

Table of contents

Prefac	:e	. VI
Ackno	wledgements	. IX
About	the Authors	. X
1	Introduction	. 1
2	Geology of Turkey and Istanbul, expected problems, some cuttability characteristics of the rocks	. 3
2.1	Introduction	
2.2	Geology of Turkey	. 3
2.3	Geology of Istanbul	. 4
2.4	TBM performance in different projects in Istanbul	. 6
2.5	Description of geological formations in Istanbul, physical and mechanical properties	. {
2.5.1 2.5.2	The stratigraphy of Istanbul and description of geologic formations Typical frequency of RQD and GSI in the geological formations in Istanbul	. 8
2.5.3	Physical and mechanical properties of rocks taken from different geological formations	
2.5.4	Schmidt hammer tests carried out in station tunnels in Uskudar– Umraniye metro line	
2.6	Full-scale linear rock cutting tests with disc cutters in rock samples collected from different projects in Istanbul	
2.6.1	Description of laboratory full-scale linear rock cutting test	
2.6.2	Testing methodology and test results	
2.6.3	Comparison of laboratory full-scale linear rock cutting test results	
2.7	with in-situ cutter performance – the effect of rock discontinuities Conclusions	
	nces	
3	Difficult ground conditions dictating selection of TBM type	. 70
3	in Istanbul	. 7.
3.1	Introduction	
3.2	Case study of open TBM in complex geology (1989), in	. ,,
J. <u>L</u>	Baltalimani tunnel: Why open type TBM failed	. 73
3.2.1	Collapse between chainage 0+920 and 0+935 km	
3.2.2	Collapse between chainage 0+965 and 0+982 km	
3.2.3	Collapse between chainage 1+148 and 1+155 km	
3.2.4	Collapse between chainage 1+140 and 1+135 km	
3.2.4	Double shield TBM in the Istanbul–Moda collector tunnel, 1989/90	
3.4	Double shield TBM working without precast segment, difficulties	
3.5	in difficult ground: Tuzla-Dragos tunnel in Istanbul. Difficulties in using slurry TBMs in complicated geology,	
	Marmaray tunnel project	. 84

3.6	Difficulties in single-shield TBM working in open mode in complex geology: An example from Kadikoy–Kartal metro tunnel
3.7	Eurasia tunnel excavated by a large diameter slurry TBM
3.8	Conclusions
Refere	nces
4	Difficult ground conditions affecting performance of EPB-TBMs
4.1	Introduction
4.2	Factors affecting performance of EPB-TBMs
4.3	Performance prediction of EPM TBMs in difficult ground conditions
4.3.1	A model to predict the performance of EPB-TBMs
420	in difficult ground conditions
4.3.2	Estimation of optimum specific energy from full-scale laboratory
4.3.3	cutting experiments Estimation of optimum field specific energy
4.3.4	Estimation of optimization time
4.3.5	Numerical example to estimate daily advance rate of an EPB-TBM
4.3.6	Comparison of predicted and realized EPB-TBM performance values.
4.3.7	Verification and modification of the model for silty-clay and sand
1.5.7	in the Mahmutbey–Mecidiyekoy metro tunnels
4.4	Conclusions
Refere	nces
5	Selection of cutter type for difficult ground conditions
5.1	Introduction
5.2	Comparative studies of different type of cutters for Tuzla–Dragos
1	tunnel in Istanbul – test procedure and results
5.2.1	Efficiency of chisel cutters as against disc cutters
5.3	The inefficient use of tungsten carbide studded disc cutters in the
5 A	Marmaray–Istanbul project
5.4	Conclusions
Refere	nces
6	Effects of North and East Anatolian Faults on TBM performances
6.1	Introduction
6.2	Kargi tunnel
6.3	Gerede tunnel
6.4	Dogancay energy tunnel
6.5	Nurdagi railway tunnel
6.6	Uluabat energy tunnel
6.7	Tunnels excavated by drill and blast methods.
6.7.1	Ayas Tunnel: the most difficult tunnel in Turkey affected by North
6.7.2	Anatolian FaultBolu tunnel.
6.8	Conclusions.
0.0	COHCIUSIONS

	1
14	77
("
_	

Referen	ces	128
7	Effect of blocky ground on TBM performance and the	120
1	mechanism of rock rupture	129
7.1	Introduction	129
7.1	Mechanism of rock rupture and face collapse in front of the TBM	12)
7.2	in the Kozyatagi–Kadikoy metro tunnels in Istanbul	131
7.2.1	Kozyatagi and Kadikoy metro tunnels and problems related to	131
7.2.1	blocky ground	131
7.2.2	Mechanism of rock rupture and face collapse in front of the TBM	134
7.2.3	Other factors affecting the efficiency of tunnel excavation on the	15 .
7.2.3	Kozyatagi–Kadikoy metro line	138
7.3	Conclusions	140
Referen	ces	141
8	Effects of transition zones, dykes, fault zones and rock	
	discontinuities on TBM performance	143
8.1	Introduction	143
8.2	Beykoz sewerage tunnel	143
8.2.1	Description of the project	143
8.2.2	Geology of the area	144
8.2.3	Description of the TBM	146
8.2.4	Effect of rock formation on chip formation and machine utilization time	147
8.2.5	Effect of dykes on tunnel face collapse and TBM blockage	149
8.2.6	Effect of transition zones on TBM performance	150
8.2.7	Effect of fault zones on TBM performance	152
8.3	Kartal–Kadikoy metro tunnels, methodology of understanding	1.50
0.0.1	critical zones	153
8.3.1	Geology and physical and mechanical properties of rocks	154
8.3.2	Mechanism of face collapse and TBM blockages	155
8.3.3	Change of TBM performance in problematic areas	161
8.4	Conclusions.	163
Referen	ces	165
9	Squeezing grounds and their effects on TBM performance	167
9.1	Introduction	167
9.2	Basic works carried out on squeezing ground	167
9.3	Uluabat tunnel	168
9.3.1	Description of the project	168
9.3.2	Geology of the project area	169
9.3.3	Description of the TBM used and the general performance	171
9.3.4	Effect of TBM waiting time on squeezing	176
9.3.5	Effect of bentonite application on TBM squeezing	178
9.3.6	Conclusions.	179
9.4	Kargi Tunnel	179
9.4.1	Squeezing of the cutterhead and related problems	179

XVI

9.4.2 9.4.3	Effect of Q values on squeezing of TBM	
	ces	
10	Clogging of the TBM cutterhead	
10.1	Introduction	
10.2	What is clogging of a TBM cutterhead and what are the clogging materials?	189
10.3	Testing clogging effects of the ground	
10.4	Mitigation programs to eliminate clogging	
10.5	Clogging of TBMs in Turkish projects	
10.5.1	Suruc Project	
10.5.2	Selimpasa sewerage tunnel in Istanbul	
10.5.3	Zeytinburnu Ayvalidere-2 wastewater tunnel project	
10.6	Conclusions.	
Referen	ces	208
11	Effect of high strength rocks on TBM performance	211
11.1	Introduction	
11.2	Beykoz sewerage tunnel, replacing CCS disc cutters with V-type	
	disc cutters to overcome undesirable limits of penetration for a	
	maximum limit of TBM thrust	211
11.3	Nurdagi tunnel, full-scale cutting tests to obtain optimum TBM	
	design parameters in very high strength and abrasive rock formation	213
11.4	Beylerbeyi-Kucuksu wastewater tunnel, TBM performance in	
	high strength rock formation	216
11.5	Tuzla-Akfirat wastewater tunnel, TBM performance in	
	high strength rocks	221
11.6	Conclusions	222
Referen	ces	223
12	Effect of high abrasivity on TBM performance	225
12.1	Introduction	
12.2	Determination of the abrasivity	229
12.3	Empirical prediction methods for disc cutter consumption	232
12.3.1	Colorado School of Mines (CSM) model for CCS type 17-inch single-disc cutters	232
12.3.2	Norwegian Institute of Technology (NTNU) model	233
12.3.3	Maidl et al. (2008) model for CCS type 17-inch single-disc cutters	
12.3.4	Frenzel (2011) model for CCS type 17-inch single-disc cutters	
12.3.5	Gumus et al. (2016) model for CCS type 12-inch monoblock	
	double-disc cutters of an EPB-TBM	238
12.4	Examples of cutter consumptions on TBMs in Turkey	
12.4.1	Tuzla-Akfirat wastewater project in Istanbul	
12.4.2	Yamanli II HEPP project in Adana	
12.4.3	Beykoz wastewater project in Istanbul	

Table of contents

Table of contents		XVII
12.4.4 12.4.5 12.5	Buyukcekmece wastewater tunnel in Istanbul Uskudar–Umraniye–Cekmekoy–Sancaktepe metro tunnel in Istanbul Conclusions	262 264 269
Referen	ces	271
13 13.1	Effect of methane and other gases on TBM performance Properties of methane	273 273
13.2	Selimpasa wastewater tunnel, methane explosion in the pressure chamber of an EPB-TBM.	275
13.2.1 13.2.2	Occurrence and causes of methane explosion in the Selimpasa	275
13.2.3 13.2.4	wastewater tunnel	
12.2	Selimpasa wastewater tunnel	280
13.3 13.4	Gas flaming in the Silvan irrigation tunnel More gas-related accident examples for mechanized tunneling	284 287
13.5	Conclusions.	290
Referen	ces	291
14	Probe drilling ahead of TBMs in difficult ground conditions	293
14.1 14.2	Introduction General information on probe drilling and previous experiences in different countries	293293
14.3	Melen water tunnel excavated under the Bosphorus in Istanbul	295
14.4	Methodology of predicting weak zones ahead in the Melen water tunnel	297
14.4.1 14.5	Data analysis and results	300 308
14.5.1	General information on the Kargi project	308
14.5.2	Probe drilling operations.	309
14.5.3 14.6	Analysis of probe drilling data in the Kargi project	309 316
Referen		318
15 15.1	Application of umbrella arch in the Kargi project Introduction	321 321
15.2	General concept of umbrella arch and worldwide application	321
15.2	Methodology of using umbrella arch in the Kargi project	322
15.4	Criteria used for umbrella arch in the Kargi project and the results	325
15.5	Conclusions.	330
Referen	ces	331
16	Index	333

(

