE WIDTH EVALUATION 383
Annex E
SECTION FACTORS OF EUROPEAN HOT ROLLED IPE AND HE PROFILES 389

Annex F
CROSS-SECTIONAL CLASSIFICATION OF EUROPEAN HOT ROLLED IPE AND HE PROFILES 397

- F.1. Cross-sectional classification for pure compression and pure bending 398
- F.2. Cross-sectional classification for combined compression and bending moment 404
members should be considered to act together so that the interaction effect between them is directly taken into account (load redistribution from weak heated parts to cold parts outside the fire compartment). Advanced calculation methods, normally based on the Finite Element Method together with a global analysis provide more realistic models of mechanical response of structures in fire than tabulated data or simple models. More information about advanced calculation models is presented in Chapter 6.

Table 5.1: Relation between calculation models, structural schematization and fire model

<table>
<thead>
<tr>
<th>Type of Analysis</th>
<th>Nominal Fires</th>
<th>Natural Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulated data</td>
<td>Simple Calc. Models</td>
<td>Advanced Calc. Models</td>
</tr>
<tr>
<td>Member analysis</td>
<td>Not available in EC3-1-2</td>
<td>Yes</td>
</tr>
<tr>
<td>Analysis of parts of the structure</td>
<td>No (if available)</td>
<td>Yes</td>
</tr>
<tr>
<td>Global structural analysis</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

5.2. MECHANICAL PROPERTIES OF CARBON STEEL

The strength of steel decreases as the temperature increases beyond 400°C. For S235 structural steel, Fig. 5.4 shows the strength as a function of temperature as well as the stress-strain relationships at elevated temperature. This figure also shows that the stiffness of steel also decreases with increasing temperature. At elevated temperature, the shape of the stress-
strain diagram is modified compared to the shape at room temperature. Instead of a linear-perfectly plastic behaviour as for normal temperature, the model recommended by EN 1993-1-2 at elevated temperature is an elastic-elliptic-perfectly plastic model, followed by a linear descending branch introduced at large strains when the steel is used as material in advanced calculation models. Detailed aspects from this behaviour can be seen in Fig. 5.5. More details on the stress-strain relationship for steel grades S235, S275, S355 and S460 are given in Annex C.

![Stress-strain relationship for carbon steel S235 at elevated temperatures](image)

Fig. 5.4: Stress-strain relationship for carbon steel S235 at elevated temperatures

In an accidental limit state such as fire, higher strains are acceptable. For this reason Eurocode 3 recommends a yield strength corresponding to 2% total strain rather than the conventional 0.2% plastic strain (see Fig 5.5). However, for members with Class 4 cross sections, Eurocode 3 recommends a design yield strength based on the 0.2% proof strain.

The stress-strain relationship at elevated temperature is also shown in Fig 5.5 and is characterised by the following three parameters:
- The limit of proportionality, \(f_{p,\theta} \);
- The effective yield strength, \(f_{y,\theta} \);
- The Young’s modulus, \(E_{u,\theta} \).

The design values for the mechanical (strength and deformation) material properties in the fire situation \(X_{d,\theta} \) are defined in Eurocode 3, as
follows:

\[X_{d,fi} = k_\theta X_k / \gamma_{M,fi} \]

(5.2)

where:

- \(X_k \) is the characteristic value of a strength or deformation property (generally \(f_k \) or \(E_k \)) for normal temperature design to EN 1993-1-1;
- \(k_\theta \) is the reduction factor for a strength or deformation property \((X_k/\theta) \), dependent on the material temperature;
- \(\gamma_{M,fi} \) is the partial safety factor for the relevant material property, for the fire situation, taken as \(\gamma_{M,fi} = 1.0 \), or other value defined in the National Annex.

Fig. 5.5: Stress-strain relationship for carbon steel at elevated temperatures

Following Eq. 5.2 the yield strength at temperature \(\theta \), i.e., \(f_{y,\theta} \), is a function of the yield strength, \(f_y \), at 20 °C, given by:

\[f_{y,\theta} = k_{y,\theta} f_y \]

(5.3)

The Young’s modulus at temperature \(\theta \), i.e., \(E_{y,\theta} \), is a function of the Young’s modulus, \(E_y \), at 20 °C, given by:
5.2. MECHANICAL PROPERTIES OF CARBON STEEL

\[E_{a,\theta} = k_{E,\theta} E_a \quad (5.4) \]

In the same way the proportional limit at elevated temperature is given by:

\[f_{p,\theta} = k_{p,\theta} f_y \quad (5.5) \]

According to Annex E of EN 1993-1-2 for members with Class 4 cross section under fire conditions, the design yield strength of steel should be taken as the 0.2% proof strain and thus for this class of cross section the yield strength at temperature \(\theta \), i.e., \(f_{y,\theta} \), is a function of the yield strength, \(f_y \), at 20 \(^\circ\)C given by:

\[f_{y,\theta} = f_{0.2,p,\theta} = k_{0.2,p,\theta} f_y \quad (5.6) \]

Table 5.2 presents the reduction factors for the stress-strain relationship of carbon steel at elevated temperatures and Fig. 5.6 is a graphical representation of these data. In this table the reduction factor (relative to \(f_y \)) for the design strength of hot rolled and welded thin-walled sections (Class 4), given in Annex E of EN 1993-1-2, is also presented.

Table 5.2 shows that carbon steel begins to lose strength above 400 \(^\circ\)C. For example, at 700 \(^\circ\)C it has 23 % of its strength at normal temperature and at 800 \(^\circ\)C it retains only 11% of that strength, and its strength reduces to 6% at 900 \(^\circ\)C. Concerning the Young’s modulus it begins to decrease earlier at 100 \(^\circ\)C.

The reduction of the effective yield strength given by Table 5.2, which was obtained experimentally, can be approximated by the following equation:

\[
k_{y,\theta} = \left\{ 0.9674 \left(\frac{\theta - 482}{69.19} \right) + 1 \right\}^{0.833} \leq 1 \quad (5.7)
\]
Table 5.2: Reduction factors for carbon steel for the design at elevated temperatures

<table>
<thead>
<tr>
<th>Steel Temperature θ_c</th>
<th>Reduction factors at temperature θ_c relative to the value of f_y or E_a at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduction factor (relative to f_y) for effective yield strength $k_{y,\theta} = f_{\theta,\theta} / f_y$</td>
</tr>
<tr>
<td>20 ºC</td>
<td>1.000</td>
</tr>
<tr>
<td>100 ºC</td>
<td>1.000</td>
</tr>
<tr>
<td>200 ºC</td>
<td>1.000</td>
</tr>
<tr>
<td>300 ºC</td>
<td>1.000</td>
</tr>
<tr>
<td>400 ºC</td>
<td>1.000</td>
</tr>
<tr>
<td>500 ºC</td>
<td>0.780</td>
</tr>
<tr>
<td>600 ºC</td>
<td>0.470</td>
</tr>
<tr>
<td>700 ºC</td>
<td>0.230</td>
</tr>
<tr>
<td>800 ºC</td>
<td>0.110</td>
</tr>
<tr>
<td>900 ºC</td>
<td>0.060</td>
</tr>
<tr>
<td>1000 ºC</td>
<td>0.040</td>
</tr>
<tr>
<td>1100 ºC</td>
<td>0.020</td>
</tr>
<tr>
<td>1200 ºC</td>
<td>0.000</td>
</tr>
</tbody>
</table>

NOTE: For intermediate values of the steel temperature, linear interpolation may be used.

Fig. 5.6: Reduction factors for the stress-strain relationship of carbon steel at elevated temperatures (see Fig. 3.2 from EN 1993-1-2)
5.2. MECHANICAL PROPERTIES OF CARBON STEEL

Fig. 5.7 shows the comparison between the values of the reduction of the effective yield strength, $k_{y,\theta}$, given by Table 5.2 and the ones obtained using Eq. 5.7. The two curves are very close.

![Graph showing reduction factors for the yield strength, $k_{y,\theta}$, at elevated temperatures.](image)

Fig. 5.7: Reduction factors for the yield strength, $k_{y,\theta}$, at elevated temperatures

5.3. CLASSIFICATION OF CROSS SECTIONS

Rolled or welded structural sections may be considered as an assembly of individual plate elements, some of which are internal elements like the webs of open sections or the flanges of hollow sections, and others are outstand elements like the flanges of open sections. Examples of internal and outstand elements are shown in Fig. 5.8. As the plate elements in structural sections are relatively thin compared with their width, when loaded in compression (as a result of axial loads applied to the whole section and/or from bending) they may buckle locally (see Fig 5.9).

![Diagram of internal and outstand elements.](image)

Fig. 5.8: Internal and outstand elements.
a) Rolled section; b) Hollow section; c) Welded section
The tendency of a plate element within the cross section to buckle may limit the axial load-carrying capacity, or the bending resistance of the section, because collapse can occur before the section reaches its yield strength. Premature failure as a result of local buckling can be avoided by limiting the width-to-thickness ratio of the individual elements within the cross section. An approach which classifies sections according to their ability to resist local buckling is introduced in Eurocode 3 and this approach is described below.

![Local buckling of the upper flange of a beam subject to bending](ESDEP, 1995)

Fig. 5.9: Local buckling of the upper flange of a beam subject to bending (ESDEP, 1995)

Eurocode 3 defines four cross section classes depending on the slenderness of each constitutive plate (defined by a width-to-thickness ratio) and on the compressive stress distribution, i.e., uniform or linear:

– **Class 1** cross sections are those which can form a plastic hinge with the rotation capacity required from plastic analysis without reduction of the resistance.

– **Class 2** cross sections are those which can develop their plastic moment resistance, but have limited rotation capacity because of local buckling.

– **Class 3** cross sections are those in which the stress in the extreme compression fibre of the steel member assuming an elastic distribution of stresses can reach the yield strength, but local buckling is liable to prevent development of the plastic moment resistance.

– **Class 4** cross sections are those in which local buckling will occur before reaching the yield strength in one or more parts of the cross section.

Fig. 5.10 shows the moment-rotation curves for each of the four classes, highlighting the strength and the rotation capacity that can be
reached before local buckling occurs. In this figure, ϕ_{pl} is the rotation needed to form a full plastic stress distribution in the most loaded section of the beam, i.e., the rotation needed to form a plastic hinge in that section, M_{pl} is the plastic moment and M_{el} the elastic moment.

\[\phi_{pl} \]

\[M_{pl} \]

\[M_{el} \]

Fig. 5.10: Moment-rotation curves

A key parameter used when analysing plate buckling for I-sections girders and box girders is the normalised plate slenderness, $\bar{\lambda}_p$, given by (EN 1993-1-5):

\[
\bar{\lambda}_p = \sqrt{\frac{f_y}{\sigma_{cr}}}
\]

(5.8)

where σ_{cr} is the elastic critical buckling stress, which can be found in any textbook for stability analysis or in Annex A of EN 1993-1-5, given by:

\[
\sigma_{cr} = \frac{k_\sigma \pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b} \right)^2
\]

(5.9)

where k_σ is the plate buckling factor which accounts for edge support conditions and stress distribution;
5. MECHANICAL ANALYSIS

\[\nu \text{ is Poisson’s coefficient; } \]
\[E \text{ is the Young’s modulus; } \]
\[t \text{ is the plate thickness; } \]
\[b \text{ is the width of the plate.} \]

Substituting from Eq. (5.9) into Eq. (5.8) and rearranging gives:

\[\tilde{X}_p = \frac{f_y}{\sigma_{cr}} = \sqrt{\frac{f_y}{k_{\sigma} \frac{\pi^2 E t^2}{12(1-\nu^2)b^2}}} = \frac{b/t}{\sqrt{\frac{k_{\sigma} \frac{\pi^2 E t^2}{12(1-\nu^2)b^2}}} \frac{\pi^2 E t^2}{12(1-\nu^2)b^2}} \frac{1}{\sqrt{12(1-\nu^2)b^2}} = \frac{b/t}{\sqrt{k_{\sigma} \frac{\pi^2 E t^2}{12(1-\nu^2)b^2}}} \frac{1}{\sqrt{12(1-\nu^2)b^2}} \]

\[= \frac{b/t}{\sqrt{210000 \frac{f_y}{235}}} \frac{235}{210000} \frac{E}{f_y} = \frac{b/t}{28.4\sqrt{k_{\sigma}}} \frac{1}{\sqrt{210000 \frac{f_y}{235}}} \frac{235}{210000} \frac{E}{f_y} = \frac{b/t}{28.4\sqrt{k_{\sigma}}} \frac{1}{\sqrt{210000 \frac{f_y}{235}}} \frac{235}{210000} \frac{E}{f_y} \]

\[= \frac{b/t}{28.4\sqrt{k_{\sigma}}} \frac{1}{\sqrt{210000 \frac{f_y}{235}}} \frac{235}{210000} \frac{E}{f_y} \]

where

\[\varepsilon = \sqrt{\frac{235}{f_y}} \sqrt{\frac{E}{210000}} \text{ with } f_y \text{ and } E \text{ in MPa} \quad (5.11) \]

Introducing the parameter \(\varepsilon \) allows the expression for the normalised slenderness \(\tilde{X}_p \) to be defined independent of the steel grade. Eq. (5.11) is used in EN 1993-1-4 for stainless steel, which has several Young’s modulus values depending on the steel grade. This is not the case for carbon steel where the Young’s modulus can be considered as constant at room temperature, \(E = 210000 \) MPa. Eurocode 3 defines the following for carbon steel:

\[\varepsilon = \sqrt{\frac{235}{f_y}} \text{ with } f_y \text{ in MPa} \quad (5.12) \]

Eq. (5.11) and Eq. (5.12) are only applicable for carbon steel at room temperature. The benefit of using Eq. (5.11) for carbon steel will appear as soon as high temperatures have to be considered.

Table 5.3 summarizes the maximum width-to-thickness ratio (slenderness) limits for the constitutive plates of hot rolled profiles in compression or subject to bending about the strong axis, for Class 1, 2 and 3
5.3. CLASSIFICATION OF CROSS SECTIONS

cross sections. Complete information on hot rolled and welded section classification can be found in the Annex D. For elements with slenderness greater than the Class 3 limits, the cross section should be taken as Class 4. The various compression parts in a cross section (such as a web or flange) can, in general, be of different classes. A cross section is classified according to the highest class of its compression parts.

Table 5.3: Maximum slenderness for compression parts of cross section

<table>
<thead>
<tr>
<th>Element</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange</td>
<td>(c/t = 9\varepsilon)</td>
<td>(c/t = 10\varepsilon)</td>
<td>(c/t = 14\varepsilon)</td>
</tr>
<tr>
<td>Web subject to compression</td>
<td>(c/t = 33\varepsilon)</td>
<td>(c/t = 38\varepsilon)</td>
<td>(c/t = 42\varepsilon)</td>
</tr>
<tr>
<td>Web subject to bending</td>
<td>(c/t = 72\varepsilon)</td>
<td>(c/t = 83\varepsilon)</td>
<td>(c/t = 124\varepsilon)</td>
</tr>
</tbody>
</table>

The procedure for evaluating the class of a cross section is relatively simple for the case of pure compression and pure bending as shown in Table 5.3. However, when the section is subjected to combined bending and compression \((M+N)\) a more laborious procedure is needed. For simplicity, section classification may initially be conducted under the most severe conditions of pure axial compression. If the result is a Class 1 section nothing is to be gained by conducting additional calculations and considering the actual pattern of stresses. However if the result is Class 2, Class 3 or Class 4, then it is normally advisable for economic reasons to repeat the classification calculation more precisely (SCI, 2005), using a parameter \(\alpha\) that defines the compressive part of the web in a I-cross section (see Fig. 5.11 and 5.12 for the case of bending about \(y-y\)) as presented in EN 1993-1-1 and reproduced in Table D.1.1. The procedure is illustrated below.
According to Fig. 5.11, for equilibrium:
\[C = T \]
\[N = C' \]
C and T together resist to bending M

Block C’ must be symmetric about the geometrical axis, and therefore:
\[(y - \frac{e}{2})2t_wf_y = N \quad (5.13) \]
and the parameter \(\alpha \) is given by
\[\alpha = \frac{y}{c} = 1 + \frac{N}{2ct_wf_y} \quad (5.14) \]

If the web is not Class 1 or 2 under combined axial force and bending, the classification of the cross section is made using the ratio, \(\psi = \sigma_t/\sigma_c \), (which is the ratio of the tensile and compressive stresses at the extreme fibres, as shown in Fig. 5.12). It is assumed that the pattern of normal stresses is the sum of the stresses due to axial force \(N \) and those due to bending, in which the maximum normal stress is equal to the yield stress.

Fig. 5.11: Pattern of normal stresses for Class 1 or 2 I-section.
Positive – Compression (C and C’); Negative – Tension (T)

Fig. 5.12: Pattern of normal stresses for a Class 3 or 4 I-section.
Positive – Compression; Negative – Tension
ECCS European Convention for Constructonal Steelwork

Fire Design of Steel Structures
EC 1: Actions on structures. Part 1-2: Actions on structures exposed to fire
EC 3: Design of steel structures. Part 1-2: Structural fire design

This book explains and illustrates the rules that are given in the Eurocode for designing steel structures subjected to fire. After the first introductory chapter, Chapter 2 explains how to calculate the mechanical actions (loads) in the fire situation based on the information given in EN 1990 and EN 1991. Chapter 3 presents the models to be used to represent the thermal action created by the fire. Chapter 4 describes the procedures to be used to calculate the temperature of the steelwork from the temperature of the compartment and Chapter 5 shows how the information given in EN 1993-1-2 is used to determine the load bearing capacity of the steel structure. The methods use to evaluate the fire resistance of bolted and welded connections are described in Chapter 7. Chapter 8 describes a computer program called "Elefir-EN" which is based on the simple calculation model given in the Eurocode and allows designers to quickly and accurately calculate the performance of steel components in the fire situation. Chapter 9 looks at the issues that a designer may be faced with when assessing the fire resistance of a complete building. This is done via a case study and addresses most of the concepts presented in the earlier Chapters. The concepts and fire engineering procedures given in the Eurocodes may see complex those more familiar with the prescriptive approach. This publication sets out the design process in a logical manner giving practical and helpful advice and easy to follow worked examples that will allow designer to exploit the benefits of this new approach to fire design.

(428 pages with 134 figures. Softcover. Date of publication: May 2010)

Please pass this order form to your local bookseller or
Fax-No. +49 (0)30 47031 240 – Ernst & Sohn Berlin, Germany

<table>
<thead>
<tr>
<th>No.</th>
<th>Order-No.</th>
<th>Title</th>
<th>Unit price.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>978-3-433-02974-9</td>
<td>Fire Design of Steel Structures</td>
<td>€ 70 / $ 95</td>
<td></td>
</tr>
<tr>
<td>904221</td>
<td>Publishing Index Verlag Ernst & Sohn</td>
<td>for free</td>
<td></td>
</tr>
<tr>
<td>2488</td>
<td>Journal Steel Construction - Design and Research</td>
<td>1 sample copy for free</td>
<td></td>
</tr>
</tbody>
</table>

Delivery- and Invoice address: ☐ private ☐ business

Company
Contact person
UST-ID Nr./VAT-ID No.
Street/No.
Country
Zip code
Location
Telephone
Fax
E-Mail

In EU countries the local VAT is effective for books and journals. Postage will be charged. Whilst every effort is made to ensure that the contents of this leaflet are accurate, all information is subject to change without notice. Our standard terms and delivery conditions apply. Prices are subject to change without notice. Date of Information: June 2010 (homepage_leseprobe)