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Chapter 1

Finite Elements Overview

1.1 Modeling Basics

“There are no exact answers. Just bad ones, good ones and better ones. Engineering is the
art of approximation.” Approximation is performed with models. We consider a reality of
interest, e.g., a concrete beam. In a first view, it has properties such as dimensions, color,
surface texture. From a view of structural analysis the latter ones are irrelevant. A more
detailed inspection reveals a lot of more properties: composition, weight, strength, stiffness,
temperatures, conductivities, capacities, and so on. From a structural point of view some
of them are essential. We combine those essential properties to form a conceptual model.
Whether a property is essential is obvious for some, but the valuation of others might be
doubtful. We have to choose. By choosing properties our model becomes approximate
compared to reality. Approximations are more or less accurate.

On one hand, we should reduce the number of properties of a model. Any reduction of
properties will make a model less accurate. Nevertheless, it might remain a good model. On
the other hand, an over-reduction of properties will make a model inaccurate and therefore
useless. Maybe also properties are introduced which have no counterparts in the reality of
interest. Conceptual modeling is the art of choosing properties. As all other arts it cannot
be performed guided by strict rules.

The chosen properties have to be related to each other in quantitative manner. This
leads to a mathematical model. In many cases, we have systems of differential equations
relating variable properties or simply variables. After prescribing appropriate boundary and
initial conditions an exact, unique solution should exist for variables depending on spatial
coordinates and time. Thus, a particular variable forms a field. Such fields of variables are
infinite as space and time are infinite.

As analytical solutions are not available in many cases, a discretization is performed
to obtain approximate numerical solutions. Discretization reduces underlying infinite space
and time into a finite number of supporting points in space and time and maps differential
equations into algebraic equations relating a finite number of variables. This leads to a
numerical model.
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2 Chapter 1 Finite Elements Overview

Figure 1.1: Modeling (a) Type of models following [83]. (b) Relations between model and
reality.

A numerical model needs some completion as it has to be described by means of program-
ming to form a computational model. Finally, programs yield solutions through processing
by computers. The whole cycle is shown in Fig. 1.1. Sometimes it is appropriate to merge
the sophisticated sequence of models into the model.

A final solution provided after computer processing is approximate compared to the
exact solution of the underlying mathematical model. This is caused by discretization and
round-off errors. Let us assume that we can minimize this mathematical approximation
error in some sense and consider the final solution as a model solution. Nevertheless, the
relation between the model solution and the underlying reality of interest is basically an
issue. Both – model and reality of interest – share the same properties by definition or
conceptual modeling, respectively. Let us also assume that the real data of properties can
be objectively determined, e.g., by measurements.

Thus, real data of properties should be properly approximated by their computed model
counterparts for a problem under consideration. The difference between model solution data
and real data yields a modeling error. In order to distinguish between bad (inaccurate),
good (accurate), and better model solutions, we have to choose a reference for the modeling
error. This choice has to be done within a larger context, allows for discretion and again is
not guided by strict rules like other arts. Furthermore, the reference may shift while getting
better model solutions during testing.

A bad model solution may be caused by a bad model – bad choice of properties, poor
relations of properties, insufficient discretization, programming errors – or by incorrect model
parameters. Parameters are those properties which are assumed to be known in advance for
a particular problem and are not object to a computation. Under the assumption of a
good model, the model parameters can be corrected by a calibration. This is based upon
appropriate problems from the reality of interest with the known real data. On one hand
calibration minimizes the modeling error by adjusting of parameters. On the other hand,
validation chooses other problems with known real data and assesses the modeling error
without adjusting of parameters. Hopefully model solutions are still good.

Regarding reinforced concrete structures, calibrations usually involve the adaption of
material parameters like strength and stiffness as part of material models. These parameters
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are chosen such that the behavior of material specimen observed in experiments is reproduced.
A validation is usually performed with structural elements such as bars, beams, plates, and
slabs. Computational results of structural models are compared with the corresponding
experimental data.

This leads to basic peculiarities. Reproducible experiments performed with structural
elements are of a small simplified format compared with complex unique buildings. Fur-
thermore, repeated experimental tests with the same nominal parameters exhibit scattering
results. Standardized benchmark tests carving out different aspects of reinforced concrete
behavior are required. Actually a common agreement about such benchmark tests exists
only in the first attempts. Regarding a particular problem a corresponding model has to
be validated on a case-by-case strategy using adequate experimental investigations. Their
choice again has no strict rules as the preceding arts.

Complex proceedings have been sketched hitherto outlining a model of modeling. Some
benefit is desirable finally. Thus, a model which passed validations is usable for predictions.
Structures created along such predictions hopefully prove their worth in the reality of interest.

This textbook covers the range of conceptual models, mathematical models, and numerical
models with special attention to reinforced concrete structures. Notes regarding the compu-
tational model including available programs and example data are given in Appendix F. A
major aspect of the following is modeling of ultimate limit states: states with maximum bear-
able loading or acceptable deformations and displacements in relation to failure. Another
aspect is given with serviceability: Deformations and in some cases oscillations of structures
have to be limited to allow their proper usage and fulfillment of intended services. Durability
is a third important aspect for building structures: deterioration of materials through, e.g.,
corrosion, has to be controlled. This is strongly connected to cracking and crack width in
the case of reinforced concrete structures. Both topics are also treated in the following.

1.2 Discretization Outline
The finite element method (FEM) is a predominant method to derive numerical models from
mathematical models. Its basic theory is described in the remaining sections of this chapter
insofar as it is needed for its application to different types of structures with reinforced
concrete in the following chapters.

The underlying mathematical model is defined in one-, two-, or three-dimensional fields
of space related to a body and one-dimensional space of time. A body undergoes deformations
during time due to loading. We consider a simple example with a plate defined in 2D space,
see Fig. 1.2. Loading is generally defined depending on time whereby time may be replaced
by a loading factor in the case of quasistatic problems. Field variables depending on spatial
coordinates and time are, e.g., given by the displacements.

• Such fields are discretized by dividing space into elements which are connected by
nodes, see Fig. 1.3a. Elements adjoin but do not overlap and fill out the space of the
body under consideration.

• Discretization basically means interpolation,, i.e., displacements within an element are
interpolated using the values at nodes belonging to the particular element.
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4 Chapter 1 Finite Elements Overview

Figure 1.2: Model of a plate.

In the following this will be written as

u = N · υ (1.1)

with the displacements u depending on spatial coordinates and time, a matrix N of shape
functions depending on spatial coordinates and a vector υ depending on time and collecting
all displacements at nodes. The number of components of υ is n. It is two times the number
of nodes in the case of the plate as the displacement u has components ux, uy. Generally
some values of υ may be chosen such that the essential or displacement boundary conditions
of the problem under consideration is fulfilled by the displacements interpolated by Eq. (1.1).
This is assumed for the following.

Figure 1.3: (a) Elements and nodes (deformed). (b) Nodal quantities.

Strains are derived from displacements by differentiation with respect to spatial coordi-
nates. In the following, this will be written as

ε = B · υ (1.2)
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with the strains ε depending on spatial coordinates and time, a matrix B of spatial derivatives
of shape functions depending on spatial coordinates and the vector υ as has been used in
Eq. (1.1). The first examples for Eqs. (1.1, 1.2) will be given in Section 1.3.

• A field variable u is discretized with Eqs. (1.1, 1.2), i.e., the infinite field in space is
reduced into a finite number n of variables in supporting spatial points or nodes which
are collected in υ.

Thereby kinematic compatibility should be assured regarding interpolated displacements, i.e.,
generally spoken a coherence of displacements and deformations should be given.

Strains ε lead to stresses σ. A material law connects both. Material laws for solids are a
science in itself. This textbook mainly covers their flavors for reinforced concrete structures.
To begin with, such laws are abbreviated with

σ = f(ε) (1.3)

Beyond total values of stress and strain their small changes in time t have to be considered.
They are measured with time derivatives

ε̇ =
∂ε

∂t
, σ̇ =

∂σ

∂t
(1.4)

Nonlinear material behavior is mainly formulated as a relation between ε̇ and σ̇. The first
concepts about material laws are given in Section 1.4.

An equilibrium condition is the third basic element of structural analysis beneath kine-
matic compatibility and material laws. It is advantageously formulated as principle of virtual
work leading to ∫

V

δεT · σ dV =

∫
V

δuT · b dV +

∫
At

δuT · t dA (1.5)

for quasistatic cases with the volume V of the solid body of interest, its body forces b,
its surface A, and its surface tractions t which are prescribed at a part At of the whole
boundary A. Furthermore, virtual displacements δu and the corresponding virtual strains δε
are introduced. They are arranged as vectors and δuT , δεT indicate their transposition into
row vectors to have a proper scalar product with σ,b, t which are also arranged as vectors.
Fields of b and t are generally prescribed for a problem under consideration while the field
of stresses σ remains to be determined. Surface tractions t constitute the natural or force
boundary conditions.

• Stresses σ and loadings b, t are in static equilibrium for the problem under considera-
tion if Eq. (1.5) is fulfilled for arbitrary virtual displacements δu and the corresponding
virtual strains δε.

Thereby, δu is zero at the part Au of the whole boundary A with prescribed displacement
boundary conditions. Applying the displacement interpolation equation (1.1) to virtual dis-
placements leads to

δu = N · δυ, δε = B · δυ (1.6)

and using this with Eq. (1.5) to

δυT ·
[∫

V

BT · σ dV

]
= δυT ·

[∫
V

NT · b dV +

∫
At

NT · t dA

]
(1.7)



U. Häußler-Combe
mailto:Ulrich.Haeussler-Combe@tu-dresden.de

Institute of Concrete Structures
http://www.tu-dresden.de/biwitb/mbau

Technische Universität Dresden
http://www.tu-dresden.de

State: Computational Methods for Reinforced Concrete Structures — 2014/9/4 — page 6 — le-tex
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with transpositions δυT ,BT ,NT of the vector δυ and the matrices B,N. As δυ is arbitrary
a discretized condition of static equilibrium is derived in the form

f = p (1.8)

with the vector f of internal nodal forces and the vector p of external nodal forces

f =

∫
V

BT · σ dV

p =

∫
V

NT · b dV +

∫
At

NT · t dA
(1.9)

Corresponding to the length of the vector υ the vectors f , p have n components.

• By means of σ = f(ε) and ε = B · υ, Eq. (1.8) constitutes a system of n nonlinear
algebraic equations whereby the nodal displacements υ have to be determined such that
– under the constraint of displacement boundary conditions – internal nodal forces f
are equal to prescribed external nodal forces p.

Nonlinear stress–strain relations, i.e., physical nonlinearities, are always an issue for rein-
forced concrete structures. It is a good practice in nonlinear simulation to start with a
linearization to have a reference for the refinements of a conceptual model. Physical linearity
is described with

σ = C · ε (1.10)

with a constant material matrix C. Thus, using Eq. (1.2) internal forces f (Eq. (1.9)) can
be formulated as

f = K · υ, K =

∫
V

BT ·C ·B dV (1.11)

with a constant stiffness matrix K leading to

K · υ = p (1.12)

This allows for a direct determination of nodal displacements which is symbolically written
as

υ = K−1 · p (1.13)

Actually the solution is not determined with a matrix inversion but with more efficient
techniques, e.g., Gauss triangularization. Stresses σ and strains ε follow with a solution υ
given. A counterpart of physical linearity is geometric linearity:

• Small displacements and geometric linearity are assumed throughout the following if
not otherwise stated.

This was a fast track for the finite element method. The rough outline will be filled out in
the following. Comprehensive descriptions covering all aspects are given in, e.g., [98], [99],
[9], [3]. The special aspects of reinforced concrete structures are treated in [16], [44], [81].
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1.3 Elements
Interpolation performed with finite elements will be described with more details in the fol-
lowing. We consider the mechanical behavior of material points within a body. A material
point is identified by its spatial coordinates. It is convenient to use a different coordinate
system simultaneously. First of all, the global Cartesian coordinate system, see Appendix C,
which is shared by all material points of a body. Thus, a material point is identified by global
Cartesian coordinates

x = ( x y z )T (1.14)

in 3D space. In the following, we assume that the space occupied by the body has been
divided into finite elements. Thus, a material point may alternatively be identified by the
label I of the element it belongs to and its local coordinates

r = ( r s t )T (1.15)

related to a particular local coordinate system belonging to the element e. A material point
undergoes displacements. In the case of translations they are measured in the global Cartesian
system by

u = ( u v w )T (1.16)

Displacements in a general sense may also be measured by means of rotations

ϕ = ( ϕx ϕy ϕz )T (1.17)

if we consider a material point embedded in some neighborhood of surrounding points. The
indices indicate the respective reference axes of rotation.

Isoparametric interpolation will be used in the following. The general interpolation form
(Eq. (1.1)) is particularized as

u = N(r) · υe (1.18)

whereby the global coordinates of the corresponding material point are given by

x = N(r) · xe (1.19)

The vector υe collects all nodal displacements of all nodes belonging to the element e and
the vector xe all global nodal coordinates of that element. Isoparametric interpolation is
characterized by the same interpolation for geometry and displacements with the same shape
functions N(r). Global and local coordinates are related by the Jacobian

J =
∂x

∂r
(1.20)

which may be up to a 3× 3 matrix for 3D cases. Strains may be derived with displacements
related to global coordinates through isoparametric interpolation. Their definition depends
on the type of the structural problem. A general formulation

ε = B(r) · υe (1.21)

is used. Strains ε finally lead to stresses σ. Examples are given in the following.
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8 Chapter 1 Finite Elements Overview

– Two-node bar element along a line.
The line is measured by a coordinate x. Each coordinate has a cross section with a
cross-sectional area. The kinematic assumption of a bar is that every material point in
the cross section has the same displacement in the line direction.
A bar element e has nodes I, J with coordinates xI , xJ . The nodes have the displace-
ments uI , uJ along the line. The origin of the local coordinate r is placed in the center
between the two nodes. Regarding Eqs. (1.18, 1.19) we have

x =
(
x
)
, u =

(
u
)

N =
[

1
2 (1− r) 1

2 (1 + r)
]

xe =

(
xI
xJ

)
, υe =

(
uI
uJ

) (1.22)

This leads to a scalar Jacobian
J =

∂x

∂r
=
Le
2

(1.23)

Strains are uniaxial and defined by

ε =
∂u

∂x
=
∂u

∂r

∂r

∂x
(1.24)

leading to

B =
2

Le

[
− 1

2
1
2

]
(1.25)

with a bar length Le = xJ −xI and finally, regarding Eq. (1.3), to uniaxial strains and
stresses

ε = ( ε ), σ = ( σ ) (1.26)

which are constant along the element.

– Two-node bar element in a plane
The plane is measured by coordinates x, y. The center axis of a bar is a line in this
plane. Each point of the center axis again has a cross-sectional area and again the
kinematic assumption of this bar is that every material point in the cross section has
the same displacement in the direction of the center axis.
A bar element e has nodes I, J with coordinates xI , yI , xJ , yJ . The nodes have the
displacements uI , vJ , uI , vJ in a plane. The origin of the local coordinate r is placed
in the center between the two nodes. Regarding Eqs. (1.18) and (1.19) we have

x =

(
x
y

)
, u =

(
u
v

)
N =

[
1
2 (1− r) 0 1

2 (1 + r) 0
0 1

2 (1− r) 0 1
2 (1 + r)

]

xe =


xI
yI
xJ
yJ

 , υe =


uI
vI
uJ
vJ


(1.27)
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Uniaxial strain is measured in the direction of the bar’s center axis, i.e., in a rotated
coordinate system x′, y′ with x′ being aligned to the center axis. The rotation angle
α (counterclockwise positive) and the transformation matrix T for global coordinates
and displacements are given by

T =

[
cosα sinα
− sinα cosα

]
, cosα =

xJ − xI
Le

, sinα =
yJ − yI
Le

(1.28)

with a bar length Le =
√

(yJ − yI)2 + (xJ − xI)2. The scalar Jacobian is similar as
before

J =
∂x′

∂r
=
Le
2

(1.29)

Strains are again uniaxial and defined by

ε =
∂u′

∂x′
=
∂u′

∂r

∂r

∂x′
(1.30)

leading to

B =
2

LI

[
− 1

2
1
2

]
·
[
cosα sinα 0 0

0 0 cosα sinα

]
(1.31)

regarding Eqs. (1.222, 1.28). Uniaxial strains and stresses have a form as given by
Eq. (1.26).

– Two-node spring element along a line.

The line is measured by a coordinate x. A spring element e has nodes I, J with coor-
dinates xI , xJ . The nodes may coincide and have the same coordinates. A kinematic
assumption for springs may be stated as follows: only the displacement difference of
two nodes is relevant irrespective of their original distance.

Springs are an abstract concept and do not occupy a space. They miss material points,
local coordinates, and a Jacobian. Thus, regarding Eq. (1.21) it is

ε =
(
∆u
)
, B =

[
−1 1

]
, υe =

(
uI
uJ

)
(1.32)

whereby this particular strain ε =
(
∆u
)
corresponds to a difference in displacements

of nodes and leads to a force σ =
(
F
)
. The relation between ∆u and F or spring

characteristics may be linear or nonlinear.

– Two-node spring element in a plane.

The plane is measured with coordinates x, y. A spring element e has nodes I, J with
coordinates xI , yI , xJ , yJ which may again coincide. In analogy to Eq. (1.32)

ε =

(
∆u
∆v

)
, B =

[
−1 −1 0 0
0 0 1 1

]
, υe =


uI
vI
uJ
vJ

 (1.33)
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Generalized strain ε leads to a generalized stress

σ =

(
Fx
Fy

)
(1.34)

The relation between ε and σ may again be linear or nonlinear. It may be appropriate to
transform ε to a rotated coordinate system before evaluating σ using a transformation
matrix as given by T in Eq. (1.28). This requires back transformation of σ to the
original coordinate system with the transposed TT .

– Four-node continuum element in a plane or quad element

The plane is measured with coordinates x, y. A continuum element has nodes I, J,K,L
with coordinates xi, yi, i = I, . . . , L. They span a quad and are ordered counterclock-
wise. The following local coordinates are assigned: I : rI = −1, sI = −1; J : rJ =
1, sJ = −1; K : rK = 1, sK = 1; L : rL = −1, sL = 1. The kinematic assumption of
a continuum is that displacements are continuous, i.e., no gaps or overlapping occur.
Regarding Eqs. (1.18, 1.19), we have

x =

(
x
y

)
, u =

(
u
v

)
Ni(r, s) =

1

4

[
(1 + rir)(1 + sis) 0

0 (1 + rir)(1 + sis)

]
xe,i =

(
xi
yi

)
, υe,i =

(
ui
vi

) (1.35)

with i = I, . . . , L and

x(r, s) =
∑

i
Ni(r, s) · xe,i, u(r, s) =

∑
i
Ni(r, s) · υe,i (1.36)

This leads to a Jacobian matrix

J(r, s) =

[
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

]
, J = det J (1.37)

The Jacobian relates the partial derivatives of a function • with respect to local and
global coordinates (

∂•
∂r
∂•
∂s

)
= J ·

(
∂•
∂x
∂•
∂y

)
→

(
∂•
∂x
∂•
∂y

)
= J−1 ·

(
∂•
∂r
∂•
∂s

)
(1.38)

with the inverse J−1 of J. Small strains are defined by

ε =

 εx
εy
γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =


∂u
∂r

∂r
∂x + ∂u

∂s
∂s
∂x

∂v
∂r

∂r
∂y + ∂v

∂s
∂s
∂y

∂u
∂r

∂r
∂y + ∂u

∂s
∂s
∂y + ∂v

∂r
∂r
∂x + ∂v

∂s
∂s
∂x

 (1.39)

leading to
ε(r, s) =

∑
i
Bi(r, s) · υe,i (1.40)
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with i = I . . . J and

Bi(r, s) =
1

4

ri(1 + sis)
∂r
∂x + si(1 + rir)

∂s
∂x 0

0 ri(1 + sis)
∂r
∂y + si(1 + rir)

∂s
∂y

ri(1 + sis)
∂r
∂y + si(1 + rir)

∂s
∂y ri(1 + sis)

∂r
∂x + si(1 + rir)

∂s
∂x

 (1.41)

The partial derivatives ∂r/∂x . . . are given the components of the inverse Jacobian J−1.
Matrices Ni,Bi related to single nodes are assembled in larger matrices to yield N,B.
Finally, Cauchy stresses

σ =

 σx
σy
σxy

 (1.42)

correspond to strains in a plane. Lateral strains εz or stresses σz come into play with
the distinction of plane stress, that is σz = 0, which may lead to a lateral strain εz 6= 0,
or plane strain, that is εz = 0 which may lead to a lateral stress σz 6= 0. The particular
values in the z-direction have to be determined indirectly with a material law, see
Section 1.4.

All mentioned stresses and the corresponding strains are conjugate with respect to energy,
i.e., the product σ · ε̇ corresponds to a rate of internal energy or a rate of specific internal
energy. The concept of stresses may be generalized:

• Depending on the type of structural element σ may stand for components of Cauchy
stresses or for components of forces or for components of internal forces in a beam cross
section, see Section 3.1.1. Strains ε are generalized correspondingly in order to lead to
internal energy, e.g., including displacements in the case forces or curvature in the case
of moments.

A basic property of the aforementioned elements is that they approximate coordinates and
displacements by interpolation: nodal values and interpolated values are identical at nodes.
For instance, for the four-node continuum element we have u = υe,i for r = ri, s = si i =
I, . . . , L. This property is shared by all types of finite elements.

Another issue concerns continuity: For the four-node continuum element the interpo-
lation is continuous between adjacent elements along their common boundary. One sided
first derivatives of interpolation exist for each element along the boundary but are differ-
ent for each element. Thus, the four-node continuum element has C0-continuity with these
properties. Furthermore, the integrals for internal and external nodal forces (Eq. (1.9)) are
evaluable. Other elements may require higher orders of continuity for nodal forces to be
integrable.

Finally, the issue of element locking has to be mentioned. The four-node continuum
element, e.g., does not allow us to model the behavior of incompressible solids. Constraining
Eqs. (1.41) with the condition of incompressibility εx + εy + εz = 0 makes the element much
to stiff if internal nodal forces are exactly integrated [9, 8.4]. First basic hints to treat locking
are given in Section 1.7. The locking problem is exemplary treated for shells in Section 8.6.

Only a few element types were touched up to now. Further elements often used are 3D-
continuum elements, 2D- and 3D-beam elements, shell elements and slab elements as a special
case of shell elements. Furthermore, elements imposing constraints like contact conditions
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have become common in practice. For details see, e.g., [3]. Regarding the properties of
reinforced concrete more details about 2D-beam elements including Bernoulli beams and
Timoshenko beams are given in Section 3.3, about slabs in Section 7.4 and about shells in
Chapter 8.

1.4 Material Behavior

From a mechanical point of view, material behavior is primarily focused on strains and
stresses. The formal definitions of strains and stresses assume a homogeneous area of matter
[64]. Regarding the virgin state of solids their behavior initially can be assumed as linear
elastic in nearly all relevant cases. Furthermore, the behavior can be initially assumed as
isotropic in many cases, i.e., the reaction of a material is the same in all directions. The
concepts of isotropy and anisotropy are discussed in Section 5.3 with more details.

The following types of elasticity are listed exemplary:

– Uniaxial elasticity
σ = E ε (1.43)

with uniaxial stress σ, Young’s modulus E, and uniaxial strain ε.

– Isotropic plane strain σx
σy
σxy

 =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 ·
 εx
εy
γxy

 (1.44)

with stress components σx, σy, σxy, Young’s modulus E, Poisson’s ratio ν, and strain
components εx, εy, γxy. This is a subset of the triaxial isotropic linear elastic law as is
described in Section 5.3.

– Isotropic plane stress  σx
σy
σxy

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ·
 εx
εy
γxy

 (1.45)

ensuring σz = 0 for every combination εx, εy, γxy

– Plane bending
M = EJ κ (1.46)

with the moment M , curvature κ, Young’s modulus E, and cross-sectional moment of
inertia J . This is covered by the concept of generalized stresses with σ =

(
M
)
and

generalized strains ε =
(
κ
)
.

Equations (1.43)–(1.45) are a special case of

σ = C · ε (1.47)
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with the constant material stiffness matrix C describing a linear material behavior. At the
latest upon approaching material strength, the behavior becomes physically nonlinear. A
simple case is given by the uniaxial elastoplastic law

σ =

{
E (ε− εp) for − εp ≤ ε ≤ εp
signε fy otherwise

(1.48)

and
ε̇p = ε̇ for |σ| = fy (1.49)

with a yield stress fy (unsigned) and an internal state variable εp. The internal state variable
indicates the actual remaining strain upon unloading, i.e., σ = 0 for ε = εp. An internal state
variable captures the preceding load history. The approach covers elastic loading, yielding,
elastic unloading and reloading, ongoing yielding in the opposite uniaxial range. This cycle
may be repeated whereby yielding is without hardening. Equation (1.49) is a simple evolution
law for internal state variables. More details about plasticity are given in Section 5.5.

In the case of nonlinear material equations at least an incremental form

σ̇ = CT · ε̇ (1.50)

should exist with the tangential material stiffness CT , which is no longer constant anymore
but might depend on stress, strain, and internal state variables. On occasion the compliance
is needed, as a counterpart of stiffness, i.e.,

ε = D · σ or ε̇ = DT · σ̇ (1.51)

whereby compliance matrices are inverses of stiffness matrices: D = C−1, DT = C−1
T .

1.5 Weak Equilibrium and Spatial Discretization

The preceding sections gave an introduction of (1) kinematic compatibility within the con-
text of spatial discretization and of (2) material laws. The third cornerstone of structural
mechanics is equilibrium which is formulated in a weak form as a principle of virtual work.

Boundary conditions have to be regarded in advance. Given a point on a boundary of
a body, either a displacement boundary condition or a force boundary condition (zero force
is also a condition) has to be prescribed for this point. Let us assume that displacements
are prescribed with ū on surface part Au, tractions are prescribed with t̄ on surface part At
while Au together with At contain the whole surface A but do not overlap. Thus, equilibrium
is given by ∫

V

δεT · σ dV +

∫
V

δuT · ü %dV =

∫
V

δuT · p̄ dV +

∫
At

δuT · t̄ dA (1.52)

under the conditions
u = ū onAu, δu = 0 onAu (1.53)

and δu arbitrary otherwise. The meaning of the symbols is summarized as follows:
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(•)T transpose of column vector (•) leading to row vector
u field of displacement vector
ü field of acceleration vector
δu field of test functions or virtual displacement vector
δε field of virtual strain vector corresponding to δu
σ field of stress vector
% specific mass
p̄ prescribed field of loads distributed in the body
t̄ prescribed field of tractions distributed over surface of the body
V body volume
A body surface
Au part of surface with prescribed displacements
At part of surface with prescribed tractions

Formulation (1.52) covers structural dynamics and includes quasistatics as a special case.
Concentrated loads are not explicitly included. For mathematically precise formulations
also covering generalized variational principles see [96]. All listed parameters have to be
considered as generalized. The following evaluations of are listed exemplary:

• In the case of a uniaxial bar, Eq. (1.52) becomes∫
L

δε σ Adx+

∫
L

δu ü %Adx =

∫
L

δu p̄dx+ [δu t̄]L0 (1.54)

with 0 ≤ x ≤ L under the conditions

u0 = ū0, δu0 = 0 and/or uL = ūL, δuL = 0 (1.55)

with a cross-sectional area A and a load per length p̄ in the bar direction whereby
the formulation of the last term indicates the boundary term of a partial integration.
Surface tractions degenerate to end forces t̄ which are prescribed at either x = 0 or
x = L (or none, but not both at the same time).

• In the case of a plane Bernoulli beam equation (1.52) becomes∫
L

δw ẅ m̄dx+

∫
L

δκM dx =

∫
L

δw p̄ dx− [δϕ M̄ ]L0 + [δw V̄ ]L0 (1.56)

with 0 ≤ x ≤ L, the deflection w, the beam’s slope ϕ, moment M , shear force V , a dis-
tributed mass m̄ per length and a distributed lateral load p̄ per length. Two boundary
conditions can be given at each end x = 0 and x = L. There are corresponding pairs
(ϕ, M) and (w, V ). Only one quantity out of a pair can be prescribed at a boundary.
Furthermore, at least two displacement boundary conditions should be given with at
least one deflection w̄0 and/or w̄L.

The principle of virtual work or weak integral forms of equilibrium conditions treat a body
as a whole. Strong differential forms consider forces applied to infinitesimally small sections
or differentials of a body and lead to differential equations. Both are equivalent from a
mechanical point of view. This is exemplary demonstrated for beams in Section 3.2. Weak
forms are the starting point for discretization with finite elements. This has the following
steps regarding Eq. (1.52):
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1. Mesh generation

The respective body has to be to filled with elements. No gaps between elements and
no overlapping of elements are allowed in the body’s interior. Elements may form facets
or polygons on the exterior.

Proportions and geometric distortions of single element may have a considerable influ-
ence on the mathematical approximation error.

2. Spatial interpolation of displacements with Eq. (1.18)

An infinite number of degrees of freedom u is reduced to a finite number of nodal degrees
of freedom υe with trial functions according to Eq. (1.18). This leads to discretized
strains ε with Eq. (1.21).

3. Spatial interpolation of virtual displacements

Interpolation of virtual displacements δu is performed with test functions. The method
of Bubnov–Galerkin is generally used with the same functions as trial functions and
test functions implying virtual nodal degrees of freedom δυe

δu = N · δυe, δε = B · δυe (1.57)

and virtual δε strains are determined in the same way as strains.

4. Evaluation of stresses σ from stains ε according to a prescribed material law

This has to be performed by the integration of the incremental form (Eq. (1.50)). The
details depend on the material and structural type and are a major issue in all what
follows in this textbook.

5. The evaluation of integrals is performed element by element∫
Ve

δεT · σ dV = δυTe · fe, fe =

∫
Ve

BT · σ dV∫
Ve

δuT · ü %dV = δυTe ·Me · ϋe, Me =

∫
Ve

NT ·N %dV∫
Ve

δuT · p̄ dx = δυTe · p̄e, p̄e =

∫
Ve

NT · p̄ dV∫
Ae,t

δuT · t̄ dA = δυTe · t̄e, t̄e =

∫
Ae,t

NT · t̄ dA

(1.58)

with an element index e. This includes the element’s internal nodal forces fe, its mass
matrix Me and its external nodal forces or loadings p̄e, t̄e which are prescribed. For
integration methods, see Section 1.6. Internal nodal forces in the end are functions of
nodal displacements fe = fe(υe).

6. Assembling of element contributions into a whole system

Regarding, e.g., global internal nodal forces f , the vector has entries for every degree
of freedom of every global node. On the other hand, every meshing should have a table
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which connects an element to the global nodes belonging to it. This table relates the
position of the entries in fe to a position in f .
As a node generally gets contributions from more than one element, the value of an
entry in fe has to be added to the corresponding entry in f . This is symbolically
described by ∫

V

δεT · σ dV = δυT · f =
∑

e
δυTe · fe (1.59)

The same argumentation holds for δυe → δυ, υe → υ, Me → M, p̄e → p̄, t̄e → t̄.
Global internal nodal forces in the end are a function of global nodal displacements
f = f(υ).

7. Regarding arbitrary values of δυ a spatially discretized system

M · ϋ + f(υ) = p̄ + t̄ (1.60)

finally results with the system’s mass matrix M, its internal nodal forces f and its
loadings p̄, t̄. This is a set of ordinary differential equations of second order in time t
for nodal displacements υ. It might be nonlinear due to the nonlinear dependence of
internal nodal forces f on υ.

This procedure allows for physical nonlinearities. In the special case of physical linearity the
linear material stiffness σ = C · ε leads to internal nodal forces

fe =

∫
Ve

BT ·C ·B dV · υe = Ke · υe (1.61)

see Eqs. (1.58)1 and (1.21), with a constant element stiffness matrix Ke. Assembling leads
to a system stiffness matrix K

f(υ) = K · υ (1.62)

and regarding Eq. (1.60) to
M · ϋ + K · υ = p̄ + t̄ (1.63)

which is a system of linear ordinary differential equations of second order in time t.
To treat physical nonlinearities the system’s tangential stiffness is involved. The tangential

stiffness matrix is needed for the solution of the nonlinear system and furthermore reveals
characteristic properties, e.g., regarding stability properties. The tangential stiffness of an
element is derived with

dfe =
∂fe
∂υe

· dυe = KTe · dυe or ḟe = KTe · υ̇e (1.64)

with
KTe =

∫
Ve

BT · ∂σ
∂ε
· ∂ε
∂υe

dV =

∫
Ve

BT ·CT ·B dV (1.65)

see Eqs. (1.58)1, (1.50), and (1.21), and a system tangential stiffness KT

df = KT · dυ or ḟ = KT · υ̇ (1.66)

Finally, the system (1.60) or (1.63) should be constrained with appropriate conditions re-
garding υ to prevent rigid body displacements.
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1.6 Numerical Integration and Solution Methods
for Algebraic Systems

The integral formulation of equilibrium conditions requires the evaluation of integrals as given
by Eq. (1.58). The evaluation is performed element by element. The integration of a quad
element, see Section 1.3, is exemplary discussed in the following. A general function f(x, y)
indicates the integrand. The isoparametric quad element has a local coordinate system r, s
with −1 ≤ r, s,≤ 1, see Section 1.3. Thus, integration is performed by∫

VI

f(x, y) dV =

∫ +1

−1

∫ +1

−1

f(r, s) J(r, s) bdrds (1.67)

with the determinant J of the Jacobian, see Eq. (1.37), and a thickness b. As closed analytical
forms generally are not available for f(r, s) a numerical integration has to be performed∫ +1

−1

∫ +1

−1

f(r, s) J(r, s) bdrds = b

ni∑
i=0

ni∑
j=0

ηiηj f(ξi, ξj) J(ξi, ξj) (1.68)

with integration order ni, sampling points ξ, and weighting factors η. An appropriate scheme
is given by the Gauss integration. Its sampling points and weighting factors are listed in
Table 1.1 up to an integration order ni = 3. Weighting factors obey a rule

∑ni
i=0 ηi = 2.

Accuracy of integration is a key issue.

• Integration accuracy increases with increasing integration order. On the other hand,
numerical integration leads to a major contribution to computational costs.

Gauss integration generally is most efficient compared to other numerical integration schemes:
an integration order ni gives exact results for polynoms of order 2ni + 1 disregarding round-
off errors, e.g., a uniaxial integration of order 1 with two sampling points exactly integrates
a polynomial of the order 3. Alternative numerical integration schemes are given by schemes
of Simpson, Newton–Cotes, Lobatto.

Discretization and integration lead to a system of ordinary differential equations of sec-
ond order in time for unknown nodal displacements υ, see Eq. (1.60). To begin with a

ni ξi ηi
0 0.0 2.0
1 ±0.57735 02691 89626 1.0
2 ±0.77459 66692 41483 0.55555 55555 55556

0.0 0.88888 88888 88889
3 ±0.86113 63115 94053 0.34785 48451 37454
±0.33998 10435 84856 0.65214 51548 62546

...
...

...

Table 1.1: Sampling points and weights for Gauss integration (15 digits shown).
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18 Chapter 1 Finite Elements Overview

quasistatic analysis is considered with ϋ = 0 leading to

r(υ) = p− f(υ) = 0, p = p̄ + t̄ (1.69)

with a residual r, internal nodal forces f depending on displacements υ and external nodal
loads p, which are assumed to be independent of υ. The general case is nonlinear dependence
of f on υ. Thus, the solution of Eq. (1.69) has to be determined by an iteration with a
sequence υ(0), . . . ,υ(ν). Regarding an arbitrary iteration step (ν) we have r(υ(ν)) 6= 0 and
seek for a correction δυ. A linear Taylor expansion is used as a basic approach

r(υ(ν) + δυ) ≈ r(υ(ν)) + K
(ν)
T · δυ

= 0
(1.70)

with a tangential stiffness matrix, see also Eq. (1.65)

K
(ν)
T = − ∂r

∂υ

∣∣∣∣
υ=υ(ν)

=
∂f

∂υ

∣∣∣∣
υ=υ(ν)

(1.71)

leading to the Newton–Raphson method

δυ =
[
K

(ν)
T

]−1

· r(υ(ν))

υ(ν+1) = υ(ν) + δυ
(1.72)

with (hopefully) an improved value υ(ν+1). Iteration may stop if ‖r(υ(ν+1))‖ � 1 and
‖δυ‖ � 1 with a suitable norm ‖ · ‖ transforming a vector into a scalar. The method
generally has a fast convergence but is relatively costly. The tangential stiffness matrix
has to be computed in every iteration step (ν) and a decomposition in order to solve (LU
decomposition instead of inversion) has to be performed on it to determine δυ. Alternative
iteration methods use variants of the iteration matrix like the modified Newton–Raphson
method or the BFGS method or other quasi-Newton methods [3, 8.4], [9, 6.3],[99, 7]. For
more details, see Appendix A.

Iterative methods like Newton–Raphson are embedded in an incrementally iterative
scheme. Thus, loading is given as a history: p = p(t). An appropriate choice is 0 ≤ t ≤ 1
for the scaling of the load history time, which is different from real time in the case of a
quasistatic analysis. The following steps are performed in the incrementally iterative scheme:

1. Discrete time values ti are regarded with a time step ∆t = ti+1− ti and an initial time
t0 = 0. A loading pi = p(ti) is prescribed for all time steps. The incremental material
law (Eq. (1.50))

σ̇(t) = CT · ε̇(t) (1.73)

is integrated by a numerical integration of stresses and strains using a trapezoidal rule

σi+1 = σi + ∆t [ασ̇i+1 + (1− α) σ̇i]
εi+1 = εi + ∆t [αε̇i+1 + (1− α) ε̇i]

(1.74)

with σi = σ(ti), εi = ε(ti) and an integration parameter α. The parameters α, ∆t
rule stability and accuracy of the numerical approach.
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2. The implicit scheme with α = 1 is used in the following to gain unconditional stability.
Thus, Eqs. (1.73, 1.74) lead to

σi+1 = σi + CT,i+1 · (εi+1 − εi) (1.75)

whereby CT,i+1 indicates dependence of the tangential material stiffness on σi+1 and/or
εi+1.

3. Unknowns are nodal displacements υi = υ(ti) leading to strains εi, stresses σi and
internal nodal forces fi except the initial state. This state described by υ0, ε0, σ0, f0
is assumed to be known and initial equilibrium is given by r0 = p0 − f0 = 0.

4. The solution starts with t1 and υ1 has to be determined. This is performed with
an iteration υ(0)

1 , . . . ,υ
(ν)
1 with, e.g., the Newton–Raphson method using an initial

υ
(0)
1 = υ0. The iteration involves ε(ν)

1 , σ
(ν)
1 , C

(ν)
T,1 according to Eq. (1.75).

5. A converged υ1 and the corresponding strains ε1 and stresses σ1 serve as a base for t2
and so on until a target time is reached.

The procedure is illustrated in Fig. 1.4 and combined with integration according to Eq. (1.58)
and assembling according to Eq. (1.59). The time t serves as a loading parameter in the
quasistatic case. A scaling of time, i.e., multiplying time with a constant factor in each
occurrence, does not have any influence upon the results.

This starts to become different with a transient analysis. A material behavior like creep, see
Section 2.2, has to be regarded as transient. Such a behavior is modeled by incorporating
viscosity [64, 6.4]. Thus, the incremental material law (Eq. (1.73)) is extended as

σ̇ = CT · ε̇+ Σ (1.76)

Figure 1.4: Flow of displacement-based nonlinear calculation.
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with an additional term Σ depending on stress σ(t) and strain ε(t). In a similar way as done
with Eq. (1.73) leading to Eq. (1.75) this is integrated with

σi+1 = σi + CT,i+1 · (εi+1 − εi) + ∆tΣi+1 (1.77)

Internal nodal forces are determined according to Eq. (1.58)1

fi+1 =

∫
V

BT · σi+1 dV = fi + KT,i+1 ·∆υ + ∆t f̄i+1 (1.78)

with element index e omitted and ∆υ = υi+1 − υi and

fi =

∫
V

BT · σi dV

KT,i+1 =

∫
V

BT ·CT,i+1 ·B dV

f̄i+1 =

∫
V

BT ·Σi+1 dV

(1.79)

The contributions KT,i+1, f̄i+1 may involve nonlinearities due to the dependence of CT,i+1,Σi+1

on strains and stresses. Equilibrium at a time ti+1 has the condition

ri+1 = pi+1 − fi+1

= pi+1 − fi −KT,i+1 ·∆υ −∆t f̄i+1

= 0
(1.80)

according to Eqs. (1.69, 1.78). We apply the Newton–Raphson method (Eq. (1.72)) to solve
this system of algebraic equations within in incrementally iterative scheme, see Eq. (1.72).
An extended tangential stiffness, see Eq. (1.71), is given by

A
(ν)
T,i+1 = K

(ν)
T,i+1 + ∆t

∂ f̄

∂υ

∣∣∣∣
υ=υ(ν)

i+1

(1.81)

with the iteration counter (ν) leading to an iteration scheme

υ
(ν+1)
i+1 = υ

(ν)
i+1 +

[
A

(ν)
T,i+1

]−1

· r(ν+1)
i+1 (1.82)

The exact formulation of the extended tangential stiffness depends on the particular form of
f̄ or Σ, respectively. In the case of time steps ∆t being small is A

(ν)
T ≈ K

(ν)
T .

A particular case is given by the viscoelasticity of materials, see Section 2.2, leading to

Σ = V · ε−W · σ (1.83)

with constant material terms V, W, see Eq. (2.27). Thus, Σi+1 = V · εi+1 −W · σi+1 and
stress from Eq. (1.77) becomes

σi+1 = σi + CT,i+1 · (εi+1 − εi) + ∆tV · εi+1 −∆tW · σi+1 (1.84)
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leading to

σi+1 = [I + ∆tW]
−1 ·

(
[CT,i+1 + ∆tV] · (εi+1 − εi) + σi + ∆tV · εi

)
(1.85)

with the unit matrix I. Internal nodal forces according to Eq. (1.58)1 are given by

fi+1 =

∫
V

BT · σi+1 dV = f̄i + K̄T,i+1 ·∆υ (1.86)

with ∆υ as before and

f̄i = [I + ∆tW]
−1
∫
V

BT · (σi + ∆tV · εi) dV

K̄T,i+1 = [I + ∆tW]
−1
∫
V

BT · [CT,i+1 + ∆tV] ·B dV
(1.87)

The residual, see Eq. (1.80), is given by

ri+1 = pi+1 − f̄i − K̄T,i+1 ·∆υ (1.88)

leading to an iteration scheme

υ
(ν+1)
i+1 = υ

(ν)
i+1 +

[
K̄

(ν)
T,i+1

]−1

· r(ν+1)
i+1 (1.89)

All quantities at time ti can assumed to be known within a time stepping scheme. A potential
source of nonlinearity is still given by CT,i+1. Formulation (1.87) is used as solution method
for Examples 2.2 and 3.3.

Real time t is also a key factor for a dynamic analysis regarding inertia. Based on Eq. (1.60)
we have in analogy to Eq. (1.69)

r = p(t)−M · ϋ − f = 0, p(t) = p̄(t) + t̄(t) (1.90)

whereby the loading p is a prescribed function of the time t. The displacements υ(t) and
all derived values (velocities υ̇(t), accelerations ϋ(t), internal nodal forces f) are unknown
before solution. Equation (1.90) is discretized in the spatial domain, but not yet in the time
domain, i.e., it is system of ordinary differential equations of second order in time. Beneath
displacement boundary conditions this problem needs initial conditions for the displacements
υ0 = υ(0) and velocities υ̇0 = υ̇(0).

A widespread approach for the temporal discretization of acceleration together with ve-
locities is given in the Newmark method

υ̇i+1 = υ̇i + ∆t
[
γϋi+1 + (1− γ)ϋi

]
υi+1 = υi + ∆t υ̇i + ∆t2

[
βϋi+1 + ( 1

2 − β)ϋi

] (1.91)

with υi+1 = υ(ti+1), υ̇i+1 = υ̇(ti+1), ϋi+1 = ϋ(ti+1) a time step length ∆t = ti+1 − ti and
integration parameters γ, β. Equations (1.91) are solved for the acceleration and velocity in
time step i+ 1. We get

ϋi+1 =
1

β∆t2
[υi+1 − υ̃i+1] (1.92)
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with an auxiliary quantity

υ̃i+1 = υi + ∆t υ̇i +
∆t2

2
(1− 2β) ϋi (1.93)

and the velocity

υ̇i+1 =
γ

β∆t
[υi+1 − υi] +

(
1− γ

β

)
υ̇i + ∆t

(
1− γ

2β

)
ϋi (1.94)

Finally, dynamic equilibrium equation (1.90) is applied for the time step i + 1 with the
acceleration according to Eq. (1.92):

ri+1 = pi+1 −
1

β∆t2
M · [υi+1 − υ̃i+1]− fi+1 = 0 (1.95)

With the given parameters γ, β,∆t, a given previous state υi, υ̇i, ϋi, given mass matrix M
and load pi+1, Eq. (1.95) has to be solved for υi+1 whereby the dependence of fi+1 on υi+1

is crucial and might be nonlinear.
We apply again the Newton–Raphson method (Eq. (1.72)). An extended tangential stiff-

ness, see Eq. (1.71), is given by

A
(ν)
T =

1

β∆t2
M +

∂f

∂υ

∣∣∣∣
υ=υ(ν)

i+1

=
1

β∆t2
M + K

(ν)
T (1.96)

leading to an iteration scheme

υ
(ν+1)
i+1 = υ

(ν)
i+1 +

[
A

(ν)
T

]−1

·
(

pi+1 −
1

β∆t2
M ·

(
υ

(ν)
i+1 − υ̃i+1

)
− f

(ν)
i+1

)
(1.97)

This includes the linear case with

f
(ν)
i+1 = K · υ(ν)

i+1, A
(ν)
T = A =

1

β∆t2
M + K (1.98)

and Eq. (1.97) simplifies to

υi+1 = A−1 ·
(

pi+1 +
1

β∆t2
M · υ̃i+1

)
(1.99)

with no iteration necessary [2, 9.2.4]. Numerical integration parameters γ, β rule consistency
and numerical stability of the method.

– Stability means that an amount of error introduced in a certain step due to a finite
time step length ∆t is not is not increased in the subsequent steps.

– Consistency means that the iteration scheme converges to the differential equation for
∆t→ 0.

Stability and consistency are necessary to ensure that the error of the numerical method
remains within some bounds for a finite time step length ∆t. A choice β = 1

4 , γ = 1
2 is

reasonable for the Newmark method to reach consistency and stability [2, 9.4].
This section completes the basic discussion of procedures as they are directly used to

solve problems of reinforced concrete structures. The following last section of this chapter
touches some theoretical background regarding the finite element method.
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1.7 Convergence
The major contribution to the mathematical approximation error, see Section 1.1, is the
discretization error arising from the difference between mathematical and numerical model,
see Fig. 1.1. This difference should become smaller with a mesh refinement, i.e., the nu-
merical model should converge with respect to the underlying mathematical model. Under
the assumption of geometrical and physical linearity the convergence behavior of the finite
element method can be analyzed theoretically. Quasistatic problems are considered in the
following.

The following mathematical symbols are used in this section:

∀ for all
∈ element of
⊂ subset of
∃ it exists
∩ intersection
∪ union

Given a linear material law
σ = C · ε (1.100)

the condition of weak, integral equilibrium equation (1.52), can be written as∫
V

δεT ·C · ε dV =

∫
V

δuT · p̄ dV +

∫
At

δuT · t̄ dA (1.101)

with a given body geometry V and given values for C, p̄ and t̄. The boundary A of V is
composed of Au and At whereby A = At ∪ Au and At ∩ Au = 0. Displacement boundary
conditions or Dirichlet conditions are prescribed on Au and force boundary conditions or
Neumann conditions on At with t̄ = n · σ with the boundary’s normal n. Displacement
boundary conditions have to prevent rigid body motions.

Generalized strains ε, δε are derived from the generalized displacements u, δu by a differ-
ential operator depending on the type of the structural problem under consideration. The
trial functions according to Eq. (1.18) and test functions according to Eq. (1.57) are assumed
to belong to a Sobolev function space H (→ square integrable functions [2, 4.3.4]) defined
over the body V and to fulfill the displacement boundary conditions.

Equation (1.101) can be written in a general form as

a(u,v) = (f ,v) ∀v ∈ H (1.102)

with a symmetric, bilinear operator a(·, ·), a further linear operator (f , ·), and v formally
replacing δu. This has the following properties:

– Symmetry
a(u,v) = a(v,u) (1.103)

– Bilinearity
a(γ1u1 + γ2u2,v) = γ1a(u1,v) + γ2a(u2,v)
a(u, γ1v1 + γ2v2) = γ1a(u,v1) + γ2a(u,v2)

(1.104)
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– Linearity
(f , γ1v1 + γ2v2) = γ1(f ,v1) + γ2(f ,v2) (1.105)

A norm maps a function v into a nonnegative number. Sobolev norms ||v||i of order i are
used in this context [2, 4.3.4,(4.76)]. Sobolev norms are built from integration of squares of
functions and squares of their derivatives up to order i. It is assumed that i = 1 is appropriate
for the following. It can then be shown that a has the properties

– Continuity

∃M > 0 : |a(v1,v2)| ≤M ‖v1‖1 ‖v2‖1 ∀v1,v2 ∈ H (1.106)

– Ellipticity
∃α > 0 : a(v,v) ≥ α ‖v‖21 ∀v ∈ H (1.107)

whereby M,α depend on problem type and material values but not on v1,v2,v.

Due to Eq. (1.107) a(v,v) ≥ 0, i.e., a is a norm and may be physically interpreted as energy.
It is twice the internal strain energy. It can be shown that the problem Eq. (1.102) – i.e.,
determine a function u ∈ H such that Eq. (1.102) is fulfilled for all v ∈ H – has a unique
solution u, see, e.g., [2, 4.3]. This is the exact solution of the mathematical model, see
Fig. 1.1.

Discretization uses trial and test functions uh,vh ∈ Hh of a subset Hh ⊂ H based
upon the concept of meshes and interpolation with elements and nodes, see Section 1.3. To
simplify the derivations, a uniform mesh of elements is assumed with a mesh size parameter
h, e.g., a diameter or length of a generic element. For nonuniform meshes see [2, 4.3.5]. The
approximate solution uh ∈ Hh of Eq. (1.102) is determined by

a(uh,vh) = (f ,vh) ∀vh ∈ Hh (1.108)

The difference between approximate and exact solution gives the discretization error

eh = u− uh (1.109)

The approximation uh is known forHh given, it can be determined according to the procedure
described in Section 1.5. The error eh has to be estimated. The approximate solution has
the following properties:

– Orthogonality of error, see [2, (4.86)]

a(eh,vh) = 0 ∀vh ∈ Hh (1.110)

– Energy of approximation is smaller than exact energy, see [2, (4.89)]

a(uh,uh) ≤ a(u,u) (1.111)

– Energy of error is minimized, see [2, (4.91)]

a(eh, eh) ≤ a(u− vh,u− vh) ∀vh ∈ Hh (1.112)
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Combination of Eqs. (1.107), (1.112), and (1.106) leads to

α ‖eh‖21 = α ‖u− uh‖21 ≤ a(eh, eh)

= infvh∈Hh a(u− vh,u− vh) ≤M infvh∈Hh ‖u− vh‖21
(1.113)

where inf is infimum, the largest lower bound1. This is rewritten as

‖u− uh‖1 ≤ c d(u, Hh) (1.114)

with
d(u, Hh) = inf

vh∈Hh
‖u− vh‖1 , c =

√
M/α (1.115)

d is a “distance” of functions in Hh to the exact solution u, c depends on the structural
problem type and the values of its parameters, but not on Hh.

• Convergence means uh → u or ‖u− uh‖1 → 0 with mesh size h→ 0.

Convergence can be reached with an appropriate selection of function spaces Hh whereby
reducing the distance d(u, Hh).

A more precise statement is possible using interpolation theory. This introduces the
interpolant2 ui ∈ Hh of the exact solution u. Complete polynomials3 of degree k are used
for discretization and interpolation. Interpolation theory estimates the interpolation error
with

‖u− ui‖1 ≤ ĉ hk ‖u‖k+1 (1.116)

with the mesh size h and a constant ĉ which is independent of h [2, (4.99)]. ‖u‖k+1 is the k+1-
order Sobolev norm of the exact solution. On the other hand a relation infvh∈Hh ‖u− vh‖1 ≤
‖u− ui‖1 must hold as ui ∈ Hh. Using this and Eqs. (1.114, 1.116) yields

‖u− uh‖1 ≤ cĉ h
k ‖u‖k+1 (1.117)

The value cĉ can be merged to c, which depends on the structural problem type and the
values of its parameters, but not on h. A further merging of c and ‖u‖k+1 leads to the
well-known formulation

‖u− uh‖1 ≤ c h
k (1.118)

whereby c depends on the structural problem type, the values of its parameters and the norm
of the exact solution.

The following conditions for convergence can be derived [2, 4.3.2]:

– A prerequisite is theoretical integrability of all quantities. This leads to requirements
for the integrands of the energy a and the arguments of the Sobolov norms, which are
uh,vh,u or derivatives thereof.
This corresponds to the requirement of compatibility or continuity – with a different
meaning compared to Eq. (1.106) –, respectively, of finite element interpolation func-
tions – generally displacement interpolations – along inter element boundaries.

1 ‖u− vh‖1 ,vh ∈ Hh is a subset of real numbers. infvh∈Hh ‖u− vh‖1 is the largest number less or equal
to the numbers in this subset.

2 u and ui coincide at nodes, but generally not apart from nodes. Generally is ui 6= uh.
3 A polynomial in x, y is complete of order 1 if it includes x, y, complete of order 2 if of order 1 and including
x2, xy, y2, complete of order 3 if complete of order 2 and including x3, x2y, xy2, y3 and so on.
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– According to Eq. (1.118), a sequence of approximate solutions uh with h → 0 will
converge4 with respect to ‖u− uh‖1 if k ≥ 1.

The case k = 1 is covered by the patch test, i.e., the ability to model fields with
constant first derivatives of finite element interpolation functions in arbitrary element
configurations [9, 8.3.2]).

– The convergence rate will be higher for larger values of k, i.e., if the finite element
interpolation has a higher order of completeness.

Limitations of these arguments have to be mentioned. Under certain conditions the coefficient
c may become so large that acceptable solutions, i.e., a sufficiently small value ||u − uh||,
cannot be reached with realizable values h small enough. A particular occurrence is given
by locking of approximate solutions with incompressible or nearly incompressible materials.

The locking problem motivates the inclusion of extended weak forms of equilibrium con-
ditions. Equations (1.101, 1.102) are weak forms of displacement based methods, as a solution
is given by a displacement field. Strains and stresses are derived from this solution. Extended
weak forms allow us to involve fields for stresses and strains as independent solution vari-
ables. Most prominent are the principles of Hu-Washizu and Hellinger-Reissner [2, 4.4.2].
An abstract extended problem definition analogous to Eq. (1.108) is given by [3, (16)]

a(uh,vh) + b(εh,vh) = (f ,vh) ∀vh ∈ Hh

b(wh,uh)− c(εh, eh) = 0 ∀wh ∈Wh
(1.119)

in which a, c are symmetric bilinear forms, b is a bilinear form, f is a linear form, Hh,Wh

are appropriate functions spaces, uh ∈ Hh, εh ∈ Wh are the approximate solutions. In most
cases εh stands for an independent field of strains or stresses. Such an approach requires
an extension of the foregoing discussion related to displacement based methods including
the widely referenced inf-sup condition [3]. The provided framework to include independent
interpolations for displacements, strains, and stresses may avoid locking problems to a large
degree. Cases of locking risks will be discussed individually if necessary in the following.

The foregoing discussion is related to linear problems. They cannot be strictly applied to
nonlinear problems – physically nonlinear and/or geometrically nonlinear. But the conclu-
sions to be drawn regarding element selection and discretization should also be considered
for nonlinear and dynamic problems.

4 Converge with respect to first order Sobolev norm ‖u− uh‖1 may not be sufficient if generalized strains
are derived from higher derivatives of displacements, e.g., with beams, slabs, shells. The theory has to be
extended for this case.




