
1 Heat transfer

1.1 Overview

1.1.1 Heat

A first description of what heat is comes from thermodynamics. That discipline
describes how systems and their environment interchange energy. Anything can be a
system: a material, a building assembly, a building, part of a HVAC system, even a
whole city. Energy transmitted as ‘work’ is purposeful and organized, whereas as
‘heat’ it is diffuse and chaotic. A second description resides in particle physics, where
the statistically distributed kinetic energy of atoms and free electrons stands for heat.
In any case, heat is the least noble, most diffuse form of energy to which each nobler
form degrades; consider the second law of thermodynamics.

1.1.2 Temperature

The temperature reflects the quality of the heat. Higher values reflect the increased
kinetic energy of atoms and free electrons, resulting in higher exergy and the
potential to convert more heat via a cyclic process into work. Lower temperatures
and therefore less kinetic energy of atoms and free electrons result in less exergy.
Higher temperatures require warming up, lower temperatures cooling down of a
system. Like any potential, temperature is a scalar, which, as heat, cannot be
measured directly. It is sensed and because many material properties depend on
it, indirectly quantifiable. A mercury thermometer uses the volumetric expansion of
mercury when heated and the contraction when cooled. In a Pt100 thermometer, the
electrical resistance of platinum wire changes with temperature. Temperature
logging with thermocouples uses the varying contact potential between metals.

The SI system advances two temperature scales, one empiric in degrees Celsius, °C,
with the symbol θ, and one thermodynamic in degrees kelvin, K, with the symbol T.
Zero °C coincides with the triple point of water, and 100 °C with the boiling point of
water at 1 atmosphere pressure. Zero K instead stands for the point of absolute
zero, and 273.15 K coincides with the triple point of water. Temperature differences
are given in K, temperatures in °C or K, with the following relationship between the
two:

T � θ � 273:15

Instead of degrees Celsius, the US generally uses degrees Fahrenheit (°F):

°F � 32 � 9=5 °C

1.1.3 Sensible and latent heat

Sensible heat transfer, whether by conduction, convection or radiation, requires
temperature differences. Conduction refers to the heat exchanged when vibrating
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atoms collide and free electrons move. Transmission between solids at different
temperatures in ideal contact and among points at different temperature in the same
solid is conduction-based. Conduction also intervenes in gases and liquids, whether
or not they are in contact with solids. According to the second law of thermo-
dynamics, conduction always goes in the direction of lower temperatures. A medium
is required, but conduction induces no movement.

Convection instead is the result of macroscopic motion in liquids and gases wherein
temperatures differences exist, included contact with colder or warmer solids.
Whether it is an external force, a difference in density or both that fosters movement,
will define the type of convection: forced, natural or mixed. Also convection needs a
medium.

Radiation, finally, concerns the heat transferred due to the emission and absorption
of electromagnetic waves by surfaces. At temperatures above 0 K, every surface emits.
If two or more are at different temperatures, the result is heat exchange. Radiation
does not need a medium, while the governing laws differ strongly from those
describing conduction and convection.

Latent heat directly links to changes of state. Its release or absorption requires no
temperature differences but affects the whole thermal picture. To give an example,
water evaporating absorbs a quantity of sensible heat equal to the heat of evaporation,
so acts as a heat sink. When the water vapour formed moves to a colder spot where it
condenses again, that heat of evaporation is re-emitted, so forms a heat source. These
sources and sinks not only impact the temperatures in materials and assemblies, but
also the latent heat transferred.

1.1.4 Why are heat and temperature so compelling?

Why heat? The main motivation is that energy use in buildings matters. In fact,
thermal comfort indoors requires an operative temperature at the desired level,
which in cold and temperate climates means heating. Related fossil fuel burning still
represents a substantial share of the overall end energy consumed and CO2 emitted,
such that energy efficiency in buildings became mandatory, among others by
minimizing the heat traversing the enclosure.

Why temperature? There are many reasons. Inside surface temperatures close to the
air temperature indoors improve thermal comfort, whereas low values increase
mould and surface condensation risks. Excessive summer temperatures indoors
affect usability, while higher temperature differences across envelope assemblies
foster air and moisture movement, thermal stress and crack risk. Too many swings
from above to below freezing point may damage frost-sensitive porous materials that
stay wet. High temperature gradients favour combined moisture and dissolved salt
displacement, while high temperatures accelerate the chemical breakdown of
synthetics. Whether these effects remain controllable depends on how building
assemblies are designed and built.

16 1 Heat transfer



1.1.5 Some definitions

Amount of heat, symbol
Q, units J

Quantifies the energy exchanged as heat. As energy is a
scalar, so is the amount of heat.

Heat flow, symbol Φ,
units J/s=W

Heat migrating per unit of time. Heat flow is a measure for
‘power’, thus a scalar.

Heat flux, symbol q,
units W/m2

Heat migrating per unit of time across a unit surface
normal to the flow. Flux is a vector with the same direction
as the surface vector. The components in Cartesian
coordinates are qx, qy, qz, in polar coordinates qR, qϕ, qΘ.

Solving a heat transfer problem means determining a scalar temperature (T) and
vector heat flux (q) field. The calculation thus requires a scalar and a vector equation.

1.2 Conduction

1.2.1 Conservation of energy

A first relationship between heat flux (q) and temperature (T) follows from the
conservation of energy axiom. If the system is an infinitely small material volume dV
and everything that is around it the environment, then, knowing that conduction
does not displace mass, the energy balance becomes:

dΦ � dΨ � dU � dW (1.1)

with dΦ the resulting heat flow between system and environment, dΨ the heat
dissipated uniformly in the system, dU the change in the system’s internal energy and
dW the work exchanged with the environment, all three per unit of time. Dissipation
can include heat produced by an exothermic chemical reaction, heat absorbed thanks
to an endothermic chemical reaction, the Joule effect due to an electric current
passing through, latent heat released or absorbed, and so on. The work exchanged
equals:

dW � Pd dV� � � Pd2V

with P being the pressure in Pa. The balance states that the heat exchanged (= dΦ),
released or absorbed modifies the internal energy of the material volume while
generating an exchange of work with the environment. If isobaric, the balance can be
rewritten as:

d U � PdV� � � dQ � dE

with U+PdV being the enthalpy H. Writing the resulting heat flow, the enthalpy
change and the heat dissipated as:

dΦ � �div�q�dV dH � @ ρ cpT
� �
@t

����
����dV dΨ � Φ´dV
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where cp is the specific heat capacity at constant pressure of the material (J/(kg.K)), ρ
is its density (kg/m3) and Φ´ is the dissipated heat per unit of time and volume,
positive for a source, negative for a sink, which makes the conservation law:

div�q� �Φ´ � @ ρcpT
� �
@t

� �
dV � 0 (1.2)

For solids and liquids the specific heat capacity depends little on the change of state.
One value, symbol c, can be used, with the product ρc equal to the volumetric specific
heat capacity. For gases, the value varies according to the change of state, giving as the
relationship between the specific heat capacity at constant pressure (cp) and constant
volume (cv):

cp � cv � R

with R the specific gas constant (in Pa.m3/(kg.K)). Because conservation of energy
holds for any infinitely small material volume, the relationship between heat flux (q)
and temperature (T) finally becomes:

div q� � � � @ ρcT� �
@t

�Φ´ (1.3)

1.2.2 The conduction laws

1.2.2.1 First law

The first law is the empirical conduction equation introduced by the French physicist
Fourier in 1822 (Figure 1.1):

q � �λ grad T � �λ grad θ (1.4)

Fig. 1.1 The French physicist Fourier
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This is a vector relation, which states that the conductive heat flux anywhere in a
solid, liquid or gas varies proportionally to the temperature gradient there. The
multiplier λ is the thermal conductivity, units W/(m.K). The minus sign indicates
that flux and temperature gradient, positive from colder to warmer, oppose each
other. Thermodynamics in fact teaches that, if not forced externally, heat always
moves in the direction of lower temperatures. Otherwise entropy would decrease
without energy input from the environment, which is impossible.

The following observation supports the law. With the surfaces of equal temperature,
called isotherms, in a material traced and the heat fluxes visualized, it can be observed
that these develop perpendicular to the isotherms and increase where these are near
to one another (Figure 1.2).

At the same time the fluxes keep proportionality with the thermal conductivity,
which for reasons of simplicity is assumed to be scalar and constant, even though for
building and insulating materials such assumptions do simplify reality. The value in
fact depends on temperature, moisture content, thickness and sometimes age. In
anisotropic materials, it is even a tensor. Fortunately, for first-order calculations,
‘scalar and constant’ often suffices.

In right-angled Cartesian coordinates [x,y,z], the heat fluxes along the axes become:

qx � qxux � �λ @T
@x

qy � qyuy � �λ @T
@y

qz � qzuz � �λ @T
@z

Often the temperature in °C replaces K. The heat flow across a surface area dA with
direction n then equals:

dΦn � qdAn � �λ @θ
@n

dAnu
2
n � �λ @θ

@n
dAn

Along the three axes, one gets:

dΦx � �λ @θ
@x

dAx dΦy � �λ @θ
@y

dAy dΦz � �λ @θ
@z

dAz

Fig. 1.2 Lines of equal temperature (isotherms) and equal heat flow rates (isoflux lines)
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1.2.2.2 Second law

To arrive at a second law, the conduction equation is implemented in the conserva-
tion of energy expression:

div λ grad T� � � @ ρcT� �
@t

�Φ´ (1.5)

The result is a scalar equation that allows the calculation of temperature fields. In the
case that the thermal conductivity and the volumetric specific heat capacity are
constant, the expression simplifies to what is known as Fourier’s second law:

∇2T � ρc
λ

� � @T
@t

�Φ´
λ

(1.6)

with ∇2 being the Laplace operator, in Cartesian coordinates equal to:

∇2 � @2

@x2
� @2

@y2
� @2

@z2
(1.7)

Further discussions focus on solving both laws for a series of building-related cases.

1.2.3 Steady state

Steady state indicates that the temperatures and heat fluxes remain time-indepen-
dent. For that, constant boundary conditions, constant material properties and
constant energy dissipation are needed. When all are invariable, then:

@T=@t � 0

With the temperature in °C, Fourier’s second law so simplifies to:

∇2θ � �Φ´=λ (1.8)

1.2.3.1 One-dimensional flat assemblies

In one dimension with temperature changes normal to the surface, the equation
further reduces to:

d2θ

dx2
� �Φ´

λ
(1.9)

Without dissipation, it becomes:

d2θ

dx2
� 0

with, as a solution:

θ � C1x � C2 (1.10)
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where C1 and C2 are the integration constants, fixed by the boundary conditions.
That simple equation governs conduction across flat assemblies with the end faces at
constant but different temperatures. Buildings include numerous flat assemblies
such as low-slope roofs, sloped roof pitches, outer walls, floors, partition walls, glass
surfaces, and so on. In cross-section, these can be single-layer or composite.

Single-layer
If single-layer, the thermal conductivity of the material and the layer thickness (d) has
to be known. The boundary conditions are: x= 0: θ= θs1; x= d: θ= θs2 with θs1 and
θs2 being the different temperatures at the end faces, whereby θs1 is assumed to be
colder than θs2. The integration constants then become

C2 � θs1 C1 � θs2 � θs1� �=d
which changes the temperatures in the layer into:

θ � θs2 � θs1

d
x � θs1 (1.11)

Or, at steady state, the temperatures in a flat, single-layer assembly with neither heat
source nor sink will vary linearly between the values at both end faces (Figure 1.3).

Related heat flux equals:

q � �λ grad θ � �λ dθ
dx

� �λ θs1 � θs2

d

� �
(1.12)

In absolute terms, this equation becomes:

q � λ
θs2 � θs1

d

� �
(1.13)

showing that the flux is proportional to the thermal conductivity of the material and
the temperature difference between both end faces and inversely proportional to the
layer thickness. For given thickness and temperature difference, a lower thermal
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Fig. 1.3 Temperatures in a single-layer assembly
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conductivity reduces the flux, meaning less heat being lost or gained. Materials with
very low thermal conductivity are therefore called insulation materials. Rearranging
gives:

q � Δθ
d
.
λ

(1.14)

withd/λ the thermal resistance of theflat single-layer assembly, symbolR, units m2.K/W.
The higher that number, the lower the heat flux for a given temperature difference
between both end faces, or, the better the assembly insulates. Higher values require larger
thicknesses or, for a given thickness, better insulating materials. The inverse of the
thermal resistance is the thermal conductance, symbol P, units W/(m2.K), a quantity
telling how much heat per unit of time and surface passes across the assembly for a 1 °C
or 1 K temperature difference between both end faces.

Composite
Composite assemblies consist of two or more plane-parallel layers. In buildings, most
flat parts are composite, an example being the filled cavity wall of Figure 1.4, showing
the inside leaf, cavity fill and veneer wall.

In steady state, without heat sources or sinks, the flux must be the same in each layer.
Otherwise, thermal storage or discharge will make the regime transient. Suppose the
temperature of end face 1 is θs1, and for end face 2, θs2 (θs1< θs2). If the thermal
conductivities and thicknesses of all layers are known and possible contact resist-
ances between layers can be neglected, which fits for non-metallic materials, the heat
flux q being constant means:

Layer 1 q � λ1
θ1 � θs1

d1

Layer 2 q � λ2
θ2 � θ1

d2
. . .

Fig. 1.4 Filled cavity wall
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Layer n � 1 q � λn�1
θn�1 � θn�2

dn�1

Layer n q � λn
θs2 � θn�1

dn

with θ1, θ2, . . . , θn�1 the unknown interface temperatures. Rearrangement and
summing gives:

q
d1

λ1
� θ1 � θs1

�q d2

λ2
� θ2 � θ1

� . . .

�q dn

λn
� θs2 � θn�1

q
Xn
i�1

di

λi

� �
� θs2 � θs1

or:

q � θs2 � θs1Pn
i�1

di=λi� �
(1.15)

The sum
P

di=λi� �, symbol RT, units m2 K/W, is called the total thermal resistance of
the assembly, and the ratio di/λi, symbol Ri, same units as RT, the thermal resistance
of layer i. The higher the total thermal resistance, the lower the steady-state heat flux
and the better the assembly insulates. A high thermal resistance requires a suffi-
ciently thick insulation layer. Since the energy crises of the 1970s, thermal insulation
of high performance became a prime measure to lower the net heating demand and
CO2 release where heating systems burn fossil fuels.

How the assembly is designed fixes its total thermal resistance. As a whole, the
commutation property applies and the layer sequence does not matter. Inside
insulation should perform as well as outside insulation. From a whole building
physics perspective, that conclusion is somewhat deceptive: the same thermal
resistance, yes, but both diverge in overall performance, a fact not highlighted in
the steady state. The analogy with the current (I) in an electrical circuit subjected to a
voltage difference ΔV when the electrical resistances (Rei) stay in series is instructive:

I � ΔV=
X

Rei
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Clearly, temperature replaces voltage, heat flux the current, and thermal resistance
the electrical resistance. This allows the conversion of heat conduction problems into
an electrical analogy.

With both end face temperatures known, all interface temperatures follow from
rearranging the heat flux equation per layer:

θ1 � θs1 � q
d1

λ1
� θs1 � θs2 � θs1� � R1

RT

θ2 � θ1 � q
d2

λ2
� θ1 � q R2 � θs1 � θs2 � θs1� � R1 � R2� �

RT
. . .

θn�1 � θn�2 � q
dn�1

λn�1
� θs1 � θs2 � θs1� �

Xn�1

i�1

Ri

RT

Writing θi � θi�1 � qdi=λi as θi � θi�1� �=di � q=λi underlines that the temperature
gradient in a layer is inversely proportional to its thermal conductivity. Hence,
gradients are large in insulation and small in conductive layers. Each layer equation
can yet be rewritten as:

θx � θs1 � q Rx
s1 (1.16)

where Rx
s1 is the thermal resistance between end face s1 and interface x in the

assembly. When the calculation starts at end face s2, the equation becomes:

θx � θs2 � q Rx
s2 (1.17)

In a [R,θ] plane with the thermal resistance R as abscissa and the temperature θ as
ordinate, both represent a straight line linking both end face temperatures (0, θs1) and
(R, θs2) with the heat flux as slope. Effectively a composite assembly responds as if it is
single-layered. To construct the temperature line in the thickness graph, first draw
the assembly in the [R,θ] plane with the layers as thick as their thermal resistance.
Mark the temperature θs1 on end face s1, temperature θs2 on end face s2, and trace
the straight line in between. The thickness-related course then follows from trans-
posing all intersections with the successive interfaces into the thickness graph and
then linking them per layer as shown in Figure 1.5. Of course, the correct layer
sequence must be kept.

For single-layer as well as composite assemblies, the product of the heat flux with the
surface area (A) gives the heat flow:

Φ � q A (1.18)

Special cases
Three special cases demand consideration. The first concerns a single-layer assembly
where the thermal conductivity changes with temperature or moisture content (w),
so along the ordinate x (Figure 1.6).
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Should the thermal conductivity vary linearly with temperature (λ= λo + aθ), then
the heat flux will follow from (x= 0, θ= θs1; x= d, θ= θs2):

∫
θs2

θs1

λ0 � aθ� �dθ � ∫
d

0

q dx
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Fig. 1.5 Temperatures in a composite assembly, graphic construction
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giving as a solution:

λ0 θs2 � θs1� � � a θ2
s2 � θ2

s1

� �
2

� q d or q � λ θm� � θs2 � θs1

d
(1.19)

with λ(θm) the thermal conductivity at the average temperature in the layer. The
thermal resistance is d/λ(θm), while the temperature curve changes into a parabola:

aθ2=2 � λ0θ � q x � C

For an assembly loaded with a varying moisture content w(x), so that λ= F(w(x))=
f(x), the heat flux becomes (x= 0: θ= θs1; x= d: θ= θs2):

q ∫
d

0

dx
λ x� � � ∫

θs2

θs1

dθ

In case the moisture distribution is such that the thermal conductivity increases
proportionally to x (λ= λo+ ax), the integrals give:

q � θs2 � θs1

1
a

ln
λ0 � a d

λ0

� � (1.20)

Again, the denominator stands for the thermal resistance. The temperature course
now becomes:

θx � θs1 � q
1
a

ln
λ0 � a x

λ0

� �	 

(1.21)

The second special case concerns a single-layer assembly that dissipates or absorbs Φ
joules of heat per unit of time and volume. If this happens uniformly over the
thickness, the steady-state balance equation changes to:

d2θ

dx2
� �Φ´

λ

with, as boundary conditions: x= 0, θ= θs1; x= d, θ= θs2 (θs1< θs2). The solution is:

θ � �Φ´
2λ

x2 � C1x � C2 (1.22)

a parabolic temperature curve: convex for a heat source, and concave for a heat sink
(Figure 1.7).

The heat flux changes to:

q � �λ dθ
dx

� Φ´ x � C1λ (1.23)
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Instead of no heat dissipated, the heat flux now changes from point to point across
the assembly. The boundary conditions give as integration constants:

C1 � θs2 � θs1

d
�Φd´

2λ
C2 � θs1

The third special case concerns a composite assembly with a local heat source or sink,
for example, due to a deposit or drying of condensate in an interface between two
layers. The heat flux dissipated this way is q´, while the temperature θs1 at one end
face passes θs2 at the other end face. Then, a steady-state heat balance at the interface
(x) with the source or sink gives the temperatures in the assembly. Presuming that the
heat flows from both end faces to x:

End face s1: qxs1 � θs1 � θx
Rx

s1

End face s2: qxs2 � θs2 � θx
Rx

s2

In both equations, θx is the unknown temperature in x. Setting the sum of the two
heat fluxes and the dissipated heat zero, with the dissipated heat negative for drying
and positive for condensation, gives:

θx � Rx
s2θs1 � Rx

s1θs2 � q´Rx
s1R

x
s2

Rx
s1 � Rx

s2
(1.24)

Introducing that temperature in the flux equations from both end faces results in:

qxs1 � θs1 � θs2

RT

� �
� q´Rx

s2

RT
qxs2 � � θs1 � θs2

RT

� �
� q´Rx

s1

RT

	 

(1.25)
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Fig. 1.7 Temperature in a uniformly spread heat source or sink in a single-layer assembly
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with RT the total thermal resistance of the assembly, equal to:

RT � Rx
s1 � Rx

s2

For a heat source the incoming flux drops and the outgoing flux increases compared
with no source (Figure 1.8). For a sink, it is the inverse.

1.2.3.2 Two dimensions, cylinder symmetric

In cylinder coordinates, cylinder symmetric cases behave as one-dimensional, such
as hung heating pipes. Of interest are the heat loss per metre run, the pipe
temperature and the insulation efficiency. Consider a pipe with an inside radius
r1 and outside radius r2. The temperature at the inside face is θs1, and at the outside
face θs2 (Figure 1.9). In steady state with no dissipation, the same heat flow must pass
each cylinder concentric to the pipe’s centre. With that centre as origin, the flow per
metre run is:

Φ � �λ 2πr� �dθ=dr � Ct
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Fig. 1.8 Composite assembly, with heat source in the interface between two layers
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dr r2
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θs2

Fig. 1.9 The pipe problem
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Integration gives:

Φ ∫
r2

r1

dr
r
� �2πλ ∫

θs2

θs1

dθ or Φ � θs1 � θs2

ln r2=r1� �
2πλ

� � (1.26)

The denominator is the equivalent of the thermal resistance of a flat assembly. This is
the thermal resistance per metre pipe, with units m.K/W.

For a composite pipe, the same reasoning as for a composite flat assembly gives the
heat flow per metre run as:

Φ � θs1 � θs2Xn
i�1

ln ri�1=ri� �
2πλi

	 
 (1.27)

The temperatures then follow from:

θi�1 � θs1 �Φ
Xi
i�1

ln ri�1=ri� �
2πλi

	 

(1.28)

1.2.3.3 Two and three dimensions: thermal bridges

When looking in detail at outside walls, roofs, floors and partition walls, the
assumption of ‘flat’ does not apply everywhere. What about lintels above windows?
What about window reveals? What about junctions between two outside walls? What
about the corners between two outer walls and a low-slope roof? Also, the end faces
of flat assemblies are not necessarily isothermal (Figure 1.10). Studying steady-state

Fig. 1.10 Lintel above a window; corner between two outside walls and the floor; flat assembly with
non-isothermal inside face
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heat transfer now requires solving:

@2θ

@x2
� @2θ

@y2
� @2θ

@z2
� �Φ´

λ

or, without dissipation:

@2θ

@x2
� @2θ

@y2
� @2θ

@z2
� 0

For some very elementary cases, with one material, easy geometry and simple
boundary conditions, this partial differential equation can be solved analytically.
In the majority of building-related cases, only a numeric approach, for example using
the control volume method (CVM), offers a solution. Many building details yet
consist of rectangular material volumes. In CVM, such detail is meshed in cubic or
beam-like control volumes and the sum of the steady-state heat flows coming from
the six adjacent volumes is set to zero (Figure 1.11).

If the meshing coincides with the interfaces between layers, then all control volumes
remain material-homogenous but the calculations do not give the interface temper-
atures. The preference therefore goes to control volumes whose centres lie on the
interfaces. They are not material-homogenous but the calculations give the interface
temperatures. Along the x, y and z axes, the sides of the control volumes around each
centre-point equal the sum of half the distance in the negative and positive directions
to the adjacent centre points. If all seven centre points are situated in the same
material and the mesh width is equal along all three axes, the heat flow from the
centre point in the nearest by volume (l� 1,m,n) to the centre point in the central
volume (l,m,n) equals:

Φl;m;n
l�1;m;n � λ

θl�1;m;n � θl;m;n
� �

a2

a
� aλ θl�1;m;n � θl;m;n

� �

Fig. 1.11 Central and neighbouring control volumes
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with a being the mesh width. The other five give:

Φl;m;n
l�1;m;n � λ

θl�1;m;n � θl;m;n
� �

a2

a
� aλ θl�1;m;n � θl;m;n

� �
Φl;m;n

l;m�1;n � λ
θl;m�1;n � θl;m;n
� �

a2

a
� aλ θl;m�1;n � θl;m;n

� �
Φl;m;n

l;m�1;n � λ
θl;m�1;n � θl;m;n
� �

a2

a
� aλ θl;m�1;n � θl;m;n

� �
Φl;m;n

l;m;n�1 � λ
θl;m;n�1 � θl;m;n
� �

a2

a
� aλ θl;m;n�1 � θl;m;n

� �
Φl;m;n

l;m;n�1 � λ
θl;m;n�1 � θl;m;n
� �

a2

a
� aλ θl;m;n�1 � θl;m;n

� �
Adding and setting to zero results in:

θl�1;m;n � θl�1;m;n � θl;m�1;n � θl;m�1;n � θl;m;n�1 � θl;m;n�1 � 6θl;m;n � 0

Unknowns in this linear equation are the temperatures in the central and six adjacent
control volumes.

In two dimensions, each control volume has only four adjacent volumes, so the seven
heat balances reduce to five:

θl�1;m � θl�1;m � θl;m�1 � θl;m�1 � 4θl;m � 0

If the central control volume bridges an interface between two materials, if that
interface is parallel to the [x, y] plane and if the thermal conductivities of the
materials at both sides are λ1 and λ2, then for a mesh width a along the three axes, the
heat flow from volume (l� 1,m,n) to the central volume (l,m,n) equals:

Φl;m;n
l�1;m;n � λ1

θl�1;m;n � θl;m;n
� �

a2

2a
� λ2

θl�1;m;n � θl;m;n
� �

a2

2a

or:

Φl;m;n
l�1;m;n � a λ1 � λ2� � θl�1;m;n � θl;m;n

� �
2

The other five give:

Φl;m;n
l�1;m;n � a λ1 � λ2� � θl�1;m;n � θl;m;n

� �
2

Φl;m;n
l;m�1;n � a λ1 � λ2� � θl;m�1;n � θl;m;n

� �
2

Φl;m;n
l;m�1;n � a λ1 � λ2� � θl;m�1;n � θl;m;n

� �
2

Φl;m;n
l;m;n�1 � aλ1 θl;m;n�1 � θl;m;n

� �
Φl;m;n

l;m;n�1 � aλ2 θl;m;n�1 � θl;m;n
� �
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Adding and setting to zero results in:

λ1 � λ2� � θl�1;m;n � θl�1;m;n � θl;m�1;n � θl;m�1;n
� �

2
� λ2θl;m;n�1 � λ1θl;m;n�1

� 3 λ1 � λ2� �θl;m;n � 0

which is a linear equation with the temperatures in the central and six adjacent
control volumes as the seven unknowns. Two dimensions give:

λ1 � λ2� � θl�1;m � θl�1;m
� �

2
� λ2θl;m�1 � λ1θl;m�1 � 2 λ1 � λ2� �θl;m;n � 0

If the central control volume lies on the intersection between three materials with the
interfaces parallel to the [x, y] and [y, z] planes and the thermal conductivities of the
three materials are λ1, λ2 and λ3, then the sum equals:

λ2 � λ3� � θl�1;m;n

2
� λ2 � λ3� � θl�1;m;n

2
� λ3θl;m�1;n � λ1 � λ2� � θl;m�1;n

2

� λ1 � λ2 � λ3� � θl;m;n�1 � θl;m;n�1

4
� 3λ1 � 3λ2 � 6λ3� � θl;m;n

2
� 0

which is again a linear equation with seven unknowns. Two dimensions give:

λ3θl�1;m � λ1 � λ2� �θl�1;m

2
� λ2 � λ3� �θl;m�1

2
� λ1 � λ3� �θl;m�1

2
� λ1 � λ2 � λ3� �θl;m � 0

All other cases are solved the same way. In three dimensions, a control volume may
contain eight materials, while in two dimensions, four materials. All generate a linear
equation with seven or five unknowns. For p control volumes, the result is a system of
p equations with p unknown temperatures, except those figuring as boundary
conditions. Solving the system gives the temperature distribution. Then, the above
equations allow calculation of the heat flux components along the axes.

To generalize the algorithm, suppose Ps is the surface-linked thermal conductance
between two adjacent control volumes (units W/K). If in the same material, then:

Ps � λ=d� �A
In different materials, the named conductance consists of a serial and/or a parallel
circuit of separate conductances (Figure 1.12).

Φl;m;n
l�1;m;n � Pl;m;n

sl�1;m;n θl�1;m;n � θl;m;n
� �

(1.29)

For the sum of the heat flows per control volume, the following equation, which
demands the calculation of all surface-linked conductances Ps, applies:X

i�l;m;n
j��1

Ps;i�jθi�j
� � � θl;m;n

X
i�l;m;n
j��1

Ps;i�j � 0 (1.30)
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Transferring the control volumes with known temperature to the right converts any
two- or three-dimensional building detail into a system of equations:

Ps� �p;p θ� �p � Ps:i;j;kθi;j;k
� �

p

where [Ps]p,p is a p rows, p columns conductance matrix, [θ]p a column matrix of the
p unknown temperatures, and [Ps,i,j,kθi,j,k]p a column matrix of the p known
temperatures. The accuracy of a CVM calculation depends on the meshing applied.
The finer the mesh, the closer the solution will approach the exact one. However, the
consequence is more equations. Infinitely fine meshes produce the exact solution,
but the price paid is an infinite number of equations. Therefore, a compromise
between accuracy and processing time must been sought. Fine meshes where large
temperature gradients are expected, and less fine where small temperature gradients
are expected, will minimize the divergence.

Today, powerful software packages for two- and three-dimensional heat transfer
exist (TryscoR, HeatR, etc.).

1.2.4 Transient

Transient means that the temperatures and heat fluxes change with time. Varying
material properties, time-dependent heat dissipation and time-dependent boundary
conditions are responsible for that. If only the last intervenes, Fournier’s second law
can be written as:

∇2θ � ρc
λ

@θ

@t

The end face temperatures and heat fluxes often vary either periodically or suddenly.
Outdoors, the air temperature fluctuates over periods of a year, n days, one day.
Heating up in turn causes a jump in temperature and heat flux (Figure 1.13).

Point 

Ps

Central point 

Fig. 1.12 Thermal conductances around the centre point in a meshing volume
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1.2.4.1 Periodic boundary conditions: flat assemblies

For flat layers, the second law simplifies to:

@2θ

@x2
� ρc

λ

@θ

@t

or, with a � λ=ρc: a
@2θ

@x2
� @θ

@t

The ratio a, units m2/s, stands for the thermal diffusivity of the material. Its value
indicates how easily a local temperature change spreads over any material. The
higher it is, the faster this happens. A high thermal diffusivity requires a lightweight
material with high thermal conductivity, or a heavyweight one with low volumetric
heat capacity. None exists. Lightweights have a low thermal conductivity while the
volumetric heat capacity of heavyweights is high. Many materials, except the metals,
therefore have similar thermal diffusivities.

Substituting the thickness x in the equation by the thermal resistance R (= x/λ),
which means multiplying both terms with λ2, changes the formula in:

@2θ

@R2 � ρcλ
@θ

@t
(1.31)

with as heat flux:

q � � @θ

@R

The temperatures at both end faces now fluctuate periodically with time. Trans-
forming such periodic signals with base period T into a Fourier series gives for these
temperatures:

θs � Bs0

2
�X1

n�1

Asnsin
2nπt
T

� �
� Bsncos

2nπt
T

� �	 
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Fig. 1.13 Left: periodic change; right: non-periodic change
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with:

Asn � 2
T ∫

T

0

θs t� � sin
2nπt
T

� �
dt Bsn � 2

T ∫
T

0

θs t� � cos
2nπt
T

� �
dt

The constant Bso/2 represents the average value over the base period T, As1, As2 . . . ,
Asn, Bs1, Bs2 . . . , Bsn, the harmonics of the 1st, 2nd, . . . , nth order. Rewriting in a
complex form, using Euler’s formulas:

sin x� � � exp ix� � � exp �ix� �
2i

cos x� � � exp ix� � � exp �ix� �
2

where x= 2nπt/T, the series becomes:

θs t� � � 1
2

X1
n��1

αsn exp
2inπt
T

� �	 

� 1

2

X1
n��1

Asn � iBsn� � exp
2inπt
T

� �	 

(1.32)

where the nth complex temperature αsn has:

Amplitude:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

sn � A2
sn

q
Phase shift: atan �Asn=Bsn� �

The amplitude indicates how large half the temperature variation is, while the phase
shift fixes the time delay compared with a cosine function with period T/(2nπ)
(radians). Consider the monthly mean outdoor air temperatures of Figure 1.14 The
thick line proxy has an equation:

θe � 9:45 � 7:18 cos
2πt

365:25
� �2:828� �

� �
with t time in days, being 365.25 in a year included the leap years, 9.45 the mean
annual temperature (θem), 7.18 the annual amplitude (θe1) and �2.828 the related
phase shift (ϕe1 in radians). The time-dependent term resembles a rotating vector
with value 7.18 starting �2.828 radians away from the real axis. As Fourier series, this
gives:

θe � Bo

2
� θe1 A1 sin

2πt
365:25

� �
� B1 cos

2πt
365:25

� �	 

or, with Bo = 18.9, A1 � θe1 sin ϕe1� � � �2:21 and B1 � θe1 cos ϕe1� � � �6:83:

θe � 9:45 � 2:21 sin
2πt

365:25

� �
� 6:83 cos

2πt
365:25

� �
The related complex value is αe1 � �6:83 � i 2:21 with amplitude 7.18 °C and phase
shift �2.828 radians.

Assume now that from time zero one or both end faces endure a periodic
temperature and heat flux. The response will be twofold: a transient that dies slowly
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and a lasting periodic. As assemblies can neither compress nor extend thermal
signals, the periodic must contain the same harmonics as the surface signal, but
related temperature and heat flux amplitudes will dampen and gradually run behind,
so building up a phase shift during the traverse. So the two will behave as complex, or
the solution will be a Fourier series with the thermal resistance as an independent
variable:

θ R; t� � � 1
2

X1
n��1

αn R� � exp
2inπt
T

� �	 


q t� � � � dθ R; t� �
dR

� 1
2

X1
n��1

αśn R� � exp
2inπt
T

� �	 


The prime for αśn reminds us that, mathematically, the complex heat flux is the first
derivative of the complex temperature with respect to the thermal resistance:

Amplitude:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B´2
sn � A´2

sn

q
Phase shift: atan �Aśn=Bśn� �

Single layer
Inserting the complex temperature into Fourier’s second law gives:

X1
n��1

d2αn R� �
dR2 � 2ρcλinπ

T
αn R� �

	 

exp

2inπt
T

� �� �
� 0 (1.33)
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Fig. 1.14 Monthly mean temperatures. The black circles are the measured averages between 1901 and
1930. The thick line gives the result of a Fourier analysis with one harmonic. The thin lines are the annual
mean, the sine term and cosine term
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Setting to zero presumes that all coefficients of the time exponentials must be zero,
or:

d2αn R� �
dR2 � 2ρcλinπ

T
αn R� � � 0 (1.34)

The second-order partial differential equation so breaks into 21+ 1 second-order
differential equations, with the complex temperature as the dependent variable and
the integer n moving from �1 past 0 to +1. Because the solutions for n positive
and negative mirror each other, only infinity plus one (1+ 1) equations have to be
solved. As n figures only as a parameter and all are otherwise identical, one solution
suffices:

αn R� � � C1exp ωnR� � � C2exp �ωnR� � �0 � n � 1� (1.35)

where:

ω2
n � 2ρcλinπ

T

The quantity ω is called the thermal pulsation. Using Euler’s formulas then gives as
complex temperatures and heat fluxes in a single-layer flat assembly:

αn R� � � C1 � C2� �sinh ωnR� � � C1 � C2� �cosh ωnR� �
αń R� � � dα

dR
� ωn C1 � C2� �cosh ωnR� � � C1 � C2� �sinh ωnR� �� �

The integration constants (C1�C2) and (C1+C2) follow from the boundary
condition that at the face R= 0, the complex temperature and heat flux are
αsn�0� and αśn�0�, or:

αsn 0� � � C1 � C2� �0 � C1 � C2� � � C1 � C2

αśn 0� � � ωn C1 � C2� � � C1 � C2� �0� � � ωn C1 � C2� �
This converts the complex temperature and heat flux equations into:

αn R� � � αsn 0� � cosh ωnR� � � αśn 0� � sinh ωnR� �
ωn

(1.36)

αń R� � � αsn 0� �ωn sinh ωnR� � � αśn 0� � cosh ωnR� � (1.37)

The equations means two unknowns can be solved, whose inclusion in the Fourier
series then gives the time functions. Of interest is the relationship between the
complex quantities at both end faces. Suppose end face R= 0 is the inside. For
envelopes RT then is the outside end face, for partitions the end face at the other side.
The system thus becomes (R=RT):

Asn RT� �� � � Wn� � Asn 0� �� � (1.38)

with [Asn(0)] the column matrix of the unknown complex quantities at one end face,
and [Asn(RT)] the column matrix of the known complex quantities at the other end
face. The system matrix [Wn] for the nth harmonic solely depends on the thickness,
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the material properties, the base period and which harmonic is considered. As an
alternative for the thermal resistance, it contains much more information.

For n= 0, αso=2 and αśo=2 are the average temperature and heat flux on the inside end
face over the period considered (T), with as thermal pulsation:

ω2
o n � 0� � � 2iρcλ0π=T � 0

This turns the equations for the complex temperatures and heat fluxes into:

αso RT� � � αso 0� � � αśo 0� � 0
0

αśo RT� � � αso 0� �0 � αśo 0� � � αśo 0� �

The incoming and outgoing average fluxes look the same. As this holds for any
thermal resistance between 0 and RT, thus at any spot in the single layer, for n= 0 the
heat flux is a constant as in steady state. The ratio 0/0 in the temperature equation is
solved using de l’Hopitâl’s rule:

lim
ω0!0

sinh ωoRT� �=ωo
� � � lim

ω0!0
RTcosh ωoRT� �� � � RT

which allows us to write:

αso RT� � � αso 0� � � αśo 0� �RT:

Anywhere in the single layer the same result comes out. Or, in the [R,θ] plane, the
average temperatures lie on a straight line with the slope equal to the heat flux, again
as in steady-state conditions. Both results extend the steady state from invariable to
average over a sufficiently long time span.

Considering the harmonics, suppose that at the inside surface temperature remains
constant. Then there no complex temperatures intervene, which gives at the other
end face:

αsn RT� � � αśn 0� � sinh ωnRT� �
ωn

or
αsn RT� �
αśn 0� � � sinh ωnRT� �

ωn
(1.39)

The function on the right reflects the ratio between the complex temperature at the
outside face or the end face at the other side, and the complex heat flux at the inside
face. In steady state, this ratio defines the thermal resistance. The name here is
dynamic thermal resistance for the nth harmonic, symbol Dn

q, units m2.K/W, with as
amplitude the size and as argument (ϕn

q) the time shift between the complex
temperature at the one and the complex heat flux at the other end face:

ϕn
q � arg sinh ωnR� �=ωn

� �
The assumption made looks purely theoretical. However, in reality the case is
applicable to buildings with constant indoor temperature. For an infinitely long
period the amplitude and phase shift become:

Dn
q

h i
� lim

n!0

sinh 0� �
0

	 

� lim

n!0
RTcosh 0� �� � � RT ϕn

q � lim
n!0

arg
sinh 0� �

0

	 

� 1
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Or, the dynamic thermal resistance then equals the steady-state value. For a really
fast pulsation, period nil, the amplitude and phase shift change to:

Dn
q

h i
� lim

n!1
sinh 1� �

1
	 


� lim
n!1 RTcosh 1� �� � � 1 ϕn

q � lim
n!1 arg

sinh 1� �
1

	 

� 0

Ever-faster fluctuations so push the dynamic thermal resistance to infinity, meaning
the assembly dampens the signal completely. The dynamic value thus is always
higher than the steady state one. Or, imposing a large thermal resistance suffices to
get a high dynamic one.

Next, assume the heat flux at the inside face does not change. So with no complex
heat fluxes there, the complex temperature at the other end face becomes:

αsn RT� � � αsn 0� �cosh ωnRT� � or
αsn RT� �
αsn 0� � � cosh ωnRT� � (1.40)

The function on the right gives the ratio between the complex temperature at the
outside face or the face at the other side and the complex temperature at the
inside face. This is termed the temperature damping for the nth harmonic,
symbol Dn

θ , no units. The amplitude again gives the size, and the argument (ϕn
θ)

the time shift:

Φn
θ � arg cosh ωnR� �� �

The case anyhow looks fictitious. The property has no equivalent in steady state. Yet,
in practice, it reflects the ability of an assembly to moderate the indoor impact of
temperature changes outdoors. With few heat gains indoors and restricted ventila-
tion, an enclosure with high temperature damping will keep the indoor temperature
stable, a fact turning the number into a performance metric. For an infinitely long
period the amplitude and phase shift become:

Dn
θ

� � � lim
n!0

cosh 0� �� � � 1 ϕn
θ � lim

n!0
arg cosh 0� �� �� � � 1

Then temperature damping nears 1. In fact, in steady state, without heat gains or
losses, the temperatures on both end faces must be equal. For a zero period the
amplitude and phase shift become:

Dn
θ

� � � lim
n!1 cosh 1� �� � � 1 ϕn

θ � lim
n!1 arg cosh1� �� � � 0

For ever faster fluctuations, temperature damping thus approaches infinity.

Finally, the temperature on the outside or the other face being constant converts the
complex temperature on the inside face into:

0 � Dn
θαsn 0� � � Dn

qαśn 0� � or
αśn 0� �
αsn 0� � � �Dn

θ

Dn
q
� �ωncotgh ωnR� � (1.41)

with Dn
θ the temperature damping and Dn

q the dynamic thermal resistance. Their
ratio, equal to the complex heat flux on the inside face divided by its complex
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temperature, is named the ‘admittance’ for the nth harmonic, symbol Adn, units
W/(m2.K), with as amplitude the value of that ratio, and as argument (ϕn

Ad) the time
shift between the two:

ϕn
Ad � ϕn

θ � ϕn
q

The admittance also looks like an impossible quantity. However, it relates to how
easily single-layer assemblies pick up heat from within when the inside surface
temperature fluctuates. The higher the amplitude, the more effective the heat
storage. The statement ‘capacitive’ indicates façade walls or inside partitions with
high admittance. As the thermal pulsation ωn also writes:

ωn � ffiffi
i

p ffiffiffiffiffiffiffi
ρcλ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nπ=T

p

a high admittance requires a large square root of the product of volumetric heat
capacity and thermal conductivity, a value called the contact coefficient or effusivity
of a material, symbol b, units J/(m2.s�1/2.K). The larger the contact coefficient, the
more active that material as a heat storage medium. Heavy materials without an
insulating finish inside have high effusivities, and thus large admittances. The
amplitude and time shift for a period nearing infinity are:

Adn� � � lim
n!0

Dn
θ

Dn
q

 !
� 1
RT

ϕn
As � lim

n!0
arg �Dn

θ

Dn
q

 !" #
� 1

For really slow fluctuations, the admittance thus approaches the thermal conduct-
ance (P). In steady state the heat flux entering or leaving an assembly equals PΔθs. For
a very fast pulsation, the amplitude and phase shift equal:

Adn� � � lim
n!1

Dn
θ

Dn
q

 !
� 1 ϕn

As � lim
n!1 arg

Dn
θ

Dn
q

 !" #
� 0

Or, ever-faster fluctuations move the admittance to infinity.

With the dynamic thermal resistance and temperature damping known, the complex
system matrix of a single-layer assembly becomes:

Wn� � � Dn
θ Dn

q

ω2
nD

n
q Dn

θ

	 


Moving to real numbers requires first that the thermal pulsation is reformulated:

ωn �
ffiffi
i

p
b

ffiffiffiffiffiffiffiffi
2nπ
T

r
�

1 � i� � b
ffiffiffiffiffiffiffiffi
2nπ
T

r
ffiffiffi
2

p � 1 � i� � b
ffiffiffiffiffiffi
nπ
T

r
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whereby the conversion of
ffiffi
i

p
is based on 1 � i� �2 � 2i or

ffiffi
i

p � 1 � i� �= ffiffiffi
2

p
. With the

thermal pulsation redressed, the product ωnR becomes:

ωnR �
1 � i� �b x

ffiffiffiffiffiffi
nπ
T

r
λ

� 1 � i� � x
ffiffiffiffiffiffiffi
nπ
aT

r
with x the ordinate from zero to the full thickness of the single-layer and a= λ2/b2 its
thermal diffusivity. For Xn � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nπ=aT

p
, the thermal pulsation equals 1 � i� �Xn=R.

Thus temperature damping Dn
θ is given by:

Dn
θ � cosh ωnR� � � cosh 1 � i� �Xn� � � cosh Xn� �cosh iXn� � � sinh Xn� �sinh iXn� �

or, with cosh iXn� � � cos Xn� � and sinh iXn� � � i sin Xn� �:
cosh ωnR� � � cosh Xn� �cos Xn� � � i sinh Xn� � sin Xn� �

Analogously, the dynamic thermal resistance Dn
q and the admittance Adn become:

Dn
q � sinh ωnR� �

ωn
� R

2Xn

sinh Xn� �cos Xn� � � cosh Xn� �sin Xn� �� �
� i cosh Xn� �sin Xn� � � sinh Xn� �cos Xn� �� �

( )

Adn � ωnsinh ωnR� � � Xn

R

sinh Xn� �cos Xn� � � cosh Xn� �sin Xn� �� �
� i cosh Xn� �sin Xn� ��sinh Xn� �cos Xn� �� �

( )

As six functions Gn1 to Gn6 are defined:

Gn1�cosh Xn� �cos Xn� � Gn2�sinh Xn� �sin Xn� �
Gn3� sinh Xn� �cos Xn� ��cosh Xn� �sin Xn� �� �= 2Xn� � Gn4� cosh Xn� �sin Xn� ��sinh Xn� �cos Xn� �� �= 2Xn� �
Gn5�Xn sinh Xn� �cos Xn� ��cosh Xn� �sin Xn� �� � Gn6�Xn cosh Xn� �sin Xn� ��sinh Xn� �cos Xn� �� �

They allow the expression of the temperature damping, the dynamic thermal
resistance and the other term in the system matrix as:

cosh ωnR� � � Gn1 � iGn2
sinh ωnR� �

ωn
� R Gn3 � iGn4� � ωnsinh ωnR� � � Gn5 � iGn6

R

The amplitude and time shift for the three properties then become:

Amplitude Phase shift

Dn
q

� � � RT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

n3 � G2
n4

q
ϕn

q � bgtg Gn4=Gn3� �

Dn
θ

� � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

n1 � G2
n2

q
ϕn

q � bgtg Gn2=Gn1� �
Adn� � � Dn

θ

� �
= Dn

q

� �
ϕn
Ad � ϕn

θ � ϕn
q
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Per harmonic n, the complex 2× 2 system matrix for a single-layer assembly herewith
converts into a real 4× 4 matrix:

Wn �

Gn1 Gn2 RTGn3 RTGn4

�Gn2 Gn1 �RTGn4 RTGn3

Gn5
.
RT

Gn6
.
RT

Gn1 Gn2

�Gn6
.
RT

Gn5
.
RT

�Gn2 Gn1

2
6666664

3
7777775

For the phase shift, Figure 1.15 shows which quarter-circle corresponds with which
sign of the G-functions.

Composite
Composite assemblies figure as series-connected single-layers, each with a system
matrix [Wn,i], now called the layer matrix. The whole has as system matrix [WnT]
(Figure 1.16):

Asn RT� �� � � WnT Asn 0� �� � (1.42)

with [Asn(RT)] and [Asn(0)] the column matrices of the nth complex temperature and
heat flux at each end face.

The relationship between the complex temperatures and heat fluxes at interface j and
j+ 1 is:

An;j�1
� � � Wn;j An;j

� �
;

6 h T/4 αn(R)

Gn4 = +
Gn3 = –
Gn2 = +
Gn1 = –

Gn4 = +
Gn3 = +
Gn2 = +
Gn1 = +

Gn4 = –
Gn3 = –
Gn2 = –
Gn1 = –

Gn4 = –
Gn3 = +
Gn2 = –
Gn1 = +

12 h
T/2

0 h, 24 h
0, T

18 h  3T/4 

Fig. 1.15 Phase shift: sign of the G-functions
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an equation that holds per layer. Starting at the end face R= 0 which coincides with
inside, the series becomes:

An;1
� � � Wn;1 As;n 0� �� �
An;2
� � � Wn;2 An;1

� �
. . .

An;m�1
� � � Wn;m�1 An;m�2

� �
As;n RT� �� � � Wn;m An;m�1

� �
Transposing each preceding into the next equation gives:

As;n RT� �� � � Wn;mWn;m�1 . . .Wn;2Wn;1 As;n 0� �� �
or, the system matrix of a composite assembly equals:

WnT� � � ∏
m

j�1
Wn;j
� �

(1.43)

Multiplication starts on the inside, to end at the layer outside or at the layer on the
other side. Each next-layer matrix is multiplied by the product of the preceding ones.
Because the commutation property does not apply for a product of matrixes, that rule
must be respected. So, in contrast to the thermal resistance, the transient response of
a composite assembly changes with the layer sequence, which is very important in
practice. Of course, each layer matrix keeps the same formulation and meaning as for
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0 24
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α(0)

αʹ(0)
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Wnn Wn3
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Wn2 Wn1
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2
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0

0 24

Fig. 1.16 Composite assembly, system matrix
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a single-layer assembly. When two of the four complex temperatures and heat fluxes
at the end faces are known, the others follow from:

Asn RT� �� � � WnT� � Asn 0� �� �
The complex temperatures and heat fluxes in the interfaces are then found by
ascending or descending the layer equations in the correct sequence.

To get the complex temperatures and heat fluxes in a single-layer assembly, it is
parcelled in m sub-layers with thickness Δx, layer matrix WΔx� � and system matrix
Wn� � � WΔx� �m. Per interface between each Δx, the same approach applies as for

composite assemblies.

1.2.4.2 Any boundary conditions: flat assemblies

When the temperature or heat flux at an end face stays zero except for an
infinitesimally short period dt, when it jumps to 1 (Figure 1.17), this is called a
Dirac impulse.

Return to Fourier’s second law now, and assume that the temperature θs1 on end face
s1 pulses this way. As a result, the heat flux there (qs1(t)) and the temperature and
heat flux at the other end face s2 (θs2(t), qs2(t)) will vary. With constant material
properties, the functions qs1(t), θs2(t) and qs2(t) are called the response factors and are
written as:

Iθs1qs1
Iθs1θs2 Iθs1qs2

Analogously:

Iqs1θs1 Iqs1θs2 Iqs1qs2

Iθs2qs1
Iθs2θs1 Iθs1qs2

Iqs2qs1
Iqs2θs1 Iqs2θs2

Depending on the layer sequence, their value changes with the flow direction, from
end face s1 to s2 or vice versa. Consider a temperature pulse with value θso at end face
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Fig. 1.17 Dirac impulse
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s1. With the response factors known, the temperature and heat flux at end face s2 and
the heat flux at end face s1 become:

Impulse θo at face s1 Impulse qo at face s1

qs1 � θoIθs1qs1
θs1 � qoIqs1θs1

θs2 � θoIθs1θs2 θs2 � qoIqs1θs2

qs2 � θoIθs1qs2
qs2 � qoIqs1qs2

A pulse at end face s2 results in analogue relationships. Any random signal θs1(t) can
now be split into a continuous series of pulses θs1 t� �Δt. For the temperature response
(θs2) at end face s2 on a signal θs1 at end face s1, the following applies (Figure 1.18):

t � 0 θs2 0� � � 0

t � Δt θs2 Δt� � � θs1 t � 0� �Iθs1θs2 t � Δt� �
t � 2Δt θs2 2Δt� � � θs1 t � 0� �Iθs1θs2 t � 2Δt� � � θs1 t � Δt� �Iθs1θs2 t � Δt� �
t � 3Δt

θs2 3Δt� � � θs1 t � 0� �Iθs1θs2 t � 3Δt� � � θs1 t � Δt� �Iθs1θs2 t � 2Δt� �
� θs1 t � 2Δt� �Iθs1θs2 t � Δt� �

. . .

t � nΔt
θs2 nΔt� � � θs1 t � 0� �Iθs1θs2 t � nΔt� � � θs1 t � Δt� �Iθs1θs2 t � n � 1� �Δt� �

� θs1 t � 2Δt� �Iθs1θs2 t � n � 2� �Δt� � � . . .

or:

θs2 nΔt� � �Xn�1

j�0

θs1 jΔt� �Iθs1θs2 n � j� �Δt� �
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Fig. 1.18 Convolution, the principle
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As an integral:

θs2 t� � � ∫
t

0

θs1 τ� � Iθs1θs2 t � τ� �dτ

This integral of the product of the signal scanned clockwise and the response factor
scanned counter-clockwise is called the convolution integral of temperature θs2 at
end face s2 for the signal θs1(t) at end face s1. The same approach, be it with the
correct response factors, holds for the two heat fluxes and for all situations where
changing boundary conditions intervene. Response factors and convolution integrals
have to be calculated numerically.

Now consider a temperature step at the surface of a semi-infinite medium. At time
zero the medium is still uniformly warm, temperature θs0, but then the surface
temperature suddenly jumps to a value θs0+Δθs0 (Figure 1.19).

A separation of variables allows the solution of Fourier’s second law with t= 0,
0� x�1, θ= θs0 as initial conditions, and t� 0, x= 0, θs= θs0+Δθs0 as boundary
conditions. The outcome is:

θ x; t� � � θs0 � Δθs0
2ffiffiffi
π

p ∫
1

q� x
2
ffiffiffi
at

p

exp �q2
� �

dq

0
BB@

1
CCA (1.44)

The term between brackets is the inverse error function, with a the thermal
diffusivity of the medium. The heat flux at the surface (x= 0) equals:

q � �λ dθ
dx

� �λ 2Δθs0

2
ffiffiffiffiffiffiffi
πat

p exp � x2

4at

� �" #
x�0

� �Δθs0bffiffiffiffiffi
πt

p (1.45)
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Fig. 1.19 Temperature step at the surface of a semi-infinite medium
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with b the contact coefficient of the medium. Applying the definition of response
factor to this equation gives:

Iθs1qs1
� �b= ffiffiffiffiffi

πt
p

Semi-infinite mediums do not exist, but the soil or very thick material layers are
close. In any case, the heat flux equation illustrates what the contact coefficient does.
A high value means a rapid uptake of heat when the surface temperature rises and a
rapid release when it drops, whereas a low value stands for a slow uptake and release.
Materials with high contact coefficients act as storage media. If, in passive solar
buildings, walls and floors could not store the solar gains temporarily, the indoor
conditions would become intolerable. Partitions should be thick enough and consist
of heavy materials with a high contact coefficient.

The heat per m2
flowing in or out of a semi-infinite medium beyond time zero equals:

Q � ∫
t

0

q dt � 2bΔθs0ffiffiffi
π

p ffiffi
t

p � Aq

ffiffi
t

p
(1.46)

with the quantity Aq called the heat absorption coefficient, units J/(m2.K.s½).

When two materials make contact and the one is at temperature θ1, the other at
temperature θ2, the heat flux in the contact will equal (θ1>θ2):

Material 1: qs1 � θ1 � θc� �b1=
ffiffiffiffiffi
πt

p
Material 2: qs2 � θc � θ2� �b2=

ffiffiffiffiffi
πt

p

Since both fluxes must be identical in absolute value, the contact temperature θc

becomes:

θc � b1θ1 � b2θ2

b1 � b2
(1.47)

This instant value depends on the temperature and the contact coefficient of the two
materials in contact, a reality affecting the impression when humans touch a
material. A capacitative one with a high contact coefficient will feel cold or hot,
while a material with low contact coefficient will feel comfortably warm. Indeed, in
the first case the skin temperature will suddenly move from 32–33 °C to the material
temperature, while in the second case the contact will adapt to the skin. So, touching
concrete and aluminium is unpleasant, while touching wood is pleasant. To indicate
that feeling, the term cold or warm material is used. The contact coefficient is an
important metric when choosing floorings or chair finishes.

1.2.4.3 Two and three dimensions: thermal bridges

Where heat is transmitted two- or three-dimensionally, Fourier’s second law for
transient conduction applies. Analytical solutions for building details do not exist,
which is why CVM is used. The transient heat capacity ρcΔV of each control volume
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intervenes. Without dissipation, the resulting heat flow now equals the change in
heat content of each central control volume, or:X

Φm

� �
Δt � ρcΔV Δθ

with Φm the average heat flow from each nearest volume during the time step Δt. If
set equal to a weighted average of the flow at time t (= 1) and time t+Δt (= 2), then:

Φm � pΦt�Δt � 1 � p� �Φt 1 > p > 0� �

The balance now writes as (i= l,m,n and j=±1):

p
X

Ps;i�jθi�j
� � � θl;m;n

X
Ps;i�j

h i 2� � � 1 � p� � X Ps;i�jθi�j
� � � θl;m;n

X
Ps;i�j

h i 1� �

� ρcΔV
θ 2� �
l;m;n � θ 1� �

l;m;n

Δt
For p= 0, the system only contains forward difference equations, and for p= 1, only
backward difference equations. For p= 0.5, which means using the arithmetic
average, a choice called the Cranck-Nicholson scheme, rearrangement gives:

X
Ps;i�jθi�j
� � � θl;m;n

X
Ps;i�j � 2ρcΔV

Δt

� �	 
 2� �

� �X Ps;i�jθi�j
� � � θl;m;n

X
Ps;i�j � 2ρcΔV

Δt

� �	 
 1� �

with the actual temperatures (2) unknown and the preceding ones (1) known. This
way, each time step gives a system of as many equations as there are control volumes
at unknown temperature. For given initial and boundary conditions, solving the
system per time step is possible. Questions to decide upon beforehand are how to
mesh (finer in materials with high thermal diffusivity) and the time step to use: in
accordance with mesh density, in accordance with the step in boundary condition
values, or in accordance with the information density required. Poor choices can
induce instability in the solution generated.

1.3 Heat exchange at surfaces

Up to now, end face temperatures were assumed to be known. However, in most
cases, it is the air temperatures and sometimes the heat flux at an end face that are the
quantities figuring as known boundary conditions. Every weather station, in fact,
registers the air temperature outdoors, while measuring the value indoors is much
simpler than logging surface temperatures. Therefore the focus now shifts from heat
transfer face-to-face to heat transfer between the ambient at both sides. But, how
does heat reach a surface? Two mechanisms are responsible for that: convection
between the air and the surface, and radiant exchanges with all surfaces seen. The

48 1 Heat transfer



inside surface A in Figure 1.20, for example, radiates to and receives radiation from
all the partitions, the radiator and the furniture, while exchanging convective heat
with the air in the room.

1.4 Convection

1.4.1 In general

The term ‘convective’ aims at describing the heat transfer between fluids and
surfaces. The heat flux and flow exchanged are then given as:

qc � hc θfl � θs� � Φc � hc θfl � θs� �A (1.48)

where θfl is the temperature in the undisturbed fluid, θs the surface temperature and
hc the convective surface film coefficient, units W/(m2.K). The equations are known
under the name of Newton’s law. Convection thus seems to be linearly related to the
driving temperature difference (θfl� θs). The equations, however, rather serve as a
definition of the surface film coefficient, which accommodates the whole complexity
of the heat and mass flow in a fluid touching a surface. Together, the scalar law of
mass conservation and the vector law of momentum conservation fix the mass flow
at the surface:

Mass �scalar� div ρv� � � 0

Momentum �Navier-Stokes; vector� d ρv� �
dt

� ρg � grad P � μ∇2v

In these equations, ρ is the density and μ the dynamic viscosity of the fluid, P the total
pressure and ρg the gravity gradient. Unknown are the velocity components vx, vy, vz

and the total pressure. When the mass flow turns turbulent, the turbulence equations
must be added. Often used is the (k, ε) model, where k is the turbulent kinetic energy

Radiation

Convection

Surface A

Fig. 1.20 Heat exchange at surface A by convection to and from the room air and radiation to and from
all other surfaces
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and ε its dissipation. Both give an extra scalar equation. Otherwise said, turbulent
flow requires three scalar equations, while the velocity components in the x, y, and z
directions turn the vector momentum equation into another three scalar equations.

For constant properties, negligible kinetic energy and negligible friction, conserva-
tion of energy in a moving fluid simplifies to:

a∇2θ � dθ
dt

(1.49)

with a being the fluid’s thermal diffusivity. In the Navier-Stokes equation as well as in
the energy equation, d/dt is a total derivative:

d
dt

� @

@x
@x
@t

� @

@y
@y
@t

� @

@z
@z
@t

� @

@t
� @

@x
vx|ffl{zffl}

�1�

� @

@y
vy|ffl{zffl}

�2�

� @

@z
vz|ffl{zffl}

�3�

� @

@t

where in the energy equation the terms (1), (2) and (3) multiplied with ρcθ quantify
the enthalpy that a fluid at temperature θ moving at velocity v with components vx, vy,
vz carries with it. Energy conservation so introduces temperature θ as a seventh
unknown.

All information on convection follows from solving this system of seven scalar partial
differential equations, which computational fluid dynamics (CFD) allows us to do
numerically. Once the temperature field is known, the heat fluxes at a surface follow
from Fourier’s first law, because right at the contact, convection becomes conduction
across a laminar boundary layer.

The following relationship thus holds for the surface film coefficient:

hc � �λfl
grad θ� �s
θfl � θs

(1.50)

where (grad θ)s is the temperature gradient in the boundary layer and θfl is the
temperature at a particular location in the undisturbed fluid.

Solving the system analytically is possible for natural convection along a semi-infinite
vertical surface and for forced convection along a semi-infinite horizontal surface,
in both cases as long as the flow is laminar. With air as the fluid, velocity and
temperature follow from similar equations:

@vx
@x

� @vy
@y

� 0 vx
@vx
@x

� vy
@vy
@y

� vfl
@2vx
@y2

vx
@θ

@x
� vy

@θ

@y
� afl

@2θ

@y2

Moreover, if the thermal diffusivity equals the kinematic viscosity, the equations
become identical. The heat transfer and mass flow patterns then coincide, so solving
gives as the surface film coefficient:

hc;x � 0:664λfl

x

ffiffiffiffiffiffiffiffi
v1x
vf l

r
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where x is the distance to the surface’s free edge and v1 the velocity in the
undisturbed fluid. Thus the surface film coefficient changes along the surface.

However, any trial to calculate the convective heat transfer along wall faces in a room,
along the outside face of a building or of any other construction analytically, is
doomed to fail. Even in the most simple situations, convection depends upon all
parameters and properties determining the mass and heat transfer:

Fluid properties Flow parameters

Thermal conductivity (λfl) Geometry
Density (ρfl) Surface roughness
Specific heat capacity (cfl) Temperature difference (θfl� θs)
Kinematic viscosity (μfl/ρfl) Nature and direction of the flow
Volumetric expansion coefficient Velocity components vx, vy, vz

1.4.2 Typology

1.4.2.1 Driving forces

If differences in fluid density due to temperature and concentration gradients are
the sole driving force, then natural convection with flow patterns reflecting the
related temperature and concentration fields will develop, as is most often the
case indoors. If, instead, the driving force is an imposed pressure difference, for
example wind, then forced convection will be the result with a flow pattern
independent of temperature and concentration. But the two types are not clearly
separated. Forced convection at low velocities adds a natural component, as is the
case with wind around buildings, inducing pressure differences that are generally
too weak to eliminate buoyancy. Pure natural convection also rarely occurs.
Opening and closing doors in a building, for example, causes some mixed
convection.

1.4.2.2 Flow types

Flow can be laminar, turbulent or transitory. Diverging and converging streamlines
that never cross, and wherein particle and overall flow velocity coincide, characterize
laminar flow. In turbulent flow, chaotic momentum creates whirling eddies with
particle velocities different from the flow velocity. Turbulent kinetic energy (k) builds
up in the eddies, while turbulent dissipation (ε) continuously extinguishes eddy
motion. An exact description of turbulent flow is practically impossible, even
applying a fractional eddy approach. Transient flow fills the gap between laminar
and turbulent. In fact, small disturbances along the flow path suffice to switch from
laminar to turbulent, after which the eddies die and the flow turns laminar again.
Intense turbulent mixing favours heat transfer more than laminar flow, for which
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only conduction perpendicular to the flow direction plays a part. Transient flow
switches between the other two types. To summarize:

 Flow

Driving force Laminar Transient Turbulent

Density differences X X x
Density and pressures X X x
Pressures X X X

1.4.3 Quantifying the convective surface film coefficient

1.4.3.1 Analytically

The few solvable cases underline that the convective surface film coefficient changes
from spot to spot along a surface. When the heat flow is the subject of interest, using a
surface-averaged value circumvents that complication:

hc � 1
A ∫hcAdA

The standard convective surface film coefficients are such averages, unless local surface
temperature values are the subject of interest. Then spot-by-spot values should be used.

1.4.3.2 Numerically

Thanks to CFD, simulations of convection have improved a lot, albeit the velocity
profiles in the boundary layer near surfaces still have to be assumed. Table 1.1 and
Figure 1.21 list some CFD-related results.

Table 1.1 Convective surface film coefficient (he) along a rectangular, detached building: CFD-based
correlations for wind speeds (vw) below 15m/s and a 10 °C surface-to-air temperature difference
(Emmel et al., 2007)

Surface to wind angle, ° he, W/(m2.K)

Outer walls 0 5:15v0:31
w

45 3:34v0:34
w

90 4:78v0:71
w

135 4:05v0:77
w

180 3:54v0:76
w

Roofs 0 5:11v0:78
w

45 4:6v0:79
w

90 3:76v0:85
w
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1.4.3.3 Dimensionally

Most information about convection is still obtained from experiment and dimen-
sional analysis. This latter technique determines which dimensionless ratios amongst
the fluid properties, geometric parameters and kinematic parameters that define the
movement, need the same value in experiment as in reality to allow extrapolation to
real-world situations. These ratios either follow from the differential equations or
from Buckingham’s π-theorem, which states that if a problem depends on n single-
valued physical properties involving p basic dimensions, then n� p dimensionless
ratios define the solution. The description of forced convection, for example, needs
seven physical properties (L, λfl, vfl, ρfl, μfl, cfl, hc: see above) with four basic
dimensions: L (representative length) t (time) M (mass) and θ (temperature). So,
three dimensionless ratios (π1, π2, π3) are required, expressed as π1 � f π2; π3� �. These
follow from rewriting the π-functions as:

π � La λb
fl v

c
fl ρ

d
fl μ

e
fl c

f
fl h

g
c

an equation only containing the basic dimensions, or:

π � L� �a ML
t3θ

	 
b L
t

	 
c M

L3

	 
d M
Lt

	 
e L2

t2θ

	 
f
M
t3θ

	 
g

Because the three ratios must be dimensionless, the sum of the exponents per
dimension should be zero, or:

For M b + d + e + g = 0
For L a + b + c � 3d � e + 2f = 0
For t � 3b � c � e � 2f � 3 g = 0
For θ � b � f � g = 0
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Fig. 1.21 Convective surface film coefficient outside, rectangular building, CFD-based correlations
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The three so follow from recalculating the π-function three times, first for g= 1,
c= 0, d= 0, then for g= 0, a= 1, f= 0, and finally for g= 0, e= 1, c= 0:

Solution 1 a= 1, b=�1, e= 0, f= 0 or
π1 � hcL

λfl

Solution 2 b= 0, c= 1, d= 1, e=�1 or
π2 � ρflvflL

μfl

Solution 3 a= 0, b=�1, d= 0, f= 1 or π3 � cflμfl

λfl

Natural convection instead demands four dimensionless ratios, of which two
combine into one. The three for forced convection are called the Reynolds, Nusselt
and Prandtl numbers, and the three for natural convection are the Grasshof, Nusselt
and Prandtl numbers.

Reynolds number is given by:

Re � vf lL=νf l � π2� � (1.51)

with vfl being velocity, νfl the kinematic viscosity of the fluid and L a characteristic
length representing the geometry, such as the hydraulic diameter for pipes, the
dimension in the flow direction for walls, or a calculated length for more complex
cases. The Reynolds number gives the ratio between the inertia force and viscous
friction. If the number is small, friction gains and the result is laminar flow. If large,
the inertia force wins and turbulent flow occurs. So the number determines the
flow type: laminar for Re� 2000, turbulent for Re� 20 000, and transient in
between.

The Nusselt number is calculated as:

Nu � hcL=λfl � π1� � (1.52)

where λfl is the thermal conductivity of the fluid. Multiplying the left- and right-hand
sides of the convective surface film coefficient equation (see above) by the charac-
teristic length gives:

hcL=λfl � grad θ� �s= θfl � θs� �=L� �
meaning that the Nusselt number represents the ratio between the temperature
gradient in the fluid at the surface and the mean temperature gradient along the
characteristic length. A large value indicates a significant gradient at the surface and a
small gradient along the characteristic length, as is the case for high fluid velocities.
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Physically, the number says that conduction governs heat transfer at a surface. Even
in a turbulent flow regime, a laminar boundary layer remains whose thickness
reduces with increasing fluid velocity but never becomes zero. The number under-
lines the importance of convection compared with conduction.

The Prandtl number is:

Pr � νf l=af l � π3� � (1.53)

This number combines heat and mass transfer by rating two analogous quantities:
the thermal diffusivity, which determines how easily a local temperature change
spreads into the fluid, and the kinematic viscosity ν, which indicates how easily a local
velocity change affects the fluid.

The Grasshof number in turn is given by:

Gr � βflgL
3Δθ=ν2

fl (1.54)

with βfl the volumetric expansion coefficient, g the acceleration due to gravity and Δθ
the representative temperature difference. Grasshof replaces Reynolds in the case of
natural convection. Velocity then is indeed mainly the result of temperature-related
differences in density (βg). As velocity influences temperature, the terms L3 and ν2

fl
replace L and νfl in the Reynolds number.

Finally, the Rayleigh number equals:

Ra � Gr Pr (1.55)

This number has no physical meaning. It was introduced because in many formulae
for natural convection, Grasshof and Prandtl appear as a product.

All experimental, numerical and analytical expressions for the convective surface
film coefficient may be written as:

Natural convection: Nu= c(Ra)n

Mixed convection: Nu= F(Re/Gr½, Pr)

Forced convection: Nu= F(Re, Pr)

where the coefficient c, the exponent n and the function F() differ among geometries,
the nature of the flow, and the flow direction for natural convection. A model and
reality will coincide when in both cases the numbers have equal values.

1.4.4 Values for the convective surface film coefficient

1.4.4.1 Flat surfaces

In cases of natural convection, the characteristic length L (see the subscript) is
the height for vertical surfaces, the side for square horizontal surfaces, and the average
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of length and width for rectangular horizontal surfaces. The mean temperature
between wall surface and the undisturbed fluid fixes the property values. The relations
are:

Conditions Functions

Vertical surfaces
RaL � 109

RaL > 109
NuL � 0:56 Ra

1
4=

L

NuL � 0:025 Ra
2

5=
L

Horizontal surfaces
Heat exchanged upwards 105 < RaL � 2 � 107

NuL � 0:56 Ra
1

4=
L

2 � 107 < RaL < 3 � 1010
NuL � 0:138 Ra

1
3=

L

Heat exchanged downwards 3 � 105 < RaL < 1010
NuL � 0:27 Ra

1
4=

L

For forced convection, the relationships with L as the characteristic length are:

Conditions Functions

Laminar flow Pr> 0.1
ReL< 5× 105 NuL � 0:644 Re

1
�

2
L Pr

1
�

3

Turbulent flow Pr> 0.5
ReL> 5× 105 NuL � 0:036 Pr

1
�

3 Re
4
�

5
L � 23; 200

 !

In buildings with air-based HVAC systems, the convective surface film coefficients
for mixed convection indoors are often related to the air change rate (n in air changes
per hour, symbol ach), a number describing how many times an hour the air in a
room is replaced by air delivered by the system. For a rectangular room (Fischer,
1995):

Configuration Convective surface film
coefficient W/(m2.K)

Forced convection, air diffusers at the ceiling,
room isothermal

Walls �0:199 � 0:18n0:8

Floor 0:159 � 0:116n0:8

Ceiling �0:166 � 0:484n0:8

Forced convection, air diffusers at the walls,
room isothermal

Walls �0:110 � 0:132n0:8

Floor 0:704 � 0:168n0:8

Ceiling 0:064 � 0:00444n0:8
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In and around buildings, the fluid is air at atmospheric pressure and ambient
temperature. This allows simplification of the given equations. For natural convection
the temperature difference Δθ between the surface and the undisturbed air largely
determines the surface film coefficient, a fact reflected by the following relationship:

hc � a Δθ=L� �b
with as values for a, b and L:

Conditions a b L

Vertical surfaces
10�4 < L3ΔT � 7 1.4 ¼ Height
7 < L3ΔT � 103 1.3 1/3 1

Horizontal surfaces
Heat flow upwards 10�4 < L3ΔT � 0:14

0:14 < L3ΔT � 200
1.3
1.5

¼
1/3

Eq. side1

Heat flow downwards 2 � 10�4 < L3ΔT � 200 0.6 ¼ 1

For forced convection outdoors, wind is the main actor, which gives as relationships:

Wind speed Relationship Remarks

v� 5 m/s hc= 5.6+ 3.9v For v� 5 m/s, natural convection still intervenes,
hence the constant 5.6

v> 5 m/s hc= 7.2 v0.78

The fact that the value rises with wind speed is a direct consequence of the reduction
in boundary layer thickness.

In any case, all these simple relationships only apply for air flowing along freestanding
flat surfaces. Angles between two surfaces and corners between three surfaces have a
disturbing effect. Moreover, if the surfaces form a room, the overall flow pattern must
satisfy the continuity equation. All this makes convection so complex that, for the sake
of simplicity, all standards advance constant average values:

European Normalization (EN) standard Heat loss Surface temperatures

Natural convection (= inside)
Vertical surfaces 3.5 2.5
Horizontal surfaces:

Heat upwards 5.5 2.5
Heat downwards 1.2 1.2

Forced convection (= outside) 19.0 19.0
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Reference temperatures in rooms use the air temperature at a point 1.7 m above the
floor’s centre. Outdoors, the reference is the air temperature measured by the nearest
weather station. When calculating surface temperatures using local convective
surface film coefficients, the reference moves to the air temperature just outside
the boundary layer.

In case of large temperature differences, a complex geometry or surfaces screened
by furniture where we require a more correct calculation, the more complete
formulae given in the tables above or formulae mentioned in the literature must be
used.

1.4.4.2 Cavities

The word cavity refers to an air or gas layer with a small width compared with either
the length or height. At the warm face the convective heat flux equals:

qc1 � hc1 θs1 � θc� �
At the cold face, it is:

qc2 � hc2 θc � θs2� �
In both relations, θc is the gas temperature in the middle of the cavity. If the cavity
remains unvented, the two must on average be equal, giving as mean flux:

qc � hc1hc2

hc1 � hc2
θs1 � θs2� � (1.56)

Replacing the two surface film coefficients by a common value hc simplifies this
formula to:

qc � hc=2� � θs1 � θs2� �
In reality, convection in a cavity is partly conduction, so the expression above is
mostly rewritten as if conduction dominates, though with the thermal conductivity of
the gas (λfl) multiplied by the Nusselt number:

q � qc � λflNu� �Δθs=d � hć Δθs (1.57)

In this formula, d is the cavity width in m and Δθs the temperature difference
between both cavity faces in °C. In a horizontal, infinitely extending cavity, circular
eddies, called Bénard cells, develop. In vertical infinitely extending cavities, some air
rotation intervenes. In both cases, the Nusselt number can be written as:

Nud � max 1; 1 � m Rard
Rad � n

	 

102 � Rad � 108
� �

(1.58)
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with:

m n r

Horizontal cavity
Heat transfer downwards 0
Heat transfer upwards 0.07 3200 1.33

Vertical cavity, or tilted cavity with slope above 45° 0.024 10 100 1.39
Tilted cavity with slope below 45°

Heat transfer upwards 0.043 4100 1.36
Heat transfer downwards 0.025 13 000 1.36

For the Raleigh number, the temperature difference between the two faces figures as
the reference, while the cavity width (d) acts as characteristic length. A Raleigh
number below 100 means conduction with Nud= 1.

Convection in finite cavities diverges strongly from infinite cavities. With d, H and L
the cavity width, height and length in m, lam a superscript for laminar, turb a
superscript for turbulent, and transient a superscript for transient flow, the Nusselt
numbers become:

 Nud

Vertical cavity

Raleigh number upper limit value
(Ramax) for the applicability of Nud

depending on the ratio H/d:

H=d: 5 20 40 80 100
Ramax: 108 2�106 2�105 3�104 1:2�104

max Nulam
d ;Nuturb

d ;Nutransient
d

� �
, with

Nulam
d � 0:242

Radd
H

� �0:273

Nuturb
d � 0:0:0605 Ra0:33

d

Nutransient
d � 1� 0:104Ra0:293

d

1� 6310=Rad� �1:36

 !3" #0:33

Horizontal cavity

Heat transfer upwards Rad� 1708
Rad>1708

1

max 1; 1537d2 Δθ
L

� �1=
4

" #
Heat transfer downwards 1

Tilted cavity: see literature

1.4.4.3 Pipes

Experimental and semi-experimental work on convection between pipes and the
ambient fluid has resulted in a series of formulae. For natural convection:
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Vertical pipe Rad� 109
NuL � 0:555 Ra

1=4
d

Rad>109 NuL � 0:021 Ra
2

5=

d

Horizontal pipe Rad� 109
NuL � 0:530 Ra

1=4
d

For forced convection:

Red< 500 Nud= 0.43+ 0.48 Red
½

Red> 500 NuL= 0.46+ 0.00 128 Red

In all equations, the characteristic length (d) relates to the outer diameter of the pipe,
while all properties link to the average (θconv) between the temperature in the
undisturbed fluid (θfl) and the temperature of the pipe’s outside surface (θs).

1.5 Radiation

1.5.1 In general

Thermal radiation differs fundamentally from conduction and convection. Radi-
ation involves electromagnetic waves in the heat exchange. Any surface warmer
than 0 K emits electromagnetic waves, while their absorption by surfaces agitates
atoms and electrons, which is effectively heating. Electromagnetic waves span an
impressive interval of wavelengths (λ), but only the 10�7 to 10�3 m range with
ultraviolet (UV), visible light (L) and infrared (IR) are quoted as being thermal
(Table 1.2).

Table 1.2 Categorization of electromagnetic radiation by wavelength

Wavelength Radiation type

λ� 10�6 μm Cosmic radiation

10�6 < λ� 10�4 μm Gamma rays

10�4 < λ� 10�2 μm X-rays

10�2< λ� 0.38μm Ultraviolet

0.38< λ� 0.76μm Visible light

0.76< λ� 103μm Infrared

103< λ Radio waves
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Due to its electromagnetic nature, thermal radiation does not require a medium. On
the contrary, only in a vacuum, where the photons move at a speed of 299 792.5 km/s,
is transfer unhindered. How much will be emitted depends on the nature of a surface
and its temperature, while net heat exchanges only happen among surfaces at
different temperatures. Aside, the wavelength is given by the ratio between the
propagation speed in m/s and the frequency in Hz.

1.5.2 Definitions

Table 1.3 outlines how thermal radiation is quantified, with the spectral values
standing for ‘deduced with respect to wavelength’. A single wavelength gives
monochromatic radiation, while several wavelengths together give coloured
radiation.

1.5.3 Reflection, absorption and transmission

When a radiant flux (quid) emitted by a surface at temperature T touches another
surface, a part is absorbed (bra), a part reflected (err) and, if transparent, a part

Table 1.3 Variables of radiant heat transfer

Variable Definition, units Equations

Radiant heat QR The heat emitted or received in the form of
electromagnetic waves. Scalar, units J

Radiant heat
flow ΦR

The radiant heat per unit of time. Scalar,
units W

dQR

dt

Radiant heat
flux qR

The radiant heat flow per unit of surface. As
a surface emits radiation and receives it
from all directions, the flux, units W/m2, is
a scalar. The term irradiation, symbol E, is
used for the incoming radiation, the term
emittance, symbol M, for the emitted
radiant heat flux.

d2QR

dAdt

Radiation
intensity I

The radiant energy emitted in a specific
direction. The intensity is a vector, units
W/(m2.rad) with dω the elementary angle in
the direction considered.

dqR

dω
or

d2ΦR

dAdω

Luminosity L The ratio between the radiant heat flow rate
in a direction ϕ and the apparent surface, seen
from that direction. The luminosity is a
vector, units W/(m2.rad). It describes how a
receiving surface sees an emitting one.

d2ΦR

cos ϕ dA dω
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transmitted (art):

α � qRa=qRi ρ � qRr=qRi τ � qRt=qRi (1.59)

where α, ρ and τ are the average absorptivity, reflectivity and transmissivity at a
temperature T of the receiving surface. Conservation of energy now imposes that the
sum of these three must be 1, or:

α � ρ � τ � 1

This does not hold if the three are at different temperatures – never add in such a
case. A difference also exists between diffuse and specular reflection. The latter obeys
the laws of optics, with the incident and reflected beam in the same plane, and the
angles with the normal to the surface (ϕr and ϕi) being equal (Figure 1.22). Most
surfaces, however, show diffuse reflection, meaning that the reflected radiation
scatters in all directions.

Reflectivity in a given direction (α) can be defined in relation to the radiation intensity
incident under an angle ϕ on the surface:

ρϕ � IRrα=IRiϕ

with IRrα the reflected intensity in direction α. For a specularly reflecting surface, the
reflectivity becomes:

ρϕ � IRr=IRi� �ϕ
with ρϕ being a function of the angle of incidence.

Most building and insulation materials are opaque for thermal radiation (τ= 0).
What arrives is absorbed in a thin surface layer, 10�6 m thick for metals and 10�4 m
for other materials. Therefore the terms ‘absorbing surface’ or ‘absorbing body’ are

qRi

qRi=qRr+qRa+qRt

qRr

qRa

qRt

qRi qRr

ϕi = ϕr

Fig. 1.22 Reflection, absorption and transmission at a surface, specular reflection
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often used. Instead, most gases, fluids and solids such as glass and a number of
synthetics are selectively transparent, although they show selective mass absorption
depending on their extinction coefficient (a) (Figure 1.23):

dqR

qR
� �a dx (1.60)

For a layer with thickness d, the transmitted and absorbed radiant heat flux then
equals:

qRt � qRi exp �ad� � qRa � qRi � qRt � qRi 1 � exp �ad� �� �
with qRi the incoming flux. Absorptivity and transmissivity so become:

α � 1 � exp �ad� � τ � exp �ad� �
Specular reflectivity at an irradiated interface separating two media is given by:

ρ � Ir

I i
� n1 cos ϕi� � � n2 cos ϕt� �

n1 cos ϕi� � � n2 cos ϕt� �
	 
2

where n1 and n2 are the refractive indexes of the media at either side, for example air
(n= 1) and glass, ϕi is the angle of incidence in the first medium, and ϕt is the angle of
transmittance to the second medium.

As stated, absorptivity, reflectivity, and transmissivity vary with temperature, and
thus with wavelength, although the angle of incidence also matters. The impact can
be impressive. Take glass, whose transmissivity for visible light is large, whereas for
UV and IR it approaches zero with the absorptivity then exceeding a value of 0.9.
Those differences explain the greenhouse effect. The short-wave, high-temperature
solar radiation transmitted by the glass is absorbed by all surfaces indoors and re-
emitted as low-temperature IR radiation, which the glass absorbs, leaving conduction
as the only way to get rid of the heat. At the same time, the radiant bodies indoors
slowly release the absorbed solar heat. The combination can make the indoors
uncomfortably warm. Transparent synthetic materials act analogously, although
some also transmit IR.

qRiqRt

qRa/2

qRa/2

Fig. 1.23 Absorption of radiation passing through transparent materials
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1.5.4 Radiant bodies

Ideal black surfaces absorb all incident radiation (α= 1, ρ= 0, τ= 0, α ≠ f(λ,ϕ)). Their
study is enlightening for grey bodies, which have a constant absorptivity, blank
bodies, which have an absorptivity of zero, and coloured bodies, whose absorptivity
depends on the temperature and the direction of the incident radiation. Although
blank and grey bodies are ideal, and do not exist in reality, most real surfaces are
assumed to behave as grey bodies. A distinction is made between short solar
(subscript S) and long-wave ambient radiation (subscript L). Both stand for a
different absorptivity and reflectivity.

1.5.4.1 Black

Of all surfaces, black bodies (subscript b) emit most radiant energy, independent of
temperature. Their emissivity is 1. In fact, according to the second law of
thermodynamics, in closed systems black bodies at different temperatures must
evolve irrevocably towards temperature equilibrium. Because at equilibrium each
of them emits and absorbs the same amount of radiation, the emissivity must equal
the absorptivity, which is 1. With respect to direction, a black body obeys
Lambert’s law: luminosity constant. Hence, the related radiant intensity must
obey (Figure 1.24):

Ibϕ � Lb cos ϕ (1.61)

This equation, known as the cosine law, offers a simple relationship between
emittance and luminosity. From the definitions in Table 1.3:

Mb � Lb ∫
ω

cos ϕ dω

where the integral covers the hemisphere. The angle dω is calculated assuming a
hemisphere with radius ro surrounds the surface dA with emittance Mb (Figure 1.25).
The angle dω thus equals:

dω � r2
0 sin ϕ dϕ dϑ

Fig. 1.24 The thick line representing the effect of the cosine law on radiation intensity
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while on the hemisphere, the intensity drops to Ibϕ=r2
0, or:

Mb � Lb ∫
2π

0
∫
π=2

0

cos ϕ
r2

o
r2

o sin ϕ dϕ dϑ � �πLb cos2 ϕ
� �π=2

0 � πLb (1.62)

Planck’s law gives the spectral density of the emittance:

Mbλ � 2πc2hλ�5

exp
ch

kλT

� �
� 1

(1.63)

with constants: c as the speed of light in m/s, h as Planck’s constant (6.624× 10�34 J.s),
and k as Boltzmann’s constant (1.38047× 10�23 J/K). The products 2πc2 h and ch/k are
called the radiation constants for a black body, symbols C1 (3.7415× 10�16 W.m2) and
C2 (1.4388× 10�2 m.K). Figure 1.26 shows the spectral density of the emittance for
different values of the absolute temperature.
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Fig. 1.26 Spectral density of the emittance (a) at ambient temperature, at a warmer temperature and
(b) for the sun as a black body

dω

ϕ ro

ϑ

Fig. 1.25 Proving the cosine law
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The emittance, equal to the surface under the curve, increases quickly with tempera-
ture, while the maxima occur at ever-shorter wavelengths. In the [λ, MBλ] plane, these
maxima have as a geometric locus a fifth order hyperbole, while their wavelengths
obey Wien’s law:

λMT � 2898 �λM in μm� (1.64)

At 20 °C, with λM= 2898/293.15= 9.9 μm, the maximum lies in the infrared interval.
For the sun, with a radiant temperature of 5800 K, with λM= 2898/5800= 0.5 μm, it
sits in the middle of the visible light interval. The emittance Mb itself follows from
integrating Planck’s law with respect to the wavelength:

Mb � ∫
1

0

Mbλ dλ � 2π5k4

15c2h3 T
4 � σT4 (1.65)

This equation is known as the Stefan-Boltzmann law, with σ as Stefan’s constant,
5.67× 10�8 W/(m2.K4). This and Wien’s law preceded Planck’s, for which quantum
mechanics had to come first. The Stefan-Boltzmann law is mostly written as:

Mb � Cb
T

100

� �4

(1.66)

with Cb the black body constant, 5.67 W/(m2.K4), and T/100 the reduced radiant
temperature. Luminosity and radiation intensity then become:

Lb � Mb

π
� Cb

π

T
100

� �4

Ibϕ � d2ΦRb

dA dω
� Lb cos ϕ � Cb

π

T
100

� �4

cos ϕ

When two black bodies 1 and 2 with surfaces A1 and A2 and no medium in between
are positioned as shown in Figure 1.27, the elementary radiant heat flow going from 1
to 2 equals:

d2ΦR;1!2 � Ib1dA1 dω1 � Mb1

π
cos ϕ1 dA1 dω1

A1

r A2
ϕ1

ϕ2

dω1

dω2

Fig. 1.27 Calculation of the view factor between the surfaces A1 and A2
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with dω1 the angle at which A1 sees A2:

dω1 � dA2 cos ϕ2=r
2

This redresses that flow interchanged to:

d2ΦR;1!2 � Mb1

π
cos ϕ1 cos ϕ2 dA1

dA2

r2

From surface A2 to surface A1 the flow is:

d2ΦR;2!1 � Mb2

π
cos ϕ1 cos ϕ2 dA1

dA2

r2

The resulting flow between the two becomes:

From body 1 to body 2: d2ΦR;12 � d2ΦR;1!2 � d2ΦR;2!1

� Mb1 �Mb2� �cosϕ1 cosϕ2 dA1 dA2

πr2

From body 2 to body 1: d2ΦR;21 � d2ΦR;2!1 � d2ΦR;1!2

� Mb2 �Mb1� �cosϕ1 cosϕ2 dA1 dA2

πr2

If both are finite in shape, then that flow becomes:

From body 1 to body 2: ΦR;12 � Mb1 �Mb2� �A1
1

πA1 ∫
A1

∫
A2

cosϕ1 cosϕ2 dA2 dA1

r2

2
4

3
5

(1.67)

From body 2 to body 1: ΦR;21 � Mb2 �Mb1� �A2
1

πA2 ∫
A2

∫
A1

cosϕ1 cosϕ2 dA1 dA2

r2

2
4

3
5

(1.68)

The term between square brackets in both formulae is called the view factor, symbol
F. Other names are the angle, shape or configuration factor. If A1 is considered as
emitting, the view factor is written F12. Vice versa, F21 is used. View factors are
geometric quantities indicating what fraction of the radiant flow emitted by the one
reaches the other. The size of each body, their form, the distance, and the angle at
which they see each other all define the value, which equals 1 when all emitted
radiation touches the other.

Concerning the view factor properties, firstly, reciprocity exists in the sense that
A1F1=A2F2. This relationship follows from the definition. Further, when a surface
A2 surrounds a surface A1, the view factor from A1 to A2 must be 1 (Figure 1.28), a
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result that applies for each surface surrounded by n� 1 others that together form a
closed volume:Xn

j�2

F1j � 1

Finally, two infinitely parallel surfaces, such as the bounding faces of a cavity, also
have a view factor of 1.

Some simple configurations allow an analytical calculation. For a point sitting at a
distance D from a rectangle with sides L1 and L2, the view factor calculates as the ratio
between the angle at which the point sees the rectangle with surface L1× L2=A2, and
its whole view angle 4π:

F12 � 1
4π ∫

A2

cos ϕ
r2

dA2

For a point above a corner, the formula becomes cos ϕ � D=r; r2 � D2 � x2 � y2
� �

:

F12 � 1
4π ∫

L1

0
∫
L2

0

D

D2 � x2 � y2
� �3=2

dy dx

Integration gives:

F12 � 1
8
� 1

4π
a tan

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 � L2
2

p
L1L2

 !

Other positions of the point convert to the corner case by the construction of
Figure 1.29. The resulting view factor is:

F12 � F1a � F1b � F1c � F1d

A2

A1

5

1
6

4

3
2

F12=1 F11+F12+F13+F14+F15+F16=1

(a) (b)

Fig. 1.28 View factor between (a) surface 1 completely surrounded by surface 2 or (b) the surfaces 2
to 6. In the second case, surface 1 also radiates to itself
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Radiation between the human head and the ceiling is an example of a point-to-
surface situation.

Another case concerns an infinitesimal surface dA1 at an orthogonal distance D from
a rectangle with sides L1 and L2 and surface A2 in parallel. The formula for the view
factor then is:

F12 � 1
dA1 ∫

dA1

∫
A2

cos ϕ1 cos ϕ2 dA2 dA1

πr2

The way dA1 sees each infinitesimal surface dA2 on A2 is independent of its position,
or:

F12 � 1
π ∫

A2 seen by dA1

cos ϕ1cos ϕ2 dA2

r2

Suppose now that surface dA1 lies at a distance D above the corner (0, 0) of a
rectangle A2 (Figure 1.30). The view factor then is:

F12 � 1
π ∫

L1

0
∫
L2

0

cos ϕ1 cos ϕ2

r2
dx dy

an equation that can be simplified to cos ϕ1 � cos ϕ2 � D=r; r2 � D2 � x2 � y2
� �

:

F12 � 1
π ∫

L1

0
∫
L2

0

D2dy dx

D2 � x2 � y2
� �2

y a a

L1

L2

A2

D

d

d
r

ϕ

c

c

b

b

x x

y

Fig. 1.29 View factor, point at distance D of surface A2
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with as a solution:

F12 � 1
2π

L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � L2

1

p atan
L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � L2
1

p
 !

� L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � L2

2

p atan
L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � L2
2

p
 !" #

Other configurations have to be solved numerically. Consider an infinitesimally small
perpendicular surface dA1 at a distance D from a rectangular surface A2 that has sides
L1 and L2. dA1 does not see that part of A2 that lies behind the intersection of the
plane containing dA1 with A2. The numerical formula for the view factor thus
becomes:

F12 � DΔxΔy
2π

X
x�Δx=2 to L1�Δx=2 step Δx

X
y�Δy=2 to L2�Δy=2 step Δy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
x2 � y2 � D2
� �2

2
4

3
5

To give a practical example, the surface configurations in beam-shaped rooms
include three pairs of two identical parallel walls, while all are perpendicular to
each other and have common edges and corners. An analytical calculation of all
view factors is not doable but related numerics are easily programmed on a
spreadsheet.

With the view factor included, the radiant heat flows and fluxes are written as:

ϕR;12 � A1F12 Mb1 �Mb2� � qR;12 � F12 Mb1 �Mb2� �
ϕR;21 � A2F21 Mb2 �Mb1� � qR;21 � F21 Mb2 �Mb1� � (1.69)

For a number of black bodies radiating to each other, the flow and flux per body are:

ϕR1n � A1

Xn
j�2

F1j Mb1 �Mbj
� �� �

qR1n �
Xn
j�2

F1j Mb1 �Mbj
� �� �

(1.70)

with 1 being the body considered, and 2 to n the n� 1 others.

y L1

A2

L2

ϕ1

ϕ2

dA1

D

r

z (0.0.D)
x

Fig. 1.30 View factor, infinitesimal surface dA1 parallel to surface A2 at an orthogonal distance D from
the corner (0, 0)
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1.5.4.2 Grey

Related laws are similar to those for black bodies. Only the radiant exchange differs.
For each wavelength and direction, a grey body emits a constant fraction compared
with a black body. The ratio between both is called the emissivity (e). Conservation of
energy tells us that the absorptivity (α) must equal that emissivity, giving as
reflectivity (ρ):

ρ � 1 � α � 1 � e

Grey bodies with reflectivity of 1 are blank. Lambert’s law holds (L=Ct). The radiant
heat flux obeys the cosine law, while the emittance is:

M � πL

The spectral emittance obeys Planck’s law, but multiplied by the emissivity e. The
total emittance thus is:

M � e Cb
T

100

� �4

(1.71)

Each grey body reflects radiation. If eMb is the emittance of one and E the irradiation
by all others, the radiosity of that one equals:

M´ � eMb � ρE (1.72)

The difference between radiosity and irradiation defines the emitted flux:

qR � M´ � E (1.73)

Eliminating the unknown irradiation between the two results in:

qR � M´ �M´ � e Mb

ρ
� � e

ρ
M´ �Mb� � (1.74)

Or, the radiant heat flux received equals:

qR � e
ρ
M´ �Mb� � (1.75)

Otherwise said, a grey surface looks black but with a grey filter in front, coupled to the
black by a radiant resistance, equal to the ratio between the grey reflectivity and its
emissivity (ρ/e). The black body has an emittance Mb, and the grey filter a radiosity
M´. For two grey bodies 1 and 2, separated by a transparent medium, the resulting
radiant flow interchanged is:

From black body 1 to grey filter 1: ΦR;11 � e1
ρ1

Mb1 �M´
1� � A1

From grey filter 1 to grey filter 2: ΦR;12 � F12 M´
1 �M´

2� � A1

From grey filter 2 to black body 2: ΦR;22 � e2
ρ2

M´
2 �Mb2� � A2

The second equation is identical to the radiant heat flow between two black bodies.
Indeed, as well the emittance of a black body as the radiosity of a grey body obeys
Lambert’s law for diffuse radiation. In the three equations, the flows ΦR,11, ΦR,12 and
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ΦR,22 must be identical, or, elimination of the unknown radiosities M´
1 and M´

2 gives
as flows from 1 to 2 and 2 to 1:

ΦR;12 � 1
ρ1

e1
� 1
F12

� ρ2A1

e2A2

2
664

3
775 Mb1 �Mb2� � A1 (1.76)

ΦR;21 � 1
ρ2

e2
� 1
F21

� ρ1A2

e1A1

2
664

3
775 Mb2 �Mb1� � A2 (1.77)

The term between the brackets stands for the radiation factor, symbol FR. If A1 is seen
as emitting, we write FR,12, while if A2 is the emitter, FR,21. Dividing both equations by
the surface seen as emitting gives the radiant heat fluxes.

A common configuration consists of two infinitely large, parallel isothermal surfaces.
Then F12= F21= 1 and A1=A2, giving as flux (ρ= 1� e):

qR;12 � ΦR;12

A1
� 1

1
e1

� 1
e2

� 1

2
664

3
775 Mb1 �Mb2� � (1.78)

In building construction, the term between the brackets represents the radiation
factor in an infinite cavity. If one of the faces is blank, for example face 1, then
FR;12 � 1= 1=0 � 1=e2 � 1� � � 0. If one is black, for example face 2, then
FR;12 � 1= 1=e1 � 1=1 � 1� � � e1

Another common configuration is an isothermal surface (1) surrounded by another
isothermal surface (2). F12 now is 1 and the radiant flow becomes:

ΦR;12 � e1e2

e2ρ1 � e1e2 � e1ρ2A1

A2

Mb1 �Mb2� � A1

If both surfaces are almost black (e> 0.9), the denominator nears 1, giving:

ΦR;12 � e1e2 Mb1 �Mb2� � A1

If, moreover, the surrounded surface (A1) is very small compared with the
surrounding one (A2), which brings their ratio close to zero, the equation further
simplifies to:

ΦR;12 � e1 Mb1 �Mb2� � A1 (1.79)
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In such a case, the resulting radiant heat flow only depends on the emissivity of the
surface (A1) that is surrounded.

When multiple isothermal grey surfaces face each other, all at different temperatures,
the radiant heat flow between one of them (A1) and all others (n� 1) is written as:

From the equivalent black body 1 to grey filter 1: ΦR;11 � e1

ρ1
Mb1 �M´

1� � A1

From grey filter 1 to the n� 1 other grey filters: ΦR;1 to j �
Xn
j�2

F1j M
´
1 �M´

j
� �

A1

As both flows are equal, the black body emissivity is given by:

Mb1 � 1 � ρ1

e1

Xn
j�2

F1j

 !
M´

1 � ρ1

e1

Xn
j�2

F1j Mj́
� �

(1.80)

For the 2 to n surrounding bodies, this equation converts into:

Mb1 � M´
1

e1
� ρ1

e1

Xn
j�2

F1jM
´
j

� �
(1.81)

Per grey body, the radiosities Mj́ are unknown but the black body emittances Mb1 are
known. The result is a system of n equations with n unknowns:

Mbj
� �

n � F� �n:n Mj́

h i
n

(1.82)

where [F]n.n is the radiation matrix for the n isothermal grey bodies. Solving it gives
the radiosities Mj́ as functions of the black body emittances Mbj. The radiant heat
flows then follow from inserting Mj́ in the equations given above for the heat
exchange between the black body and its grey filter.

1.5.4.3 Coloured

For coloured bodies, emissivity, absorptivity and reflectivity depend on the wave-
length, which changes with temperature and sometimes direction. Kirchhoff’s law
(e= α) still applies, but Lambert’s law does not, as it requires the same emission per
direction. The spectral emittance per wavelength thus differs from black, although
the ratio between the coloured and black emittance at the same temperature still
gives the average emissivity for that temperature. To simplify things, coloured bodies
are often considered grey, albeit with temperature-dependent emissivity. For the
emittance and irradiance at strongly different temperatures, ambient and solar for
example, Kirchoff’s law no longer applies because the short-wave absorptivity (αS)
differs from the ambient long wave emissivity (eL). To give an example, for polished
aluminium, αS equals 0.2 to 0.4, while eL is 0.05.
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1.5.5 Simple formulae

Thermal radiation seems quite straightforward to model. However, calculating all
angle factors is cumbersome, while the system of equations for multiple grey bodies
can be very large. A simpler approach, therefore, is welcomed. In a first step, reality is
reduced to two radiant surfaces: the one considered (surface 1) and the remaining
n� 1 others shaping the environment. In a second step, the environment is supposed
black at a radiant temperature θr, which is the temperature it should have as a black
body to interchange the same radiant flow as in reality. Solving the system of
equations for all surfaces present gives the radiosity for surface 1 (M1́) as a linear
combination of the (black body) emittances of all surfaces present:

M1́ �Xn
i�1

ariMbi

Insertion into the equation for the grey body radiant heat flow received and
equating with the radiant heat flow found for the surrounded surface 1, which
is usually very small compared to the n� 1 surfaces in the environment, fixes that
radiant temperature:

θr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ1

Xn
i�1

ariT4
i � e1T 4

1

 !
4

vuut �273:15

Analagously with convection, the radiant heat flow and heat flux can then be written
as:

qr � hr θs1 � θr� � Φr � hr θs1 � θr� �A (1.83)

In both, hr represents the surface film coefficient for radiation (W/(m2.K)), while θs1

is the temperature of surface 1. The surface film coefficient varies with the
configuration considered. If the environment surrounds surface 1, the value follows
from equalling the equation above to the one derived for where the surrounded
surface is small compared with the one surrounding:

hr � e Cb

T s1

100

� �4

� T r

100

� �4

θs1 � θr

2
6664

3
7775 (1.84)

The term between brackets is called the temperature ratio for radiation (FT):

FT � Tm

5000
T s1

100

� �2

� T r

100

� �2
" #

� 4
100

Tm

100

� �3

(1.85)
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As that ratio hardly varies for temperatures between �10 and 50 °C, the simple
expression on the right-hand side usually suffices. It considers the flux equation as
being more or less linear. Insertion in the surface film coefficient for radiation gives:

hr � e1 Cb FT (1.86)

Another case is parallel bodies. If the other surface is isothermal, temperature θs2, the
detour via the radiant temperature becomes superfluous and the surface film
coefficient can be directly written as:

qr � hr θs1 � θs2� �
with:

hr � 5:67FT

1
e1

� 1
e2

� 1

When surfaces in the environment have the same temperature as the one sur-
rounded, only part of that environment will participate in the radiant exchange, while
the radiant temperatures should only include those at different temperature (= θ´r).
In such a case, the surface film coefficient for radiation becomes:

qr � hr θs1 � θ´r� �
with:

hr � e1 Cb F12 FT

e1 � ρ1F12

where F12 is the view factor between surface A1 and those in the environment at
different temperatures. If surface A1 is almost black, the denominator tends to 1 and:

hr � e1 Cb F12 FT � 5:67e1 F12 FT (1.87)

Consider, for example a corner formed by two identical outer walls. Both are equally
warm. The result is a radiant exchange with half the space, containing surfaces at a
different temperature. The view factor is 0.5. The surface film coefficient for
radiation then equals:

hr � e1 Cb FT=2 � 2:84 e1 FT (1.88)

Of course, surfaces at the same temperature can also be included in the radiant
temperature. The view factor then remains 1, but the radiant temperature will change.

1.6 Building-related applications

1.6.1 Surface film coefficients and reference temperatures

In real buildings, conduction, convection and radiation combine. Consider an
outside wall without a cavity. Heat is conducted across the wall. Between the inside
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surface and indoors, convection and radiation take over. The same happens between
the outside surface and outdoors. Both can be considered the product of a
temperature difference with a surface film coefficient (hc, hr). However, convection
and radiation are so intertwined that, when possible, the related surface film
coefficients are combined into one value inside (hi) and another outside (he),
both linked to a specific reference temperature. Of course, the two modes may
also remain separated. Then, an air and a radiant temperature will characterize both
ambients.

1.6.1.1 Indoors

Assume an isothermal surface at temperature θsi. The convective heat flux
exchanged with the air is:

qci

� � � hci;s θi;ob � θsi
� �

with hci,s the average convective surface film coefficient and θi,ob the average air
temperature directly outside the boundary layer. If not that temperature, but the air
temperature in the centre of the room 1.7 m above the floor (θi) is taken as the
reference, the flux changes to:

qci � hci θi � θsi� �
with hci the average convective surface film coefficient, now linked to that new
reference temperature:

hci � hci;s
θi;ob � θsi

θi � θsi

� �
(1.89)

The radiant heat flux at the inside surface equals:

qri � hri θri � θsi� �
with θri the radiant temperature characterizing the indoor environment. The total
heat flux at the surface thus becomes:

qi � qci � qri � hci θi � θsi� � � hri θri � θsi� � � hci � hri� � hciθi � hriθri

hci � hri

� �
� θsi

	 

(1.90)

The sum hci + hri stands for the inside surface film coefficient for heat, symbol hi,
units W/(m2.K). The weighted average between the central air temperature and the
radiant temperature, named θref,i, serves as reference temperature for the surface
considered. Standard values for the convective part hci were given when discussing
convection. The radiant part, which convenes with a surface facing a surrounding
environment, equals:

hri � 5:67eLFT
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with eL the long wave emissivity of the surface and FT the temperature ratio for
radiation in the interval θsi� θri, mostly a value around 0.95. Since most finishes have
a long wave emissivity of 0.8 to 0.9, the result is 4.3� hri� 4.95 W/(m2.K)

The standardized inside surface film coefficients (W/(m2.K)) thus become:

Vertical surfaces Horizontal surfaces
Any flow direction θ� 7.7 Heat flow upwards 10

Heat flow downwards 6

The 2017 ASHRAE Handbook of Fundamentals gives a more complete set of values:

Position Heat flow
direction

hi (W/(m2.K)) for a surface emissivity

0.9 0.2 0.05

Horizontal Upward 9.26 5.17 4.32
Sloping 45° Upward 9.09 5.00 4.15
Vertical Horizontal 8.29 4.20 3.35
Sloping 45° Downward 7.50 3.41 2.56
Horizontal Downward 6.13 2.10 1.25

None of these is accurate for cases that deviate substantially from the assumptions
made. Back to the theory, then, to define case-relevant inside surface film coef-
ficients. If necessary, radiation and convection must remain decoupled.

How do we determine the reference temperature? Calculating the radiant tempera-
ture is quite complex, which is why, provided the room is beam-shaped and all
surfaces are grey with long-wave emissivity �0.9, the area-weighted average surface
temperature is used as an acceptable estimate:

θri �
Xn
k�1

Akθsk� �=Xn
k�1

Ak (1.91)

If the surface considered is part of a vertical, sloped or horizontal envelope assembly,
the last with upward heat flow, and if it behaves as a grey body, the reference
temperature becomes:

θref ;i � 0:44 θi � 0:56 θri

a result close to the average between the central air and the radiant temperature, a
value governing thermal comfort in buildings and called the operative temperature,
symbol θo:

θref ;i � θo � θi � θri� �=2 (1.92)
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For reflective surfaces, the reference temperature nears the central air temperature:
θo � θi, as convection then dominates. For grey horizontal inside partition and
envelope assemblies where the heat flows downward, the reference turns into:

θref ;i � 0:2 θi � 0:8 θri (1.93)

The larger the impact envelope assemblies with really cold inside surfaces have on
the radiant temperature vertical, sloped and horizontal inside partitions face, the less
evident is the use of the inside reference temperatures just defined.

1.6.1.2 Outdoors

Outdoors, three heat fluxes strike the surface. The first is convection to the outside
air:

qce � hce;j θe;j � θse
� �

with hce,j the average convective surface film coefficient and θe;j the average
temperature of the air outside the boundary layer, which is usually replaced by
the outside temperature measured under a thermometer hut, 1.7 m above grade, in
the nearest weather station (θe). The average flux thus changes to:

qce � hce θe � θse� �
where hce is the average convective surface film coefficient for that weather station
value:

hce � hce;j
θe;j � θse

θe � θse

A second heat flux comes from long-wave radiation between the surface, the
terrestrial environment and the sky, which is assumed black. The black body
emittance from the surface (s) to the other two (e and sk) equals:

Mbs � 1 � ρLs

eLs
F se � F ssk� �

	 

M´

s � ρLs

eLs
F seM´

e � F sskMbsk� �
From the environment (e) to the surface (s) and the sky (sk), it is:

Mbe � 1 � ρLe

eLe
Fes � Fesk� �

	 

M´

e � ρLe

eLe
FesM

´
s � FeskMbsk� �

In both, eLs and ρLs are the long-wave emissivity and reflectivity of the surface, eLe and
ρLe the average long wave emissivity and reflectivity of the terrestrial environment,
Fse the view factor between the surface and the environment, Fssk the view factor
between the surface and the sky, Fes the view factor between the terrestrial environ-
ment and the surface, and Fesk the view factor between the terrestrial environment
and the sky. Mbsk is the black body emittance of the sky, while M´

s and M´
e are the

radiosities of the surface and the terrestrial environment. As the terrestrial
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environment and the sky surround the surface completely, the sum of the view
factors Fse and Fssk is 1, while the view factor Fes is close to 0 as the surface is infinitely
small compared with the terrestrial environment. The view factor Fesk is close to 1
since nearly all radiation from the terrestrial environment reaches the sky. The two
balances thus simplify to:

Mbs � 1
eLs

M´
s � ρLs

eLs
F seM

´
e � F sskMbsk� � Mbe � 1

eLe
M´

e � ρLe

eLe
Mbsk

Solving both for Mś and inserting the result in the equation qrse � qrssk �
eLs Mbs � M´

s� �=ρLs, knowing that eLs F se � F ssk� �Mbs � eLsMbs, gives:

qrse � qrssk � qre � eLsF se Mbs � eLeMbe� � � eLsF ssk Mbs � ρLe
F se

F ssk
� 1

� �
Mbsk

	 


Presume now that the terrestrial environment is a black body at outdoor tempera-
ture. Using this assumption, and the experimental fact that during clear nights the
sky temperature drops some 21 °C below the air temperature in the atmospheric
boundary layer, simplifies the radiant heat flux between the surface and the overall
environment outdoors to:

qrs � eLsCb F seFTse � F sskFTssk� � θe � θse� � � 21F sskFTssk 1 � 0:87c� �� �
where FTse is the temperature ratio for radiation between the surface and the
terrestrial environment, FTws is the temperature ratio for radiation between the
surface and the sky, and c the cloudiness factor (0 for a clear sky and 1 for an overcast
sky).

A third heat flux comes from the sun. Each square metre of exterior surface absorbs
the solar beam, diffuse and reflected short-wave radiation (EST) proportionally to its
short-wave absorptivity (αS):

qse � αSEST

Summing up the three heat fluxes gives:

qe � hce θe � θse� � � 5:67eLs F seFTse � F sskFTssk� � θe � θse� �
�120 eLsF sskFTssk 1 � f c

� � � αKEST

With the outside surface film coefficient for radiation (hre) equal to:

hre � 5:76eLs F seFTse � F sskFTssk� �

this equation rewrites as:

qe � hce � hre� � θe � αKEST � eLs120 F sskFTssk 1 � f c

� �
hce � hre

	 

� θse

� �
(1.94)
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The term between brackets ([]) with units °C may act as the reference temperature
and is called the (average) sol-air temperature, symbol θ∗e , over a given time interval
(1 hour, 1 day, 1 week, 1 month). Consider it as the fictive air temperature, which
ensures that the heat exchanged with the outside surface equals the value obtained
by solar irradiation, long-wave radiation and convection, provided that the outside
convective surface film coefficient is 19 W/(m2.K). The sol-air temperature
depends on the radiant properties of the surface, its inclination, its orientation,
the weather, the time interval considered, and so on. Its value differs between
applications. The sum hce + hre yet shapes the outside surface film coefficient he,
units W/(m2.K).

The flux equation above then becomes:

qe � he θ∗e � θse
� �

(1.95)

Replacement of the temperature ratios for radiation FTse and FTssk by one value FT,
and from the fact that Fse+ Fssk= 1, the surface film coefficient for radiation (hre)
simplifies to:

hre � 5:67 eLFT (1.96)

As the temperature factor FT ranges between 0.8 and 0.9, a probable interval for its
value is 4.4eL� hre� 5.1eL W/(m2.K).

Provided that outside surfaces are grey with a long-wave emissivity of 0.9, hre of
4–4.6 W/(m2.K) looks most likely. Thus, the standard outside surface film coefficient
for heat transfer could be some 23 W/(m2.K). The EN standard takes 25 W/(m2.K),
while the 2017 ASHRAE Handbook of Fundamentals makes a distinction between
winter and summer:

Direction of heat flow he (W/(m2.K)

Winter (wind speed 6.7 m/s) Any 34.0
Summer (wind speed 3.4 m/s) Any 22.7

For more accurate numerics one should return to the complete heat balance,
including a more precise evaluation of the mean wind velocity. Long-term measure-
ments in the early 1980s by the Laboratory of Building Physics, KULeuven, at the
leeward side of an existing building for example gave a much lower average than
25 W/(m2.K).

1.6.2 Steady state: flat assemblies

1.6.2.1 Thermal transmittance of envelope parts and partitions

The use of surface film coefficients simplifies the calculation of the steady-state heat
flux ambient-to-ambient across flat assemblies. Consider the outer wall in Figure 1.31.
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Indoors, the reference temperature is θo, while outdoors it is θ∗e . Assume a
heated indoors and cold outdoors. From indoors to the inside surface the heat
flux is:

q1 � hi θo � θsi� �
with θsi the inside surface temperature. Across the assembly the heat flux equals:

q2 � θsi � θse� �=RT

with θse the outside surface temperature and RT the total thermal resistance of the
assembly. From the outside surface to outdoors, the heat flux is:

q3 � he θse � θ∗e
� �

In steady state, the three must be equal, with a common value q. Rearrangement and
addition gives:

_

q=hi � θo � θsi

qRT � θsi � θse

q=he � θse � θ∗e_________________________________

Sum: q 1=hi � RT � 1=he� � � θo � θ∗e

a result that is rewritten as q � U θo � θ∗e
� �

with:

U � 1
1=he � R � 1=hi

(1.97)

The quantity U is called the thermal transmittance of the assembly, units W/(m2.K).
The lower that value, the less heat passes across, or the property reflects the
insulation quality of a wall, roof or floor, separating the indoors from outdoors.

q3

he hi
RT

q2 q1

θiθsi
θse

θe
*

Fig. 1.31 Outer wall, thermal transmittance
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Thus a calculation for ambient-to-ambient, accounting for radiation and convection
at the inside and outside surfaces, looks simple. It suffices to add two surface
resistances to the total resistance:

– indoors, a value 1/hi, denoted Ri, equal to 0.13 m2.K/W for vertical surfaces,
0.1 m2.K/W for sloped and horizontal surfaces if the heat flows upwards, and
0.17 m2.K/W if downwards.

– outdoors, one value suffices for 1/he, denoted Re: 0.04 m2.K/W independent of the
slope and flow direction.

The inverse of the thermal transmittance is called the thermal resistance ambient-
to-ambient, symbol Ra, units m2.K/W. The thermal transmittance as defined has
the prefix ‘clear wall’, because possible two- and three-dimensional effects are not
considered. However, due to voids in the mortar joints and vertical perforations
in the bricks, heat transfer across a masonry wall for example already develops
three-dimensionally (see Figure 1.32).

For inside partitions, the surface film coefficient at both sides is the value inside (hi),
giving, as thermal transmittance:

U � 1= R � 2=hi� � (1.98)

Reference temperatures are operative on both sides of the partition.

1.6.2.2 Average thermal transmittance of parts in parallel

Consider an assembly with surface AT, composed of n parts in parallel with surfaces
Ai that all face the outdoors (Figure 1.33).

Each part is different. If lateral conduction between parts is negligible and if all face
the same reference temperature indoors, the heat flow across each is:

Φi � U i Ai Δθ

Fig. 1.32 Masonry, clearly not a layer where the heat flux develops one-dimensionally
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In case they face different operative temperatures indoors (θo,j), that equation
converts to:

Φi � aiU i Ai Δθ

with ai a reduction factor equal to:

ai � θo;j � θe

θo;ref � θe

with θo,ref the indoor operative temperature taken as the reference. The heat flow
across the whole now equals the sum of the flows across each, or:

ΦT �Xn
i�1

Φi � Δθ
Xn
i�1

aiU iAi� � (1.99)

Rewriting gives:

ΦT � ΔθUm

Xn
i�1

Ai (1.100)

where Um is the average clear-wall thermal transmittance of n parts in parallel, a
value equal to the surface weighted average of their (clear wall) thermal transmit-
tances:

Um �Xn
i�1

aiU iAi� �=Xn
i�1

Ai �
Xn
i�1

aiU iAi� �=AT (1.101)

Conversion to resistances gives:

Ram � AT=
Xn
i�1

aiAi

Rai

� �
(1.102)

Fig. 1.33 Assembly composed of n parallel parts with hardly any lateral heat exchange
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1.6.2.3 Electrical analogy

As long as lateral conduction between parts is negligible, an electrical analogy allows
us to solve quite complex cases. Consider a cavity wall. The ties perforate the fill. If At

is the tie section, Rt their thermal resistance, Ais is the wall area and Ris is the thermal
resistance of the insulation, then the overall thermal resistance (R) of the insulation
equals (Figure 1.34):

R � Ais

Ais � At

Ris
� At

Rt

With R1+Ri the thermal resistance from the insulation to indoors and R2+Re the
thermal resistance from the insulation to outdoors, the value using the two ambients
becomes:

RT � Ri � R1� � � R � R2 � Re� � � Ri � R1� � � Ai

Ai � At

Ris
� At

Rt

� R2 � Re� �

1.6.2.4 Thermal resistance of an unvented cavity

In an infinitely extending unvented cavity, the nature, distance and temperature
difference between the bounding surfaces, the slope, the heat flow direction, and the
mean temperature of the gas fill will all affect conduction, convection and radiation,
giving as the total heat flux:

qT � λg Nu

d
� Cb FT

1=eL1 � 1=eL2 � 1

� �
θc � θc2� �

with λg the thermal conductivity of the gas, Nu the case-specific Nusselt number, eL1

and eL2 the long-wave emissivities and θc1 and θc2 the temperatures of the bounding

θe
∗θo

R2+ReRi+R1

R

Fig. 1.34 Cavity wall, with an electrical analogy accounting for the ties that perforate the fill
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surfaces. The thermal resistance then is:

Rc � λg Nu

d
� CbFT

1=eL1 � 1=eL2 � 1

� ��1

(1.103)

Figure 1.35 gives values for a vertical air-filled cavity wherein the air temperature is
10 °C, depending on the width, the temperature difference across and the long-wave
emissivity of the bounding surfaces.

The thermal resistance increases considerably with lower long-wave emissivity of the
bounding surfaces, while at low emissivity the temperature difference across gains
influence, underlining the dominance of radiation. The absence, in turn, of any
additional gain once the cavity width passes 20–30 mm illustrates that radiation does
not depend on this variable, while more convection gradually compensates for the
drop in conduction. For non-vented cavities with limited dimensions, the values in
Table 1.4 allow first-order calculations.

Long wave emissivity : both faces 0.9

Both faces 0.1

One face 0.9, the other 0.3
0,9

Δθ=2°
Δθ=4°
Δθ=6°

Δθ=2°
Δθ=4°
Δθ=6°
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Cavity thickness (m)

0,09 0,12
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Cavity thickness (m)

0,09 0,12

Fig. 1.35 Thermal resistance of an infinite vertical cavity for three different sets of parameters
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1.6.2.5 Interface temperatures

Both surface resistances Ri and Re resemble the thermal resistance of a 1 m thick air
layer with thermal conductivity hi or he, whereby the reference temperatures act as
fictitious ‘surface temperatures’ that activate the steady-state heat transfer. So for any
composite envelope assembly, temperatures in the [R, θ] plane lie on a straight line
linking [0,θ∗e ] to [Ra, θo] or, for inside partitions, linking [0,θo,1] to [Ra, θo,2] with both
slopes, giving the heat flux When tracing the layer sequence, both surface resistances
must be respected (see Figure 1.36).

The temperature on the inside surface is:

Envelope assembly: θsi � θo � Ri
θo � θ∗e
Ra

� θo � Uhi

hi
θo � θ∗e
� �

(1.104)

Inside partition: θsi � θi:1 � Ri
θo;1 � θo;2

Ra
� θo;1 �Uhi

hi
θo;1 � θo;2
� �

(1.105)

The suffix hi underlines that the clear wall thermal transmittance must be calculated
using the surface film coefficient in the denominator. The temperatures at the
interfaces equal:

θx � θi � q Ri � Rx
si

� �

Table 1.4 Thermal resistance of cavities

Thickness (mm) Vertical cavity Horizontal cavity

Rc (m2 K/W),
both surfaces

grey

Rc (m2 K/W),
one surface
reflecting

Rc (m2 K/W),
heat

flow up

Rc (m2 K/W),
heat flow

down

0< d< 5 0.00 0.00 0.00

5� d< 7 0.11 0.11 0.11

7� d< 10 0.13 0.13 0.13

10� d< 15 0.15 0.15 0.15

15� d< 25 0.16 0.35 0.17 0.17

25� d< 50 0.16 0.35 0.17 0.19

50� d< 100 0.16 0.35 0.18 0.21

100� d< 300 0.16 0.35 0.18 0.22

d> 300 0.16 0.35 0.18 0.23
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1.6.2.6 Solar transmittance

The solar heat flux across any envelope part can be written as:

qS � gEST (1.106)

with EST the total incident solar radiation on the outside face and qS the heat flux
transmitted, both in W/m2. The factor g, called the solar transmittance, encompasses
the direct and indirect solar gains. The direct ones are:

qSd � τSEST

with τS the total shortwave transmissivity of the part. For opaque parts, transmissivity
and the direct gains are zero, but not so for transparent parts.

Indirect gains occur because opaque and transparent parts absorb a fraction of the
solar flux impinging. They so warm up and conduct absorbed heat to the inside,
where convection and long wave radiation dissipates it. For single glass with
shortwave absorptivity αS, estimating the indirect gains is easy as they are part of
the heat flux dissipated by convection and radiation from the inside surface to the
indoors:

qSi � hi θsi � θo� � (1.107)

where θsi is the unknown inside surface temperature. Assuming that the glass is
equally warm gives θsi= θx= θse with θse the outside surface temperature and θx the
glass temperature. The thermal balance for 1 m2 of glass thus becomes (sum of the
absorbed solar radiation, the heat flux outdoors and the heat flux indoors to the glass
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Fig. 1.36 Composite envelope assembly (filled cavity wall): temperature curve
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being zero):

αSEST � he θe � θx� � � hi θo � θx� � � 0

with θe the outdoor air and θo the indoor operative temperature. The glass
temperature thus is:

θx � θsi � αSEST

hi � he
� heθe � hiθi

hi � he

The second term on the right-hand side stands for that temperature if single glass
could not absorb solar radiation, and the first for the increase due to the fact that it
does. Combining this with the equation for the heat flux to the indoors gives:

qSi � hiαSEST

hi � he
� hihe θe � θi� �

hi � he
(1.108)

Only the first term on the right is linked to the sun, thus representing the indirect
gains, or:

qSi � hiαSEST

hi � he

The solar transmittance for single glass thus equals:

g � qSd � qSi

EST
� τS � αS

1 � he=hi
(1.109)

The gains not only depend on the short-wave transmissivity but also on the short-
wave absorptivity of the glass and the ease by which the absorbed heat dissipates to
the indoors. In fact, a lower ratio between the outside and inside surface film
coefficient increases the transmittance.

For double glass, calculating the solar transmittance is more demanding, Let τS1, ρS1

and αS1 be the transmissivity, reflectivity and absorptivity, all shortwave, of one pane,
and τS2, ρS2 and αS2 for the other pane. Reflection in the cavity breaks the
transmission of solar radiation (Figure 1.37) into a geometric series with ratio
ρS1ρS2, whose sum gives:

qSd � τS1τS2

1 � ρS1ρS2
EST (1.110)

In general, the denominator 1� ρS1ρS2 nears 1. So the guide that the product of the
transmissivities of both panes fixes the transmissivity of double glass is quite correct
as a rule of thumb.

88 1 Heat transfer



Assuming θe= θo = 0 °C and both panes are isothermal, the indirect gains can be
written as:

qSi � hiθx2

with θx2 the sun-induced temperature of the inside pane, a value ensuing from the
heat balance per pane (1 is outside, 2 inside):

Pane 1: αS1
1 � ρS1ρS2 � τS1ρS2

1 � ρS1ρS2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f 1

EST � heθx1 � θx2 � θx1

Rc
� 0

Pane 2: αS2
τS1

1 � ρS1ρS2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
f 2

EST � θx1 � θx2

Rc
� hiθx2 � 0

This system has as a solution:

θx2 �
αS1 f 1

Rc
� αS2 f 2 he � 1

Rc

� �
hi � 1

Rc

� �
he � 1

Rc

� �
� 1

R2
c

EST (1.111)

Inserting the outcome into the equation for the indirect gains gives, as solar
transmissivity:

g � τS1τS2 � hi

αS1 f 1

Rc
� αS2 f 2 he � 1

Rc

� �
hi � 1

Rc

� �
he � 1

Rc

� �
� 1

R2
c

(1.112)

EST

ρK1

ρK2τK1

ρK1ρK2τK1

      

                 τK1

τK2

αK1

Fig. 1.37 Double glass, solar transmittance
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The result shows how to decrease the gains across double glazing: limit the direct
transmission and lower either the inside surface film coefficient or the short-wave
absorptivity of both panes. For multiple glazing including a shade, a same approach
applies, with the short-wave transmissivity equal to the product of the short-wave
transmissivities of all panes and the shade, and the indirect gains derived from a
system of heat balances per pane and the shade.

1.6.3 Local inside surface film coefficients

Average surface film coefficients are usable when area-average phenomena such as
the heat lost or gained are at stake. To quantify temperatures or heat fluxes at specific
spots, local values are preferred. In general, the following holds:

hix θref ;i � θsix
� � � hcix θix � θsix� � � hrix θrix � θsix� � (1.113)

with hix the local surface film coefficient linked to a reference temperature θref,i, hcix

the local convective surface film coefficient, θix the local air temperature outside the
boundary layer, θsix the local surface temperature, hrix the local radiant surface film
coefficient, and θrix the radiant temperature the spot faces. If R´ is an equivalent
thermal resistance that links the inside surface of that spot to the environment on the
other side, then:

hix θref ;i � θsix
� � � θsix � θj

� �
=R´ (1.114)

This equation is an approximation. In fact, the equivalent thermal resistance
depends on the distribution of the local inside surface film coefficients (hix) over
the whole surface. For the envelope, θj is the temperature outdoors (j= e), while for
inside partitions, it is the reference temperature in the neighbouring space.
Eliminating the local surface temperature θsix from both equations and solving
for the local surface film coefficient gives:

hix � hcix � hrix � pT

1 � R´pT
(1.115)

where:

pT � hcix θref;:i � θix
� � � hrix θref:;i � θrix

� �
θref ;i � θj

(1.116)

If the reference temperature indoors (θref,i), the relationship with the local air
temperature just outside the boundary layer (θix), the relationship with the radiant
temperature facing the spot (θrix) and the local inside surface film coefficients hcix

and hrix are known, then combining the equations above gives the heat flux at the
spot considered, on condition that the equivalent thermal resistance is known. The
questions left are how to link the local reference temperature indoors to the overall
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reference indoors (θref,i), and what values to use for the local surface film
coefficients.

As overall reference indoors, the air temperature in the room’s centre, 1.7 m above
floor level, is chosen (θi). Assuming the local air temperature increases linearly along
the room’s height with little slope if well insulated and less convective heated, then
the relation with the overall reference could be:

θix � θj

θi � θj
� 1 � 0:2pcUm y � 1:7� � (1.117)

with y the height ordinate, θj the reference temperature in the neighbouring room or
outdoors, pc a convection factor (1 for air heating, 0.9 for convectors, 0.4 to 0.8 for
radiators, 0.4 for floor heating), and Um the weighted average thermal transmittance
of all walls in the room. The relationship reflects the outcome of a series of
measurements in a test room, where the heating system and the insulation of the
outside walls could be varied.

For the local radiant temperature (θrix) a uniform value is assumed, proportional to
the overall reference value, with a gradient depending on the local convective
surface film coefficient, the convection factor and the weighted average thermal
transmittance of all walls in the room:

θrix � θi

θi � θj
� hcix

hcix � pc � 0:4
� �

Um

0:6

(1.118)

This equation followed from computer simulations of the radiant heat exchange in
rooms of different shapes.

The local convective surface film coefficient (hcix) is set at 2.5 W/(m2.K), while the
following values are used for the local radiant surface film coefficient (hrix):

Corner between three envelope assemblies or two and an inside partition:
5.5 eL Surfaces more than 0.5 m from the edge lines
3.4 eL Surfaces less than 0.5 m from the edge lines but more than 0.5 m from

the corner
2.2 eL Surfaces less than 0.5 m from the corner

Edge between two envelope assemblies or one and an inside partition:
5.5 eL Surfaces more than 0.5 m from the edge line
3.4 eL Surfaces less than 0.5 m from the edge line

Envelope assembly or inside partition:
5.5 eL –
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Where furniture hides a wall, a combined inside surface film coefficient of 2 W/(m2.K)
applies.

1.6.4 Steady state: two and three dimensions

1.6.4.1 Pipes

At the outside surface of a pipe, the heat flow equals:

Φn�1 � 2πRn�1h2 θs;2 � θref;2
� �

(1.119)

with h2 the surface film coefficient outside the pipe, θref,2 the reference temperature
there, θs,2 the outside surface temperature and Rn+1 the outside radius. At the inside
surface the flow is:

Φ1 � 2πR1h1 θref ;1 � θs;1
� �

(1.120)

with h1 the surface film coefficient between fluid and pipe, θref,1 the temperature of
the fluid, θs,1 the inside surface temperature and R1 the inside radius. Across the pipe,
the flow numbers:

Φ1;n�1 � θs;1 � θs;2Xn
i�1

ln Ri�1=Ri� �
2πλi

	 


with Σ indicating that the pipe wall may consist of several layers. In steady state, the
three heat flows are equal. Rearrangement and addition gives:

Φn�1

2πRn�1h2
� θs;2 � θref ;2

Φ1;n�1

Xn
i�1

ln Ri�1=Ri� �
2πλi

	 

� θs;1 � θs;2

Φ1

θref;1 � θs;1
� 2πR1h1

Sum: Φ1;n�1
1

2πRn�1h2
�Xn

i�1

ln Ri�1=Ri� �
2πλi

	 

� 1

2πR1h1

( )
� θref;1 � θref ;2

For flat assemblies, this sum is rewritten as:

Φ1;n�1 � Upipe θref ;1 � θref;2
� �
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where Upipe stands for the thermal transmittance, now per metre run, of the pipe:

Upipe � 1

1
2πRn�1h2

�Xn
i�1

ln Ri�1=Ri� �
2πλi

	 

� 1

2πR1h1

W= m:K� �� � (1.121)

Insulation will lower the heat loss of pipes transporting warm fluids, or the gains of
pipes transporting cold fluids. A difference is that the additional benefit of thicker
insulation drops off more rapidly than for flat assemblies.

1.6.4.2 Floors on grade

Calculation of the thermal transmittance of a floor on grade is a typical example of a
three-dimensional heat flow problem solved using a simplified method. The thermal
transmittance is written as:

U � aUo;floor (1.122)

with a being a reduction factor and Uo,floor the thermal transmittance of the floor as if
it were a flat assembly facing the outside. Valuing the reduction factor starts with
fixing what is called the characteristic floor dimension:

B´ � 2Afl=P �m� (1.123)

with Afl the floor’s surface area and P that part of the floor’s perimeter touching the
outdoors and called the free perimeter (see Figure 1.38).

Then the equivalent soil thickness (dt) of the floor that replaces its thermal resistance
is fixed:

dt � dfw � λgr
1
he

� RT;fl � 1
hi

� �
�m� (1.124)

Fig. 1.38 The arrow shows a part of the free perimeter
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with dfw the average thickness of the foundation walls along the free perimeter in m,
λgr the thermal conductivity of the soil, RT,fl the thermal resistance of the floor, hi the
surface film coefficient indoors, 6 W/(m2.K), and he the surface film coefficient
outdoors, 25 W/(m2.K).

Finally, the reduction factor, which depends on the ratio between the equivalent soil
thickness and the characteristic floor dimension, follows from:

For dt < B´: a � 1
Uo;floor

2λgr

πB´ � dt

� �
ln

πB´
dt

� 1

� �

For dt � B´: a � 1
Uo;floor

λgr

0:457 B´ � dt

� � (1.125)

1.6.4.3 Thermal bridges

The term thermal bridge applies to all spots in the envelope where heat flows two- or
three-dimensionally. The term may be taken literally: not only is more heat lost or
gained than across neighbouring flat parts, except for single glazing, but during the
heating season the inside surface will also stay colder there. CVM is used to calculate
the heat exchange with the ambient using surface film resistances, through which the
heat moves normally to the end faces. Where local surface temperatures are of interest,
local values apply. When it is the overall heat loss or gain that matters, the standard
values are used. The energy balance for a control volume with a centre point on an end
face combines six heat flows: four from the neighbouring centre points on the face, one
from the neighbouring control volume in the material, and one across the surface film
resistance with the ambient reference temperature as source. Consider Figure 1.39.

The surface of a control volume touching the end face extends parallel to the [y, z]
plane. The heat flow from the ambient temperature θ1 in (i, m, n) to its centre point
(s, m, n) equals:

Φi;m;n
s;m;n � hi θi;m;n � θs;m;n

� �
a2

1 m–1n–1

S

1/hiθi

a/2

a

n

a/2

n–1

m

m–1

Fig. 1.39 CVM method, with control volumes at the inside or outside surface
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The heat flows from the four neighbouring centre points on the end face to that point
are:

Φs;m;n
s;m�1;n � λ1 θs;m�1;n � θs;m;n

� � a
2

Φs;m;n
s;m�1;n � λ1 θs;m�1;n � θs;m;n

� � a
2

Φs;m;n
s;m;n�1 � λ1 θs;m;n�1 � θs;m;n

� � a
2

Φs;m;n
s;m;n�1 � λ1 θs;m;n�1 � θs;m;n

� � a
2

The heat flow from the neighbouring control volume in the material to that point
is:

Φs;m;n
l;m;n � λ1 θ1;m;n � θs;m;n

� �
a

Setting to zero gives:

ahiθi;m;n� λ1
θs;m�1;n�θs;m�1;n�θs;m;n�1 �θs;m;n�1

2
� λ1θl;m;n� ahi �3λ1� �θs;l;m;n � 0

with ahiθi;m;n the known term. Mesh points in the corners and others give analogous
equations. Figure 1.40 shows the results of a CVM calculation for a wall with a load-
bearing outer leaf, the cavity closed at the window, and a non-load-bearing inner leaf.

In practice, a distinction is made between geometric and structural thermal bridges.
The former follow from the three-dimensional nature of building enclosures. The
latter are a consequence of structural decisions, such as concrete girders and columns
penetrating the envelope, or discontinuities in the thermal insulation. Structural
integrity often explains their existence. For example, take a balcony – continuity
with the floor slab is needed to balance the cantilever moment (Figure 1.41).

Neutralizing both thermal bridge types demands continuity of the thermal insula-
tion. Ideally, the insulation should be traceable on the drawings without crossing
parts that create easy heat flow paths. Complete avoidance is often not possible,
although the impact must remain manageable.

Fig. 1.40 CVM calculation result
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Using CVM at the design stage is demanding. Therefore the concepts of a linear
and a local thermal transmittance have been introduced. The first, symbol ψ ,
units W/(m.K), stands for the extra heat flow a two-dimensional thermal bridge
gives per metre run and per kelvin temperature difference between the ambient
on both sides. The second, symbol χ, units W/K, quantifies the extra heat flow a
three-dimensional thermal bridge induces per kelvin temperature difference
between the ambient on both sides. Calculating the first demands a well-defined
one-dimensional reference and agreement on what surface to consider, inside or
outside, with a preference for outside as it allows use of the facade drawings
(Figure 1.42). The detail that acts as a thermal bridge is ignored at first. Otherwise,

Fig. 1.41 (a) Geometric thermal bridges; (b) structural thermal bridges

Reality Model

Aw
Uw

Ar
Ur

ψ1

ψ2

Fig. 1.42 Linear thermal transmittances. The dummy consists of flat parts with lines perpendicular to
the section representing the linear thermal bridges
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a flat dummy replaces reality, with a dot where the thermal bridge sits, and the
one-dimensional heat loss is calculated.

Then, using the correct structural drawings the real two-dimensional heat transfer
and inside surface temperatures are calculated. When Φ2D is the two-dimensional
heat flow and Φo the heat flow across the flat dummy, the linear thermal transmit-
tance equals:

ψ � Φ2D �Φo

LΔθ
(1.126)

with L the length of the thermal bridge. If an assembly only contains a local thermal
bridge, the local thermal transmittance (χ) becomes:

ψ � Φ3D �Φo

LΔθ
(1.127)

Often, a local thermal bridge emerges where linear ones cross. If so, two references
must be calculated: first the one-dimensional, and then including the linear thermal
bridges. Then the local transmittance is extracted from a three-dimensional calcu-
lation:

χ � Φ3D �Φ2D

Δθ
(1.128)

Once all linear and local thermal transmittances are known, the whole-wall thermal
transmittance of a flat assembly with thermal bridges follows from:

U � Uo �
Pn
i�1

ψ iLi� � �Pm
j�1

χ j

A
(1.129)

where Uo is its clear wall thermal transmittance, A the surface area considered, n the
number of linear thermal bridges, Li their length and m the number of local thermal
bridges.

The lowest inside surface temperature (θs,min) that an envelope-related thermal
bridge calculation gives is mostly transposed into a non-dimensional temperature
factor:

f hi � θs;min � θe

θo � θe
(1.130)

with θo the reference temperature indoors and θe the one outdoors. The suffix hi is a
reminder that the local surface film coefficient must be used when calculating surface
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temperatures. A CVM calculation with a 1 K temperature difference between the
environments on either side directly gives the temperature factor.

The higher the linear or local thermal transmittance and the lower the temperature
factor, the more problematic is a thermal bridge. The inside surface will collect more
dirt, have a greater mould risk, may become a preferred spot for surface condensation
and see crack sensitivity increase, while taking a disproportionate share in the heat
loss or gain.

Thermal bridge catalogues have been published that contain the linear thermal
transmittances, local thermal transmittances and temperature factors for reveals,
lintels, dormer windows, balconies, and so forth, considering various designs,
material combinations and layer thicknesses. Interactive CD-ROMs and software
tools to calculate two- and three-dimensional heat flows and temperature fields are
also available.

1.6.4.4 Windows

Windows transfer heat three-dimensionally, as the IR picture in Figure 1.43 shows.

Calculating the thermal transmittance of a window (Uwindow) thus requires appro-
priate software tools. However, as this is not really practical, frames are characterized
by an equivalent thermal transmittance (Ueq,frame), multi-pane glass by a central
thermal transmittance (Uo,glass), and the glazing/spacer/frame combination by a
linear thermal transmittance (ψ spacer). This allows us to write:

Uwindow � AglassUo;glass � AframeUeq;frame � ψ spacerLspacer

Awindow
(1.131)

The surface taken by the frame (Aframe) coincides with its normal projection onto an
outside plane parallel to the window. The visible glass surface (Aglass) is defined the
same way, while the length of the spacer (Lspacer) equals the total perimeter of all

Fig. 1.43 Window: IR picture of the frame and the double glass
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glazing parts, measured out to out (see Figure 1.44). Table 1.5 lists approximate
thermal transmittances and linear thermal transmittances for different types of
frames, glazing and spacers.

1.6.4.5 Building envelopes

Building envelopes, also called building enclosures, shield the indoors from the
outdoors, from unheated neighbouring spaces, sometimes from water volumes and
from the soil. The assemblies forming the enclosure encompass low-slope and sloped
roofs, outside walls, walls separating heated from unheated spaces, glazed surfaces,
floors on grade, floors above crawlspaces, floors above unheated basements, floors
separating heated from unheated spaces and floors separating the indoors from
the outdoors (see Figure 1.45). For party walls, the assumption typically but not
necessarily is that both buildings are at a same temperature.

Envelopes are by definition three-dimensional. Quantifying the time-averaged heat
flow for a 1 °C difference with the outdoors is done by decomposing the envelope

Parallel plane

Aframe
Aglass

Awindow

Spacer

Fig. 1.44 Window, thermal transmittance

Table 1.5 Frames, glass and spacers, thermal transmittances and linear thermal transmittances

Window frames Uframe

W/(m2.K)
Glazing Uglass

W/(m2.K)

Hardwood, d= 70 mm 2.08 Double 2.8

Aluminium, 20 mm
thermal cut

2.75 Double, low-e, argon-
filled

1.1

PVC, three room frame 2.00 Triple, low-e, argon-filled 0.6

Spacers

Metal ψ
W/(m.K)

Insulating ψ
W/(m.K)

Uframe < 5.9,
Uglass > 2.0 W/(m2.K)

0.06 Uframe < 5.9,
Uglass > 2.0 W/(m2.K)

0.05

Uframe < 5.9,
Uglass < 2.0 W/(m2.K)

0.11 Uframe < 5.9,
Uglass < 2.0 W/(m2.K)

0.07
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into flat and curved parts with area Aj and clear thermal transmittance Uo,j coupled in
parallel. The contact lines and linear details, each with length Lk, are represented by
linear thermal transmittances, while all spots where heat flows three-dimensionally
get local thermal transmittances. This gives, as average thermal transmittance of an
envelope:

Um �
Pn
j�1

ajAjUo;j
� � �Pm

k�1
akLkψk

� � �Pp
l�1

alχl� �
AT

(1.132)

In this formula, ai, ak and al are reduction factors. A value of 1 stands for parts
separating the indoors from the outdoors, a value below 1 for parts separating the
building from unheated neighbouring spaces, for floors on grade (see above), floors
above unheated basements, floors above crawlspaces and vertical walls contacting
the soil. For party walls the value is typically 0. Contact with water gives:

a � 1
1 � 0:04Uo

Still, how to measure surfaces and lengths has to be decided upon. The outside
dimensions are handy, as these are available from the facade drawings. When for
reasons of simplicity, linear and local thermal transmittances are overlooked, then out-
to-out gives the smallest error, although it is best not to overlook thermal bridging.

Bad workmanship can seriously degrade the real average thermal transmittance,
compared with what was calculated. A formula that reflects this has the form:

Um �
Pn
j�1

ajAjUo;j=ηins;j

� �
�Pm

k�1
akLkψk=ηins;k

� � �Pp
l�1

alχl=ηins;l

� �
AT

(1.133)

Fig. 1.45 Building envelope
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with ηins,j, ηins,k and ηins,l the insulation efficiencies, with values of 1 for perfect
workmanship, but far below 1 for poor workmanship allowing air looping around,
wind washing behind and indoor air washing in front of the insulation.

1.6.5 Heat balances

The use of surface film coefficients does not reflect reality in an exact way. In case the
concepts do not work, a return to and solution of the separate heat balances is
preferred. First, the surfaces or interfaces where the temperature and heat flows or
fluxes are the unknowns are selected. These form the calculation points, with their
number defining the number of balances needed. Then, in each calculation point,
conservation of energy applies: the sum of all heat flows coming from the environ-
ment or neighbouring volumes equals zero. In this way, each calculation point
supplies an equation in which its temperature and some or all unknown tempera-
tures of the neighbouring points feature as variables, and the known temperatures
are given. Solving the system then gives the requested temperatures and heat flows or
fluxes. The challenge lies in not overlooking any intervening heat flows or fluxes.

1.6.6 Transient

1.6.6.1 Periodic: flat assemblies

To calculate the periodic response from environment to environment, the surface
film resistances are again assumed to represent 1 m thick air layers with thermal
conductivity hi and he, but a volumetric specific heat capacity of 0. The reference
temperature of either thus becomes a fictitious surface temperature. For both, the
following apply:

ωn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2inπρcλ

T

r
� 0 cosh ωnR� � � 1

ωnsinh ωnR� � � 0
sinh ωnR� �

ωn
� 0

0
� lim

n!1
sinh ωnR� �

ωn

� �
� R

turning the complex surface matrixes into:

W i � 1 1=hi

0 1

" #
W e � 1 1=he

0 1

" #

Transposition into real matrices gives:

W i �
1 0 1=hi 0

0 1 0 1=hi

0 0 1 0

0 0 0 1

2
66664

3
77775 W e �

1 0 1=he 0

0 1 0 1=he

0 0 1 0

0 0 0 1

2
666664

3
777775 (1.134)
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For an envelope assembly, the system matrix environment to environment thus
becomes:

W na � W i W n1 W n2 W n3 . . .W nn W e

For an inside partition, it changes to:

W na � W i W n1 W n2 W n3 . . .W nn W i

For single-layer assemblies, these products reduce to W na � W i W n W e when part of
the envelope, and W na � W i W n W i when an inside partition.

All this, of course, is a simplification. On the one hand, the radiant part of the surface
film resistance involves all other faces seen by the surface; on the other hand, due to
the volumetric specific heat capacity of air, limited air velocity and the interactions
with other surfaces and furniture, some inertia is involved.

1.6.6.2 Periodic: spaces

Assume that the envelope and partitions enclosing a space can be decomposed into
parallel flat assemblies whereby the windows lack thermal inertia. To simplify the
calculations, ventilation accounts for a constant outside airflow, while air exchanges
with neighbouring spaces are lacking and the solar and internal gains get injected in
the space’s centre. That centre’s operative temperature θo is thermally linked to all
assemblies by surface film coefficients hi, which combine convection and radiation
(Figure 1.46).

The response to a periodic heat input consists of a zero harmonic, which equals the
average response as steady-state reality, a first harmonic with as period (T) the time
span of, for example, 1 day, and higher harmonics with periods T/2, T/3, and so on.

hi

hi hi

hiθi

hi

hi

e

Fig. 1.46 Replacing a space by its centre point
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The zero harmonic with the operative temperature in the centre (θo) as an
unknown equals:

Xn
j�1

ae;jUe;jAe;j θ∗e;j � θo

� �h i
�Xm

k�1

Uw;kAw;k θ´e;k � θo
� �� � �Xp

l�1

U i;lAi;l θi � θo� �� �
� 0:34 nV θe � θi� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�4�
�Xm

k�1

gw;k f w;krw;kEsun;w;k

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�5�

�Φintern � 0

(1.135)

The suffix e stands for all opaque envelope assemblies, the suffix w for the windows,
and the suffix i for the inside partitions. θ∗e;j is the sol-air temperature for envelope
assembly j and θ´e;k the specific sol-air temperature for windows:

θ´e � θe � 120 eLFw;sk 1 � f c

� �
he

wherein θe is the outside air temperature, eL the long-wave emissivity of the glass,
Fw,sk the view factor between window and sky, fc the cloudiness factor and he the
outside surface film coefficient. Term (5) in the balance equation gives the solar
gains across the windows. θi in the ventilation term (4) is the air temperature in
the space, assumed equal to the operative temperature θo. The θl’s are the
operative temperatures in the neighbouring spaces, the A’s the surface areas
and the U’s the clear wall thermal admittances. V is the air volume in the space, n
the ventilation rate (ach), g the solar transmittance of the windows including
their shading devices, Esun the solar irradiation on the windows, f the ratio
between glass and total area per window, and r a shadow factor. The product
gw;k f w;krw;kEsun;w;k gives the average solar and Φintern the average internal gains
over the base period – all in SI units!

The harmonic reponses look like:

Xn
j�1

Φn
e;j �

Xm
k�1

Φn
w;k �

Xp
l�1

Φn
i;l �Φn

vent �
Xm
k�1

Φn
sun;w;k �Φn

intern � ρaca � cfMf

V

� �
V j

dθno
dt

(1.136)

with Φn
e;j the nth harmonic of the heat flow across the opaque envelope assemblies,

Φn
i;k the nth harmonic of the heat flow across the inside partitions, Φn

w;l the nth
harmonic of the heat flow across the windows, Φn

vent the nth harmonic of the enthalpy
flow by ventilation, Φn

sun;w;k the nth harmonic of the solar gains, Φn
intern the nth

harmonic of the internal gains, θno the nth harmonic of the operative temperature, cf

specific heat capacity and Mf the weight of all furniture and furnishings. The
operative temperature and the heat flows can now be written as:
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Operative (and air) temperature θno � αnoexp 2inπt=T� �
Transmission Φn � Φ̂n

exp 2inπt=T� �
Ventilation Φn

vent � Φ̂n
ventexp 2inπt=T� �

Solar gains Φn
sun � Φ̂n

sunexp 2inπt=T� �
Internal gains Φn

internal � Φ̂n
internalexp 2inπt=T� �

In these formulae, αno is the complex operative temperature, Φ̂n
x the complex heat

flow, T the base period, n the order of the harmonic and i the imaginary unit. Entering
these expressions in the harmonic heat balance gives:

Xn
j�1

Φ̂n
e;j �

Xm
k�1

Φ̂n
w;k �

Xp
l�1

Φ̂n
i;l � Φ̂n

V;j �
Xm
k�1

Φ̂n
sun;w;k � Φ̂n

intern � i ωnρacV� �αno
with ωn the pulsation of the nth harmonic and c the equivalent specific heat capacity
in the space, often set as five times the specific heat capacity of air:

c � ca � cf Mf= ρaV� � � 5ca � 5000 (1.137)

If necessary, a more accurate value can be calculated, using the weight and specific
heat capacity of the materials comprising the furniture and furnishings.

Applying the definitions of temperature damping, dynamic thermal resistance and
admittance allows the rewriting of the separate complex heat flows. To keep it
simple, the results are given for the first harmonic only. Higher harmonics give
identical expressions, but with the transient properties, complex temperatures and
complex heat flow rates for the harmonic considered. Assuming that heat goes from
outside to inside, the heat flow across the opaque envelope assemblies can be written
as:

Φ̂n
e;j � α´e;jAe;j � 1

Dq;e;j
α∗e;j � Dθ;e;j

Dq;e;j
αo

� �
Ae;j � 1

Dq;e;j
α∗e;j � Ade;jαo

� �
A

For windows the thermal transmittance remains the intervening property, giving as
heat flow:

Φ̂n
w;k � α´w;kAi;l � Uw;k α´e;k � αo

� �� �
Aw;k

The heat flows across the opaque partitions with neighbouring spaces are written
as:

Φ̂n
i;l � α´i;lAi;l � αl=Dq;i;l � Adi;lαo

� �
Ai;l

The constant ventilation rate gives:

Φvent � 0:34 nV αe � αo� �
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If, besides the solar irradiation, the solar transmittance of the window with shading is
also variable, the complex component of the solar gains equals:

Φ̂sun;w;k � f w;kAw;k α´sun;w;k
� �

with:

α´sun;w;k � Harm gw;k f w;krw;kqsun;w;k

� �
wherein qsun,w,k is the flux touching the outside face of the shading. Harm( . . . )
indicates that the product between brackets forms a Fourier series. The complex
components of the internal gains finally follow from a Fourier analysis:

Φ̂n
intern � Harm Φintern� �

Transposing all these equations into the balance and solving for the complex
operative temperature gives:

αo �

Pn
j�1

Ae;j

Dq;e;j
α∗e;j

� �
�Pm

k�1
Uw;kAw;kα´e;k
� � �Pp

l�1

Ai;l

Dq;i;l
αl

� �
� 0:34nVαe

�Pm
k�1

f w;kAw;k Harm gw;krw;kqsun;w;k

� �
� Harm Φ̂intern

� �
Pn
j�1

Ae;jAde;j
� � �Pm

k�1
Uw;kAw;k
� � �Pp

l�1
Ai;lAdi;l
� � � 0:34nV � i 6000ωV� �

The solution presumes a transposition of complex to real numbers.

If the sol-air and specific sol-air temperatures for glazing are assumed equal to the
outdoor temperature (θ´e � θ∗e � θe and α´e � α∗e � αe), which means neither solar
radiation nor under-cooling, then, for a ventilation rate of zero and all neighbouring
spaces at the same operative temperature as the one considered, that formula
simplifies to:

αo �
Pn
j�1

Ae;j

Dq;e;j

� �
�Pm

k�1
Uw;kAw;k
� �

Pn
j�1

Ae;jAde;j
� � �Pm

k�1
Uw;kAw;k
� � �Pq

l�1
Ai;l Adi;l � 1

Di;l

� �h i
� i 6000 ωV� �

8>>><
>>>:

9>>>=
>>>;αe

(1.138)

The term between the large brackets contains only construction-related character-
istics: surface areas and the inverse of the dynamic thermal resistances and the
admittances of all opaque envelope parts fixing the thermal inertia and storage
capacity, surface area and thermal transmittance of the windows, for all inside
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partitions the surface area and thermal storage capacity, and this last also for the air,
the furniture and furnishings. The inverse stands for the ratio between the complex
outdoor air and complex indoor operative temperatures:

Dθ;space �
Pn
j�1

Ae;jAde;j
� � �Pm

k�1
Uw;kAw;k
� � �Pq

l�1
Ai;l Adi;l � 1

Di;l

� �h i
� i 6000 ωV� �

Pn
j�1

Ae;j

Dq;e;j

� �
�Pm

k�1
Uw;kAw;k
� �

8>>><
>>>:

9>>>=
>>>;

(1.139)

That inverse is called the room damping for the harmonic considered, and reflects
how well a space dampens the temperature swings outdoors. The first harmonic
usually suffices to classify a building space as dampening well, or dampening poorly.

1.6.6.3 Thermal bridges

For the consideration of thermal bridges, see Section 1.2.4 on transient conduction.
Combine what is advanced there with the surface resistance approach explained above,
under steady-state thermal bridges. As a reminder, surface resistances lack capacitance.

1.7 Problems and solutions

Problem 1.1

Calculate the thermal transmittance of an outside wall, inside to outside, assembled
as follows (hi = 7.7 W/(m2.K), he = 25 W/(m2.K)):

Layer Thickness,
cm

Thermal conductivity,
W/(m.K)

Thermal resistance,
m2.K/W

Plaster 1 0.3
Inside leaf 14 0.5
Cavity fill 8 0.04
Unvented air cavity 4 0.17
Brick veneer 9 0.9

Solution

All quantities must be expressed in SI units. So, metres (m), not centimetres (cm):

Uo � 1
1=hi �PRj � 1=he

� 1
1=8 � 0:01=0:3 � 0:14=0:5 � 0:08=0:04 � 0:17 � 0:09=0:9 � 1=25

� 0:36 W=�m2:K�
Never give more than two digits.
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Problem 1.2

Calculate the thermal transmittance of a low-slope roof, inside to outside, assembled
as follows (hi = 10 W/(m2.K), he = 25 W/(m2.K)):

Layer Thickness, cm Thermal conductivity, W/(m.K)

Plaster 1 0.3
Concrete floor 14 2.5
Screed 10 0.6
Vapour barrier 1 0.2
Thermal insulation 12 0.028
Membrane 1 0.2

Solution

Uo = 0.21 W/(m2.K).

Problem 1.3

Calculate the clear wall thermal transmittance of a timber frame outer wall, inside to
outside, assembled as follows (hi = 7.7 W/(m2.K), he= 25 W/(m2.K), studs not
considered):

Layer Thickness
(d) cm

Thermal conductivity (λ),
W/(m.K)

Thermal resistance (R),
m2.K/W

Gypsum
board

1.2 0.2

Air space 2 0.17
Airflow
retarder

0.02 0.2

Thermal
insulation

20 0.04

Outside
sheathing

2 0.14

Unvented air
cavity

2 0.17

Brick veneer 9 0.9

Solution

Uo = 0.17 W/(m2.K).

Problem 1.4

Calculate the sol-air temperature for a horizontal surface subjected to a solar
irradiation of 750 W/m2. The outdoor air temperature is 30 °C, the outside surface
film coefficient 12 W/(m2.K). The surface has a short-wave absorptivity of 0.9 and a
long-wave emissivity of 0.8. The long-wave losses to the clear sky reach 100 W/m2

(low-slope roof).
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Repeat the calculation for a daily mean outdoor air temperature of 24 °C, a daily
mean solar irradiation of 169 W/m2 and a daily mean long-wave loss to the clear sky
of 50 W/m2. This is representative of a south-oriented vertical wall during a hot
summer’s day in a temperate climate. Redo the exercise for a cold winter’s day with a
daily mean outdoor air temperature of �15 °C, a daily mean solar irradiation of
109 W/m2 and a daily mean long-wave loss to the clear sky of 50 W/m2. The short-
wave absorptivity and long-wave emissivity of the outside wall face are 0.5 and 0.8,
respectively, while the outside surface film coefficient reaches 16 W/(m2.K) and the
cloudiness reaches 0.8.

Solution

The equivalent temperature in the first situation is:

θ∗e � θ∗e � aKES � eLqL

he
� 30 � 0:9 � 750 � 0:8 � 100

12
� 79:6°C

which is high. The mean equivalent temperature for the south-oriented wall during
the hot summer’s day touches:

θ∗e � θ∗e � aKES � eLqL

he
� 24 � 0:5 � 169 � 0:8 � 50

16
� 26:8°C

During the cold winter’s day, one has:

θ∗e � θ∗e � aKES � eLqL

he
� �15 � 0:5 � 109 � 0:8 � 50

16
� �13:6°C

Problem 1.5

Return to Problem 1.1. Calculate the highest and lowest daily mean temperatures for
all interfaces, knowing that the equivalent outdoor temperature has the same value as
in the repeat part of Problem 1.4. The operative temperature indoors is 21 °C in
winter and 25 °C in summer. The surface film coefficient outside is 16 W/(m2.K), and
the surface film resistance inside 0.13 m2.K/W. Draw the result.

Solution

The temperatures are given by θj � θi � θi � θ∗e
� �Pj

i�1
R=Ra. As a table and a figure:

Layer ΣR, m2.K/W Temp, cold winter’s day, °C Temp, warm summer’s day, °C

0 21.0 25.0
0.13 19.5 25.3

1 0.16 19.1 25.4
2 0.44 15.9 26.0
3 2.44 �7.1 30.3
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4 2.61 �9.0 30.6
5 2.71 �10.2 30.9

2.78 �10.9 31.0
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The insulation backs the temperature difference. It is as if the wall splits into a part
leaning to the indoors and a part leaning to the outdoors which experiences the
greatest temperature change.

Problem 1.6

Now repeat Problem 1.5 for the timber frame wall of Problem 1.3. The outdoor sol-
air and air temperatures in winter and summer, the operative temperatures indoors
in winter and summer and the inside and outside surface film coefficients are as given
above. Draw the result.

Solution

As a table and a figure:

Interface ΣRj, m2.K/W Temp, cold winter’s
day, °C

Temp, warm summer’s
day, °C

1/hi 0 21.0 24.0
Gypsum board 0.13 20.3 24.2
Air space 0.19 20.0 24.2
Airflow retarder 0.36 19.0 24.4
Thermal insulation 0.36 19.0 24.4
Outside sheathing 5.36 �8.3 30.4
Air cavity 5.50 �9.1 30.6
Brick veneer 5.67 �10.0 30.8
1/he 5.77 �10.6 30.9
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Problem 1.7

Take the low-sloped roof of Problem 1.2. Calculate the highest and lowest daily
mean temperatures for all interfaces, knowing that the daily mean outdoor
equivalent temperature in summer reaches 40 °C for a daily mean air temperature
of 24 °C, while in winter these values are �19.5 °C and �15 °C respectively. The
average surface film coefficient outside during windless days is 12 W/(m2.K).
Inside, the operative temperature is 21 °C in winter and 25 °C in summer. The
inside surface film coefficient equals 6 W/(m2.K) in summer and 10 W/(m2.K) in
winter. Draw the result.

Solution

As a table and a figure:

Interface Winter Summer

ΣRj, m2.K/W Temp, °C ΣRj, m2.K/W Temp, °C

1/hi 0 21.0 0 25.0
Render 0.17 19.6 0.10 25.3
Concrete floor 0.20 19.3 0.13 25.4
Screed 0.26 18.9 0.19 25.6
Vapour barrier 0.42 17.5 0.36 26.1
Thermal insulation 0.47 17.1 0.41 26.3
Membrane 4.76 �18.4 4.69 39.6
1/he 4.81 �18.8 4.74 39.7
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Problem 1.8

A manufacturer introduces a new sandwich panel with, as a section, inside to outside:

Layer Thickness
(d), cm

Thermal conductivity
(λ), W/(m.K)

Thermal resistance
(R), m2.K/W

Aluminium 0.2 230
VIP (vacuum
insulation)

2 0.006

Air cavity 2 0.15
Glass pane 1 Assume 1

The panel fills a curtain wall. Assume temperatures of 35 °C outdoors and 24 °C
indoors. Solar irradiation on the glass pane reaches 500 W/m2. No long-wave
radiation needs to be considered. The surface film coefficient outdoors is 15 W/
(m2.K), and indoors is 7.7 W/(m2.K). Short-wave radiant properties of the glass are:
aS= 0.05, rS = 0.20, τS = 0.75. The cavity face of the VIP has a short-wave absorptivity
of 1. What will be the temperature in the glass pane? How large will the heat flux be
entering the building across the panel?

Solution

The problem is solved by writing two heat balances: one for the glass and one for the
VIP cavity face:

Glass (temperature θ1): he θe � θ1� � � aSES � θs2 � θ1

Rcav
� 0

VIP (temperature θs2):
θ1 � θs2

Rcav
� τSES � θi � θs2

RVIP � Ralu � 1=hi
� 0
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or:

� 15 � 1=0:15� �θ1 � θs2

0:15
� �0:05 � 500 � 15 � 35

θ1

0:15
� θs2

1
0:15

� 1
0:02=0:005 � 0:002=230 � 1=7:7

� �

� �0:75 � 500 � 1
0:02=0:005 � 0:002=230 � 1=7:7

� 24

8>>>>>>><
>>>>>>>:

Solving this system of two equations gives θ1= 60.2 °C, θs2= 113.2 °C. The heat flow
rate to the inside is 21.6 W/m2. The high temperatures underline that the panel acts as a
solar collector. The heatflux to the inside equals that transferred in the absence of solar
irradiation by an assembly with thermal transmittance of 1.96 W/(m2.K), whereas the
clear wall thermal transmittance of the manufactured panel is only 0.23 W/(m2.K).
What measures could lower the temperatures within and heat flux across the panel?

Problem 1.9

Solve Problem 1.8 for the case when heat-absorbing glass, aS= 0.3, rS= 0.19, τS= 0.51,
is used, and the short-wave absorptivity and reflectivity of the VIP’s cavity face is 0.5.

Solution

The temperature of the glass is 52.8 °C, and the temperature at the cavity side of the
VIP, 70.2 °C. The heat flux to the inside equals 11.2 W/m2, which corresponds to a U
value of 1.02 W/(m2.K). The real U value remains 0.23 W/(m2.K)

Problem 1.10

The roof of a mountain chalet is covered with 40 cm of snow (λ= 0.07 W/(m.K),
aS= 0.15). The outdoor temperature is �15 °C, while indoors it is 22 °C. Solar
irradiation reaches 600 W/m2. The surface film coefficients are 15 W/(m2.K) outside
and 10 W/(m2.K) inside. What insulation thickness is needed to stop the snow from
melting in contact with the membrane, for an insulation material with apparent
thermal conductivity of 0.023 W/(m.K)? What heat flux will be noted across the roof?
The thermal resistance face-to-face of the roof without insulation is 0.5 m2.K/W.

Solution

The thickness needed is 21 cm. The heat flux across the roof equals 2.24 W/m2.

Problem 1.11

An intensely ventilated attic receives an insulated ceiling, composed of metal girders,
mounted 60 cm centre-to-centre with a 120 mm thick thermal insulation in between.
The girder section is given in the figure below. Suppose the insulation has a thermal
conductivity of 0 W/(m.K), while for the metal the value is 1 W/(m.K). The surface
film coefficients are 25 W/(m2.K) at the attic side and 6 W/(m2.K) inside. The attic
temperature is �10 °C, and the temperature indoors 20 °C. Does the heat loss differ
between the profile mounted with the broader flange indoors (a) or vice versa (b)?
What is the metal temperature in both cases? Calculate the U value of the ceiling.
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Profile
50 mm

120 mm Flange and web
1.5 mm thick

Ceiling design

200 mm

Solution

The heat balance for the profile in case (a) is: 0:2 � 6 � 20 � θx� � � 0:05 � 25�
�10 � θx� � � 0. In case (b) it is: 0:05 � 6 � 20 � θx� � � 0:2 � 25 � �10 � θx� � � 0.

So yes, the heat losses do differ. In case (a) the metal temperature is 4.7 °C, while
in case (b) it is �8.3 °C. For 1/0.6 girders per metre run, in case (a),U= 1.02 W/(m2.K),
while in case (b) it is 0.47 W/(m2.K)

Problem 1.12

Solve Problem 1.11 for a metal profile with flanges of 100 mm each.

Solution

The temperature of the steel profiles is 4.2 °C, and the U value of the ceiling is
0.53 W/(m2.K).

Problem 1.13

A reinforced concrete column with sides of 0.4 m is positioned between two glass
panels in such a way that the glass lines up with the column’s inside face. The glass is
considered a surface with thickness zero. The temperature indoors is 21 °C, and the
temperature outdoors 0 °C. The inside surface film coefficient equals 8 W/(m2.K),
and the outside surface film coefficient 25 W/(m2.K). Calculate the temperature field
in and the heat loss across the column.

40 cm

λ =2.5 W/(m.K)
40 cm

Solution

Assume the column reacts as a flat wall. The U value then is:

1
1=25 � 0:4=2:5 � 1=8

� 3:1 W=�m2K�
The temperature at the inside surface thus equals 21� 3.1× (21� 0)/8= 12.9 °C,
giving a temperature factor of 0.65. The heat loss becomes 3.1× 0.4× 21= 25.8 W/m.
Or, the thermal transmittance and temperature factor are close to those for double
glass. In the column’s centre, the temperature is 7.8 °C.
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A first upgrade consists of applying a very simple CVM grid with the centre of the
column as the calculation point (point 1, 2). The heat balance there is:

0:2 21 � θx� �
1=8 � 0:2=2:5

� 3
0:2 0 � θx� �

1=25 � 0:2=2:5
� 0

giving as the central temperature 3.4 °C, and as the inside surface temperature,
10.3 °C, which gives a temperature factor of 0.49, a value 24.6% lower than just
calculated. The heat loss now is 34.3 W/m – 33.7% higher than with the flat wall
assumption. In a second upgrade, the grid over half the column is refined to 6
calculation points, of which 5 lie on the perimeter.

1.3

1.2

1.1

2.3

2.2

1.2

The heat balances are:

Point 1,1
8 � 0:1 � 21 � θ1;1

� � � 2:5 � 0:1
0:2

θ1;2 � θ1;1
� � � 2:5 � 0:1

0:2
θ2;1 � θ1;1
� � � 0

Point 2,1
8 � 0:1 � 21 � θ2;1

� � � 2:5 � 0:1
0:2

θ1;1 � θ2;1
� � � 2:5 � 0:1

0:2
θ2;2 � θ2;1
� �

�25 � 0:1 � 0 � θ2;1
� � � 0

Point 1,2 2:5 � 0:1
0:2

θ1;1 � θ1;2
� � � 2:5 � 0:1

0:2
θ1;3 � θ1;2
� � � 2:5 � 0:2

0:2
θ2;2 � θ1;2
� � � 0

Point 2,2 2:5 � 0:1
0:2

θ2;1 � θ2;2
� � � 2:5 � 0:2

0:2
θ1;2 � θ2;2
� � � 2:5 � 0:1

0:2
θ2;3 � θ2;2
� �

�25 � 0:2 � 0 � θ2;2
� � � 0

Point 1,3 2:5 � 0:1
0:2

θ1;2 � θ1;3
� � � 25 � 0:1 � 0 � θ1;3

� � � 2:5 � 0:1
0:2

θ2;3 � θ1;3
� � � 0

Point 2,3
2 � 25 � 0:1 � 0 � θ2;3

� � � 2:5 � 0:1
0:2

θ2;2 � θ2;3
� � � 2:5 � 0:1

0:2
θ1;3 � θ2;3
� � � 0
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Solving this system gives as temperatures in the column:

0:4 0:9 0:4
1:4 2:9 1:4
4:9 8:1 4:9

The lowest temperature factor inside now sits at the corners, 0.25 – as poor as single
glass. The heat loss equals:

Φ � 2 � 0:1 � 8 � 21 � 4:9� � � 0:2 � 8 � 21 � 8:1� � � 46:4 W=m

that is 80% higher than given by the flat wall assumption. The last upgrade comes by
including more control volumes, and using software for two-dimensional heat
transport. The figure below shows the nearly correct answer in terms of temperatures:

Problem 1.14

Aerated concrete is chosen as the envelope material. The manufacturer promises a very
good transient thermal response, which is formulated in terms of a much higher effective
thermal resistance than calculated steady state. Is this true? The material properties are:

Situation Density,
kg/m3

Thermal conductivity (λ),
W/(m.K)

Specific heat capacity,
J/(kg.K)

Just applied (humid) 450 0.30 2700
After some years (air-
dry)

450 0.13 1120

The wall thicknesses to consider are 10, 20 and 30 cm. The outside surface film
coefficient is 25 W/(m2.K), and the inside surface film coefficient 8 W/(m2.K).

Solution

A way to evaluate the claim is through calculating the harmonic properties. A high
dynamic thermal resistance seems to confirm it, but a low admittance indicates that

1.7 Problems and solutions 115



this will not suffice to stabilize the indoor climate in the case of significant solar and
internal gains.

To show how the harmonic calculation works, temperature damping, the dynamic
thermal resistance and the admittance are calculated for the initially humid aerated
concrete wall with d= 10 cm and λ= 0.3 W/(m.K).

Thermal diffusivity: a � λ
ρc � 2:469 � 10�7 m2=s

Xn value: Xn � d
ffiffiffiffiffi
nπ
aT

p � 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:1418
2:469�10�7�3600�24

q
� 1:2135

Functions Gn1(Xn) to Gn6(Xn):

Gn1 0.640
Gn2 1.437
Gn3 0.928
Gn4 0.486
Gn5 �1.431
Gn6 2.733

Layer matrices:

Inside surface

1 0 0:125 0
0 1 0 0:125
0 0 1 0
0 0 0 1

2
664

3
775 j1j

Layer

0:640429 1:437199 0:309307 0:161937
�1:437199 0:640429 �0:161937 0:309307
�4:29249 8:198851 0:640429 1:437199
�8:198851 �4:29249 �1:437199 0:640429

2
664

3
775 j2j

Outside surface

1 0 0:04 0
0 1 0 0:04
0 0 1 0
0 0 0 1

2
664

3
775 j3j

Matrix multiplication:

j2j � j1j �
0:640429 1:437199 0:38936 0:341587
�1:437199 0:640429 �0:341587 0:38936
�4:29249 8:198851 0:103868 2:462055
�8:198851 �4:29249 �2:462055 0:103868

2
664

3
775 j4j

j3j � j4j �
0:46873 1:765153 0:3993515 0:440069

�1:765153 0:46873 �0:440069 0:3993515
�4:29249 8:198851 0:103868 2:462055
�8:198851 �4:29249 �2:462055 0:103868

2
664

3
775
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Harmonic properties:

Temperature damping Dθj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:468732 � 1:7651332

p � 1:83

ϕθ � a tan
1:765133
0:46873

� �
12
π

� 5 h

Dynamic thermal resistance Dq

�� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:39935152 � 0:389362

p � 0:59 m2K=W

ϕq � a tan
0:38936

0:3993515

� �
12
π

� 3:2 h

Admittance Adj j � Dθj j
Dq

�� �� � 3:09 W=�m2K�
ϕAd � ϕθ � ϕq � 1:8 h

It is for the reader to calculate the other cases, using a spreadsheet or program. The
results are:

Case 1
d= 10 cm
λ= 0.3
W/(m.K)

Case 2
d= 20 cm
λ= 0.3
W/(m.K)

Case 3
d= 30 cm
λ= 0.3
W/(m.K)

Case 4
d= 10 cm
λ= 0.13
W/(m.K)

Case 5
d= 20 cm
λ= 0.13
W/(m.K)

Case 6
d= 30 cm
λ= 0.13
W/(m.K)

Dθ 1.83 6.56 23.1 1.63 5.72 19.1
ϕθ (h) 5 h 00´ 9 h 48´ 14 h 36´ 4 h 33´ 9 h 19´ 13 h 57´
Dq

(m2.K/W)
0.59 1.93 6.56 1.02 3.16 10.4

ϕq (h) 3 h 18´ 7 h 54´ 12 h 42´ 2 h 24´ 6 h 53´ 11 h 28´
Ad
(W/(m2.K))

3.09 3.39 3.53 1.60 1.81 1.84

ϕAd (h) 1 h 48´ 1 h 52´ 1 h 57´ 2 h 09´ 2 h 26´ 2 h 29´

So aerated concrete is clearly not the wonder promised. To get sufficient temperature
damping air-dry (Dθ>15), a thickness beyond 20 cm is needed. The same holds for
the dynamic thermal resistance if a value beyond 4 m2.K/W is the target. The
admittance is low, surely when the aerated concrete is airdry. Therefore the material
does not function in the way the manufacturers claim.

Problem 1.15

Take a living room with surface 4× 6.5 m and ceiling height 2.5 m. The room has two
exterior walls, one of 4× 2.5 m2 and the other 6.5× 2.5 m2, completely glazed with
gas-filled, low-e double glazing, U value 1.3 W/(m2.K) for hi= 7.7 W/(m2.K) and
he = 25 W/(m2.K). Both partition walls and the ceiling have a thermal resistance of
0.505 m2.K/W from the surface in the living room to the ambient in the neighbouring
space. The living room has floor heating with the network of pipes covered by a
screed having a thermal resistance of 0.1 m2.K/W. Walls, floor and ceiling are grey
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bodies with emissivity 0.9. The glass has a grey body emissivity of 0.92. The
ventilation rate in the room is 1 ach and the surface film coefficient for convection
reaches 3.5 W/(m2.K). Calculate the glass, wall and ceiling temperatures, knowing
that the indoor and outdoor air temperatures are 21 °C and �8 °C respectively.

Solution

The room is considered as a system with six grey surfaces: the windows with surface
A1 and A2 and temperatures Ts1 and Ts2, the two inside walls with surface A3 and A4

and surface temperatures Ts3 and Ts4, the ceiling with surface A5 and surface
temperature Ts5 and, the floor with surface A6 and surface temperature Ts6. The floor
heating has a temperature Tfl. Seven heat balances so are needed, convective for the
room and one per wall surface.

Room balance: Qv �
X6

j�1

hcAj 21 � θsj
� � � 0

or, with Qv � ρacaV θe � θi� �, θi = 21 °C, θe=�8 °C, V= 65 m3, A1=A3= 10 m2, A2

=A4= 16.25 m2, A5=A6= 26 m2, ca = 1008 J/(kg.K), ρa and hc = 3.5 W/(m2.K):

�633:36 � 35T s1 � 56:875T s2 � 35T s3 � 56:875T s4 � 91T s5 � 91T s6 � 7680:75 � 0

Surface balances: the radiant heat flow rate at each surface is written as
qR � eL M´ �Mb� �=ρL. Linearization of the black body emittance Mb in a temperature
interval 10–25 °C gives:

Mb � 307:75 � 5:57θs; r2 � 0:999

The radiosity M´ equals:

M´
j � Mbj

ej
� ρj
ej

X6

i�2

Fji M
´
j

with Fji the view factor between each surface and the other five:

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Surface 1 – 0.187 0.070 0.187 0.278 0.278
Surface 2 0.115 – 0.115 0.210 0.280 0.280
Surface 3 0.070 0.187 – 0.187 0.278 0.278
Surface 4 0.115 0.210 0.115 – 0.280 0.280
Surface 5 0.107 0.175 0.107 0.175 – 0.436
Surface 6 0.107 0.175 0.107 0.175 0.436 –
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The black body emittance of each surface thus becomes:

s1 Mb1 � 1
0:92M

´
s1 � 0:08

0:92 0:187M´
s2 � 0:07M´

s3 � 0:187M´
s4 � 0:278M´

s5 � 0:278M´
s6� �

s2 Mb2 � 1
0:92M

´
s2 � 0:08

0:92 0:115M´
s1 � 0:115M´

s3 � 0:21M´
s4 � 0:28M´

s5 � 0:28M´
s6� �

s3 Mb3 � 1
0:9 M

´
s3 � 0:1

0:9 0:07M´
s1 � 0:187M´

s2 � 0:187M´
s4 � 0:278M´

s5 � 0:278M´
s6� �

s4 Mb4 � 1
0:9 M

´
s4 � 0:1

0:9 0:115M´
s1 � 0:210M´

s2 � 0:115M´
s3 � 0:28M´

s5 � 0:28M´
s6� �

s5 Mb5 � 1
0:9 M

´
s5 � 0:1

0:9 0:107M´
s1 � 0:175M´

s2 � 0:107M´
s3 � 0:175M´

s4 � 0:436M´
s6� �

s6 Mb6 � 1
0:9 M

´
s6 � 0:1

0:9 0:107M´
s1 � 0:175M´

s2 � 0:107M´
s3 � 0:175M´

s4 � 0:436M´
s5� �

Inverting the matrix of this system of six equations gives the radiosities of the six as
functions of the black body emittances:

Matrix:

1:0870 �0:0163 �0:0061 �0:0163 �0:0242 �0:0242

�0:0100 1:0870 �0:0100 �0:0183 �0:0243 �0:0243

�0:0078 �0:0208 1:1111 �0:0208 �0:0309 �0:0309

�0:0128 �0:0233 �0:0128 1:1111 �0:0311 �0:0311

�0:0119 �0:0194 �0:0119 �0:0194 1:1111 �0:0485

�0:0119 �0:0194 �0:0119 �0:0194 �0:0485 1:1111

2
66666664

3
77777775

Inverted:

H ´
1

H ´
2

H ´
3

H ´
4

H ´
5

H ´
6

2
66666664

3
77777775
�

0:9208 0:0150 0:0058 0:0146 0:0219 0:0219

0:0092 0:9214 0:0090 0:0162 0:0221 0:0221

0:0074 0:0187 0:9010 0:0182 0:0273 0:0273

0:0115 0:0207 0:0112 0:9017 0:0275 0:0275

0:0108 0:0176 0:0105 0:0172 0:9032 0:0408

0:0108 0:0176 0:0105 0:0172 0:0408 0:9032

2
66666664

3
77777775

x

307:75 � 5:57θs1

307:75 � 5:57θs2

307:75 � 5:57θs3

307:75 � 5:57θs4

307:75 � 5:57θs5

307:75 � 5:57θs6

2
66666664

3
77777775

Introducing this result into the radiant heat flow rate equation allows the elimination
of the constant 307.75. The combined heat balance per surface, including radiation,
convection and conduction, is now

qR � qC � qcond � 0
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or:

�10:1367θs1 � 0:9599θs2 � 0:3726θs3 � 0:9352θs4 � 1:4023θs5 � 1:4023θs6 � 0θfl

� 60:985

0:5907θs1 � 10:0972θs2 � 0:5771θs3 � 1:0391θs4 � 1:4129θs5 � 1:4129θs6 � 0θfl

� 60:985

0:3726θs1 � 0:9378θs2 � 10:444θs3 � 0:9136θs4 � 1:3699θs5 � 1:3699θs6 � 0θfl

� 115:084

0:5755θs1 � 1:0391θs2 � 0:5622θs3 � 10:410θs4 � 1:3765θs5 � 1:3765θs6 � 0θfl

� 115:084

0:5393θs1 � 0:8831θs2 � 0:5269θs3 � 0:8603θs4 � 10:335θs5 � 2:0454θs6 � 0θfl

� 115:084

0:5393θs1 � 0:8831θs2 � 0:5269θs3 � 0:8603θs4 � 2:0454θs5 � 18:355θs6 � 10θfl

� �73:5

In these equations, the diagonal terms consist of:

θs1; θs2 � 1
1=1:3 � 0:13� � � 3:5 � 0:9208

0:92
0:08

� �	 


θs3; θs4; θs5 � 1
0:505

� 3:5 � 0:901; 0:9017; 0:9032� � 0:9
0:1

� �	 


θs6 � 1
0:1

� 3:5 � 0:9032
0:9
0:1

� �	 


Solving this system of six surface and one room balance equation gives temperatures:

Window 4× 2.5 m2 θs1 = 17.6 °C
Window 6.5× 2.5 m2 θs2 = 17.8 °C
Wall 4× 2.5 m2 θs3 = 21.9 °C
Wall 6.5× 2.5 m2 θs4 = 21.8 °C
Ceiling θs5 = 22.3 °C
Floor θs6 = 29.2 °C
Floor heating θfl= 36.1 °C

Problem 1.16

Repeat Problem 1.15 assuming normal double glass with U= 2.9 W/(m2.K) for
hi = 7.7 W/(m2.K) and he = 25 W/(m2.K), while all other data remain the same.
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Solution

With normal double glazing, the temperatures become:

Window 4× 2.5 m2 θs1 = 11.8 °C
Window 6.5× 2.5 m2 θs2 = 12.1 °C
Wall 4× 2.5 m2 θs3 = 21.9 °C
Wall 6.5× 2.5 m2 θs4 = 21.7 °C
Ceiling θs5 = 22.6 °C
Floor θs6 = 34.7 °C
Floor heating θfl= 47.0 °C

The floor is much warmer now than acceptable for feet comfort (28 °C), or, heat loss
is too high to only install floor heating. The room also needs a radiator or a convector.
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