Table of contents

Preface ... VII
Acknowledgements .. IX
About the Authors ... XI
1 **Introduction** .. 1
2 **Geology of Turkey and Istanbul, expected problems, some cuttability characteristics of the rocks** ... 3
2.1 Introduction .. 3
2.2 Geology of Turkey ... 3
2.3 Geology of Istanbul .. 4
2.4 TBM performance in different projects in Istanbul ... 6
2.5 Description of geological formations in Istanbul, physical and mechanical properties ... 8
2.5.1 The stratigraphy of Istanbul and description of geologic formations 8
2.5.2 Typical frequency of RQD and GSI in the geological formations in Istanbul 16
2.5.3 Physical and mechanical properties of rocks taken from different geological formations ... 28
2.5.4 Schmidt hammer tests carried out in station tunnels in Uskudar–Umraniye metro line ... 37
2.6 Full-scale linear rock cutting tests with disc cutters in rock samples collected from different projects in Istanbul ... 40
2.6.1 Description of laboratory full-scale linear rock cutting test 41
2.6.2 Testing methodology and test results ... 43
2.6.3 Comparison of laboratory full-scale linear rock cutting test results with in-situ cutter performance – the effect of rock discontinuities .. 52
2.7 Conclusions ... 68
References ... 70
3 **Difficult ground conditions dictating selection of TBM type in Istanbul** ... 73
3.1 Introduction ... 73
3.2 Case study of open TBM in complex geology (1989), in Baltalimani tunnel: Why open type TBM failed ... 73
3.2.1 Collapse between chainage 0+920 and 0+935 km .. 78
3.2.2 Collapse between chainage 0+965 and 0+982 km .. 79
3.2.3 Collapse between chainage 1+148 and 1+155 km .. 80
3.2.4 Collapse between chainage 1+220 and 1+235 km .. 80
3.3 Double shield TBM in the Istanbul–Moda collector tunnel, 1989/90 80
3.4 Double shield TBM working without precast segment, difficulties in difficult ground: Tuzla-Dragos tunnel in Istanbul ... 80
3.5 Difficulties in using slurry TBMs in complicated geology, Marmaray tunnel project ... 84
3.6 Difficulties in single-shield TBM working in open mode in complex geology: An example from Kadikoy–Kartal metro tunnel 86
3.7 Eurasia tunnel excavated by a large diameter slurry TBM 88
3.8 Conclusions .. 88

References .. 90

4 Difficult ground conditions affecting performance of EPB-TBMs 91
4.1 Introduction .. 91
4.2 Factors affecting performance of EPB-TBMs ... 92
4.3 Performance prediction of EPM TBMs in difficult ground conditions 93
4.3.1 A model to predict the performance of EPB-TBMs in difficult ground conditions .. 94
4.3.2 Estimation of optimum specific energy from full-scale laboratory cutting experiments .. 95
4.3.3 Estimation of optimum field specific energy .. 95
4.3.4 Estimation of machine utilization time .. 98
4.3.5 Numerical example to estimate daily advance rate of an EPB-TBM 99
4.3.6 Comparison of predicted and realized EPB-TBM performance values 100
4.3.7 Verification and modification of the model for silty-clay and sand in the Mahmutbey–Mecidiyekoy metro tunnels 103
4.4 Conclusions .. 106

References .. 107

5 Selection of cutter type for difficult ground conditions 109
5.1 Introduction .. 109
5.2 Comparative studies of different type of cutters for Tuzla–Dragos tunnel in Istanbul – test procedure and results .. 109
5.2.1 Efficiency of chisel cutters as against disc cutters .. 111
5.3 The inefficient use of tungsten carbide studded disc cutters in the Marmaray–Istanbul project ... 114
5.4 Conclusions .. 115

References .. 116

6 Effects of North and East Anatolian Faults on TBM performances 117
6.1 Introduction .. 117
6.2 Kargi tunnel ... 117
6.3 Gerede tunnel ... 118
6.4 Dogancay energy tunnel ... 120
6.5 Nurdagi railway tunnel .. 122
6.6 Uluabat energy tunnel .. 123
6.7 Tunnels excavated by drill and blast methods ... 126
6.7.1 Ayas Tunnel: the most difficult tunnel in Turkey affected by North Anatolian Fault 126
6.7.2 Bolu tunnel ... 127
6.8 Conclusions .. 127
Table of contents

References.. 128

7 **Effect of blocky ground on TBM performance and the mechanism of rock rupture** ... 129

 7.1 Introduction.. 129

 7.2 Mechanism of rock rupture and face collapse in front of the TBM in the Kozyatagi–Kadikoy metro tunnels in Istanbul 131

 7.2.1 Kozyatagi and Kadikoy metro tunnels and problems related to blocky ground .. 131

 7.2.2 Mechanism of rock rupture and face collapse in front of the TBM 134

 7.2.3 Other factors affecting the efficiency of tunnel excavation on the Kozyatagi–Kadikoy metro line ... 138

 7.3 Conclusions .. 140

References.. 141

8 **Effects of transition zones, dykes, fault zones and rock discontinuities on TBM performance** ... 143

 8.1 Introduction.. 143

 8.2 Beykoz sewerage tunnel ... 143

 8.2.1 Description of the project .. 143

 8.2.2 Geology of the area... 144

 8.2.3 Description of the TBM ... 146

 8.2.4 Effect of rock formation on chip formation and machine utilization time 147

 8.2.5 Effect of dykes on tunnel face collapse and TBM blockage 149

 8.2.6 Effect of transition zones on TBM performance .. 150

 8.2.7 Effect of fault zones on TBM performance ... 152

 8.3 Kartal–Kadikoy metro tunnels, methodology of understanding critical zones .. 153

 8.3.1 Geology and physical and mechanical properties of rocks 154

 8.3.2 Mechanism of face collapse and TBM blockages .. 155

 8.3.3 Change of TBM performance in problematic areas 161

 8.4 Conclusions .. 163

References.. 165

9 **Squeezing grounds and their effects on TBM performance** 167

 9.1 Introduction.. 167

 9.2 Basic works carried out on squeezing ground .. 167

 9.3 Uluabat tunnel ... 168

 9.3.1 Description of the project .. 168

 9.3.2 Geology of the project area ... 169

 9.3.3 Description of the TBM used and the general performance 171

 9.3.4 Effect of TBM waiting time on squeezing .. 176

 9.3.5 Effect of bentonite application on TBM squeezing 178

 9.3.6 Conclusions .. 179

 9.4 Kargi Tunnel .. 179

 9.4.1 Squeezing of the cutterhead and related problems 179
Table of contents

9.4.2 Effect of Q values on squeezing of TBM .. 184
9.4.3 Discussions and conclusions on TBM swelling in Kargi project 185

References .. 186

10 Clogging of the TBM cutterhead .. 189
10.1 Introduction .. 189
10.2 What is clogging of a TBM cutterhead and what are the clogging materials? ... 189
10.3 Testing clogging effects of the ground ... 189
10.4 Mitigation programs to eliminate clogging ... 191
10.5 Clogging of TBMs in Turkish projects .. 192
10.5.1 Suruc Project ... 192
10.5.2 Selimpasa sewerage tunnel in Istanbul .. 196
10.5.3 Zeytinburnu Ayvalidere-2 wastewater tunnel project 201
10.6 Conclusions .. 207

References .. 208

11 Effect of high strength rocks on TBM performance 211
11.1 Introduction .. 211
11.2 Beykoz sewerage tunnel, replacing CCS disc cutters with V-type disc cutters to overcome undesirable limits of penetration for a maximum limit of TBM thrust .. 211
11.3 Nurdagi tunnel, full-scale cutting tests to obtain optimum TBM design parameters in very high strength and abrasive rock formation 213
11.4 Beylerbeyi–Kucuksu wastewater tunnel, TBM performance in high strength rock formation ... 216
11.5 Tuzla-Akfirat wastewater tunnel, TBM performance in high strength rocks .. 221
11.6 Conclusions .. 222

References .. 223

12 Effect of high abrasivity on TBM performance ... 225
12.1 Introduction .. 225
12.2 Determination of the abrasivity .. 229
12.3 Empirical prediction methods for disc cutter consumption 232
12.3.1 Colorado School of Mines (CSM) model for CCS type 17-inch single-disc cutters .. 232
12.3.2 Norwegian Institute of Technology (NTNU) model 233
12.3.3 Maidl et al. (2008) model for CCS type 17-inch single-disc cutters 238
12.3.4 Frenzel (2011) model for CCS type 17-inch single-disc cutters 238
12.3.5 Gumus et al. (2016) model for CCS type 12-inch monoblock double-disc cutters of an EPB-TBM .. 238
12.4 Examples of cutter consumptions on TBMs in Turkey 239
12.4.1 Tuzla-Akfirat wastewater project in Istanbul .. 240
12.4.2 Yamanli II HEPP project in Adana ... 250
12.4.3 Beykoz wastewater project in Istanbul ... 260
12.4.4 Buyukcekmece wastewater tunnel in Istanbul .. 262
12.4.5 Uskudar–Umranıye–Çekmeköy–Sancaktepe metro tunnel in Istanbul 264
12.5 Conclusions .. 269

References .. 271

13 Effect of methane and other gases on TBM performance 273
13.1 Properties of methane ... 273
13.2 Selimpasa wastewater tunnel, methane explosion in the pressure chamber of an EPB-TBM ... 275
13.2.1 Introduction to the Selimpasa wastewater project .. 275
13.2.2 Occurrence and causes of methane explosion in the Selimpasa wastewater tunnel .. 278
13.2.3 Consequences of methane explosion in the Selimpasa wastewater tunnel 279
13.2.4 Precautions against methane and excavation performance in the Selimpasa wastewater tunnel ... 280
13.3 Gas flaming in the Silvan irrigation tunnel ... 284
13.4 More gas-related accident examples for mechanized tunneling 287
13.5 Conclusions .. 290

References .. 291

14 Probe drilling ahead of TBMs in difficult ground conditions 293
14.1 Introduction .. 293
14.2 General information on probe drilling and previous experiences in different countries ... 297
14.3 Melen water tunnel excavated under the Bosphorus in Istanbul 295
14.4 Methodology of predicting weak zones ahead in the Melen water tunnel 297
14.4.1 Data analysis and results .. 300
14.5 Kargi energy tunnel .. 308
14.5.1 General information on the Kargi project ... 308
14.5.2 Probe drilling operations .. 309
14.5.3 Analysis of probe drilling data in the Kargi project 309
14.6 Conclusions .. 316

References .. 318

15 Application of umbrella arch in the Kargi project 321
15.1 Introduction .. 321
15.2 General concept of umbrella arch and worldwide application 321
15.3 Methodology of using umbrella arch in the Kargi project 322
15.4 Criteria used for umbrella arch in the Kargi project and the results 325
15.5 Conclusions .. 330

References .. 331

16 Index ... 333