9
Quantitative Analysis of Biochemical Data

The results of biochemical investigations can only rarely be interpreted without some form
of quantitative analysis of the experimental data. In this chapter, we describe methods that
can be used for such analysis taking typical biochemical topics such as enzyme kinetics
and the thermodynamics and kinetics of molecular interactions as our examples. The aim
of the computer-based exercises in this chapter is to provide the reader with direct experi-
ence of methods of data analysis that, we hope, will enable them to apply these approaches
to their own data. We also include a short revision of the essentials of thermodynamics and
kinetics relevant to the applications discussed.

9.1
Introduction

9.1.1
General principles of quantitative data analysis

The questions that arise when data are being analysed quantitatively are essentially
the following:

¢ how well does the model under consideration, which is usually proposed on
the basis of previous experience, perform in explaining the experimental
data, bearing in mind the accuracy of that data? Is the model satisfactory, or
is it necessary to consider alternatives?

¢ what values of the parameters characterising the system (rate constants, bind-
ing constants etc.) are most consistent with the experimental data?

¢ how accurate are these parameters, and what are the limits of error?

There are several important criteria that all procedures for data analysis should
satisfy, chiefly:

e that the experimenter should be able to see the results of the analysis graphi-
cally to check whether they are reasonable, and get a feel for the accuracy

e that however the results are manipulated, the orginal raw data should not be
lost
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Figure 9-1.  Schematic plan of the methods used in this chapter
for quantitative data analysis.

e that there should be no hidden error propagation in the operations, for exam-
ple by using transformations involving 1/x, y* and similar functions.

The basic concepts underlying the methods of data analysis discussed here are
illustrated in Figure 9-1. The results of an experiment are data. A model is a descrip-
tion of the processes taking place in the experimental system being observed, which
defines a mathematical relationship between the independent variables and the
results. The model also defines physical parameters as variables to be fitted. With
plausible initial values of the parameters, the mathematical relationships are used to
obtain simulated data, which are compared with the experimental data. The values
of the parameters are then varied until an optimal fit is obtained of the simulated
and experimental results.

In the following sections, the basic concepts of quantitative data analysis are dis-
cussed, together with the terms used in the above scheme.

9.1.2
Experimental systems

The system is made up from various components and species. Components are
molecules which differ in their covalent structures, e. g. enzyme, substrate and pro-
duct; components can interact to form complexes, e.g. an enzyme-substrate com-
plex. Species are all the entities present in the solution which differ in either their
covalent or non-covalent structures; this will include components, complexes and,
where relevant, different conformations of these.
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9.1.3
Measurement and signals

In our analysis we consider a general relationship between the measurement or ‘sig-
nal’ and the composition of the solution; the signal is the experimental quantity
being measured which gives information about the processes taking place. It is
assumed that the total measured signal is additive in terms of the contributions of
all of the species (i) in the solution, and furthermore, that the signal from each spe-
cies is proportional to its concentration (c;). Different species contribute to differing
extents to the total signal, and the proportionality constant (f;) is termed the inten-
sity factor of the species i. This intensity factor defines the relationship between the
concentration of the species and the measured signal (e.g. cpm, absorbance, fluores-
cence intensity, etc.). It is usual to have to take account of a non-specific but constant
background signal, which we here define as the baseline (BL). The observed signal
is thus given by the general Eqn. 9.1:

S=BL+Y fe (9.1)

So, for example, if we have the species A, B and AB in solution, then the signal is
given by the expression:

S = BLAf,c, +fpcp + fapCup (9.2)

To simplify the analysis, and to make the numerical analyses more stable, it is
important that realistic assumptions are made about which species contribute to the
signal, for example, in the case of radioactive detection, only those species that are
labelled.

9.1.4
Models

A model represents an abstraction of the processes that are happening, or could be
happening, during the experiment. From this model we can derive a mathematical
relationship between the experimental results and the independent variables. Con-
sider the simple case of the two species A and B forming a complex AB in a time-
dependent process:

cap =f(tcy,05) (9.3)

The experimental results would be the concentrations c4p, and the independent
variables would be c4, cg and the time t.

The model provides specific parameters for the fitting process, enabling theoreti-
cal data to be evaluated. These can be calculated either analytically or numerically. If
the mathematical relationship between the signal (observation) and the parameters
is sufficiently simple, it may be possible to obtain analytical solutions and calculate
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the theoretical signal directly, i.e., in the present example to obtain values of cap
knowing the initial concentrations of the concentrations ¢4 and ¢, and the time t.

However, in many cases, the mathematical relationships are not that simple, and
analytical solutions may either not be possible in principle, or too difficult and cum-
bersome in practice. In such cases the theoretical data can be simulated by numer-
ical methods.

A model is, of course, only a working hypothesis, whose validity is judged by its
success in accounting for the data. If its performance is not satisfactory then alterna-
tive models should be sought or devised. However, if a model is to be replaced by a
more complicated one, then it is important to check that the data really warrant this.
More complicated models generally have more parameters, and more parameters
will always lead to better fitting of the data. One should be guided here by the Prin-
ciple of Parsimony, that other things being equal, the preferred model is the sim-
plest one with the fewest parameters.

9.1.5
Selection of appropriate models

The choice of the right model to use to describe experimental results is one of the
trickiest, and most interesting, tasks in scientific work, and this is a subject that can
only be touched on here. As discussed above, we are guided by the Principle of Par-
simony, that in science one should seek the simplest explanation for phenomena. In
the present context, that means that we should define models with as few para-
meters as possible, consistent with obtaining a satisfactory description of the data.
This is a sensible approach, because if a simple model fits the data adequately, then
so necessarily must more complicated versions of that model. It follows that experi-
mental observations can only serve to rule out models, often, but not always,
because they are oversimplified; the data can never prove that a model is correct.
The question naturally arises at this stage about how one can establish whether or
not a model is successful in accounting for the data. There are several criteria for
assessing the quality of a model.

¢ The absolute magnitude of the deviations between the theoretical and experi-
mental data. Does the theoretical curve lie in the region of experimental
uncertainty of the data points (taking particular care not to overestimate the
accuracy of the data)?

e The direction of the deviations between the theoretical and experimental
data. Are the deviations randomly distributed, sometimes above and some-
times below the curve, or are they clustered, above the curve in one region
and below in another? If the deviations are not randomly distributed, this
indicates that the theoretical curve is not a satisfactory fit to the experimental
data. One reason for this is that the model is wrong and is not an adequate
description of the situation; another is that systematic errors have been made
in carrying out the experiment.
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Whether alternative models are available which can account for the data
more satisfactorily.

A good model should also have predictive power and suggest additional
experiments which can be carried out to test the model further.

Parameters

Depending on the model under consideration, one obtains a set of parameters, that
establish the relationship between the experimental data and the assumptions
underlying the model. It is important to distinguish two kinds of parameter: global
and local. This distinction is important when several data sets are being considered
jointly in the analysis; the values of the global parameters must be the same in all
cases, whereas those of the local parameters may vary from one data set to another.

9.1.7

Global parameters: the values of the global parameters are the same for all of
the data sets that are being considered in the analysis. We are dealing here
with physical quantities such as binding or rate constants whose values we
wish to determine.

Local parameters: the values of the intensity factors discussed above can dif-
fer from experiment to experiment. Examples of intensity factors are: radio-
activity (CPM = f; - ¢;), fluorescence intensity (signal = f; - ¢;), absorbance
spectroscopy (OD = f; - ¢;, in which f; is the extinction coefficient of species i),
ELISA (signal= f; - ¢;) etc. Although the precise values of these factors, which
are local parameters, are not particularly interesting in understanding the
system, they are needed for the analysis.

Essential steps in the analysis

There are three basic steps in every data analysis (cf. Figure 9-1):

arbitrary initial values of the parameters are introduced into the model to cal-
culate theoretical concentrations for all of the species of interest in the sys-
tem

these theoretical concentrations are combined with initial values for the
intensity factors to obtain theoretical values for the measurement or signal
the values of the parameters and intensity factors are varied to obtain the best
fit of the theoretical values of the signal to the experimental values; the com-
bination of parameters which best fits the data is the result of the analysis.
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9.1.8
Fitting data by the method of least squares

The classical method for fitting data to theoretical curves is linear regression. This
procedure allows the equation of the best straight line fitting the experimental data
to be calculated directly:

y=a-+bx
ny oy - (L) ()
ny x* — (Zx)z

(=) () - (Z) (=)

2

ny x? — (Zx)

slope b = (9.4)

y intercept a =

Until relatively recently this was the only method that could be used conveniently
to fit data by regression. This is the reason why so many classical approaches for
evaluating biochemical data depended on linearising data, sometimes by quite com-
plex transformations. The best known examples are the use of the Lineweaver-Burk
transformation of the Michaelis-Menten model to derive enzyme kinetic data, and of
the Scatchard plot to analyse ligand binding equilibria. These linearisation proce-
dures are generally no longer recommended, or necessary.

In contrast to the explicit analytical solution of ‘least-squares fit’ used in linear
regression, our present treatment of data analysis relies on an iterative optimization,
which is a completely different approach: as a result of the operations discussed in
the previous section, theoretical data are calculated, dependent on the model and
choice of parameters, which can be compared with the experimental results. The
deviation between theoretical and experimental data is usually expressed as the sum
of the errors squared for all the data points, alternatively called the sum of squared
deviations (SSD):

2

SSD = Z(Si.exp - Si,meo) (9.5)

This deviation is now minimised by variation of the parameters. The combination
of parameter values that ‘best fit’ the experimental data using this deviation as the
criterion of best fit is the desired solution of the analysis. This process of finding a
solution is termed ‘iteration’ because the solution is located by trying out many pos-
sible combinations of parameters; since the equations being fitted are in general
non-linear, the process is more specifically one of iterative non-linear least-squares
fitting.



9.1 Introduction

55D
@]

A

Parameter

Figure 9-2. Two-dimensional representation of an error surface.
Region A is the location of the global minimum, region B is a
local minimum, and region C represents an area where the
model is no longer valid and the slope of the error surface is
directed away from the minimum.

The process is essentially as follows. All possible combinations of the parameters
(physical constants and intensity factors), of number N, define an (N+1)-dimen-
sional error space. Every point in that space has a characteristic value of the sum of
the squared deviations (SSD), which thus generates an error surface in (N+1)-
dimensional space. If, for simplicity, we consider a model with only two parameters,
these can be represented on the X and Y axes, and the value of SSD on the Z axis.
The error surface is now simply a surface in conventional three-dimensional space.
An even simpler example with one parameter is illustrated in Figure 9-2 in which
the parameter is shown on the X axis and the SSD is on the Y axis. The task in the
fitting procedure is to locate the minimum value in the SSD curve (region A in Fig-
ure 9-2). It is impracticable to try out all possible values of the combined set of para-
meters, particularly when there are many of them. The procedure adopted in most
computer programmes is, starting from initial values of the parameters (provided by
the user) calculations are made of the slope (or derivative) of the error surface in
(N+1)dimensional space. This is done by making a small variation of each of the
parameters in turn and calculating the SSD. The programme then locates the region
where the slope is steepest (downwards) and it alters the parameters by a small step
in that direction to generate a new set of parameters, which fit the data better. From
this new set of parameters, the programme repeats the operation in a second itera-
tive cycle to locate the direction of steepest descent, and hence a new set of para-
meters.

This procedure depends on certain features that merit comment.

¢ The step length in the iteration is critical: if it is too short then the process of
locating the minimum takes too long, whereas if the step length is too long
the algorithm used in the programme can miss the target area, and thus
never locate the minimum. The SOLVER algorithm used in Excel selects the
step length automatically depending on the slope of the error surface and the
result of the previous round of iteration.
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¢ The ‘result’ located by the programme can be a local minimum (e.g. region B
in Figure 9-2). Locating the global minimum is often not straightforward,
particularly when the error surface is complex, and the programme can find
itself trapped in a local minimum. The best means of avoiding this, or at
least detecting when it is happening, is to begin the iteration process from
different initial parameter estimates, and check whether the same solution is
found in every case. If this does not happen, the solution with the lowest
SSD corresponds to the best solution, although it should be noted that in
some cases alternative solutions may be equally good in terms of their SSD
values, bearing in mind the accuracy of the experimental data.

e To avoid local minima, most algorithms also test randomly selected points in
the error surface. The extent to which a programme carries out these tests
determines the speed of locating the minimum and the tendency of the algo-
rithm to become trapped in local minima.

¢ All models have limits to their region of validity; for example negative values
of rate or binding constants do not correspond to physically meaningful
situations. In such regions, mathematical errors will arise, such as attempt-
ing to find the square root of a negative number, even though all of the equa-
tions have been correctly programmed.

e The slope of the error surface can lead the iterations into regions that are
remote from the minimum. This situation can readily lead to failure to locate
the minimum when the initial parameter estimates are not very good. To
remedy this, a fresh set of initial estimates should be selected which fit the
data better. In Figure 9-2, for example, it would be difficult to locate the mini-
mum if the programme started in region C since the slope in the error sur-
face is pointing in the wrong direction.

The usual criterion of ‘best fit’ is the sum of errors squared (the SSD discussed
above) rather than the absolute magnitude of the errors. This procedure is mathe-
matically justified when the errors in the data follow the Gaussian (or normal) dis-
tribution. Under these conditions the error distribution function is given by Eqn. 9.6
in which x is the measurement, @ the mean, and o the standard deviation cf. Sect.
8.1.2:

Flo) = —L_ (1) (9.6)
oV2n

When the data are distributed according to this function, the frequency of occur-
rence of data falls according to the square of the deviation. In practice, the sum of
error square (SSD) criterion is also used in cases where it has not been explicitly
established that the errors are normally distributed, and it appears to function quite
well.
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9.1.9
Global fitting of multiple data sets

If different sets of experiments have been carried out under circumstances where
the observations depend on a common set of parameters, then it is sensible to
attempt a global fitting of the data sets to obtain best estimates of the parameters. It
is important here to distinguish clearly between the global and local parameters dis-
cussed above (Sect. 9.1.6). The global parameters are valid for all of the data sets and
are fitted to all of the data, whereas the local parameters may assume different
values for the various data sets. For example, if one were investigating a thermo-
dynamic equilibrium, and monitoring the process using radioactive detection, the
value of the equilibrium constant must be the same under the same conditions,
whereas the specific activities of the reaction participants could well be different. In
global data fitting, it is particularly important to keep the number of parameters as
small as possible. There are two reasons for this. First, the general consideration
that, following the Principle of Parsimony, one should seek to account for experi-
mental data using the smallest number of variables. Secondly, that iterative fitting of
the data becomes much more difficult (in fact, exponentially so) as the number of
variables increases; the process becomes much slower, and there is an increasing
risk that local minima will interfere with the fitting. To keep the number of para-
meters as small as possible, it is important to check, in particular, whether all of the
local parameters are needed. For example, in the general case, it is assumed that all
of the reaction participants contribute to the experimental signal or measurement
(Eqn. 9.1), but if this is not in fact true, then it is better to set the intensity factors of
as many species as possible to 0, and only allow the minimum number of species
necessary to contribute to the signal. For example, in studies based on fluorescence
detection, only species containing a fluorophore need to be assigned intensity fac-
tors.

One difficulty that can arise in global data analysis is that the signal intensities of
different data sets can be very different. If the data are treated equally, this can lead
to the situation that data sets or curves with high intensities completely dominate
those with lower intensities, simply because their error squared parameters (SSD)
are so much larger. The most effective way of dealing with this situation is to weight
the SSDs of the different data sets or curves by a suitable factor, e.g. by the mean
value of the data set, or the by the relevant intensity factor. It should be emphasised
that weighting factors must never be treated as variables in the fitting process.

9.1.10
Introduction to error estimation

One of the most difficult tasks in day-to-day scientific activity is making reliable esti-
mates of the errors and uncertainties in the data. How reliable are my data? How
accurate are the parameters calculated from them? Can I, or should I, exclude parti-
cular models for explaining my data? These are examples of the sort of questions
that need to be asked. We have already discussed the question of judging how well
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models perform in accounting for data; we turn now to the question of assessing
accuracy, on the basis that the model used is an appropriate one. It should be noted
that we are dealing here with statistical errors and the treatment of outliers; sys-
tematic errors cannot be detected by these approaches (cf. Sect. 8.1.2). Three general
strategies can be followed for error estimation.

e Statistical analysis of repeated measurements. If a very large number of data
are available, then it is sensible to consider carrying out a rigorous statistical
analysis. The simplest procedure is to do many replicates of the same experi-
ment (or series of experiments, if more than one data set is needed for the
analysis) and then analyse these independently. This is a very good way of
assessing the error range (determined as standard deviations, maximal range
etc.) of the individual parameters; the problem is the amount of work
involved.

e Analysis of the accuracy of individual measurements. We are concerned here
with the problem of assessing accuracy when the number of available data is
limited. One means of gauging error is to remove individual data points
from the fitting process to get a feel for the ‘robustness’ of the data. In effect,
what this process does is to analyse the data on the assumption that the sin-
gle experiment removed had not been carried out. It is possible in this way to
assess how reliable the data are, and specifically to determine whether the
outcome was highly dependent on the single result, implying that one would
need to be very sure about it. This form of analysis is straightforward and
revealing, and it ought to be a part of every data evaluation.

e Analysis of the shape of error surfaces. To conclude this section, we consider
a more quantitative approach to error estimation. The first step is to estimate
the accuracy of the individual data points; this can either be done by analysis
of the variability of replicate measurements, or from the variation of the fitted
result. From that, one can assess the shape of the error surface in the region
of the minimum. The procedure is straightforward: the square root of the
error, defined as the SSD, is taken as a measure of the quality of the fit. A
maximum allowed error is defined which depends on the reliability of the
individual points, for example, 30 % more than with the best fit, if the points
are scattered by about 30 %. Then each variable (not the SSD as before) is
minimised and also maximised. A further condition is imposed that the sum
of errors squared (SSD) should not increase by more than the fraction
defined above. This method allows good estimates to be made of the different
accuracy of the component variables, and also enables accuracy to be esti-
mated reliably even in complex analyses. Finally, it reveals whether para-
meters are correlated. This is an important matter since it happens often,
and in some extreme cases where parameters are tightly correlated it leads to
situations where individual constants are effectively not defined at all, merely
their products or quotients. Correlations can also occur between global and
local parameters.
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9.1.11

Introduction to numerical integration

Kinetic processes can be described by differential equations; for example, for a rever-
sible bimolecular association reaction:

k1

A+B = AB (9.7)
21

oc

ﬁ = kip0ucp — Ky Cap (9.8)

This equation defines directly the change in concentration of the species AB with
given concentrations of the reactants A and B, and the product AB. This is a differ-
ential equation whose solution is an expression of the form cap=f{t, S, c%). The
solution involves a process of integration, which is often difficult, and sometimes
impossible, at least analytically. In such cases, numerical integration can be used to
simulate the time-dependent variation of c,p in an experiment, enabling theoretical
data to be obtained even for complex systems.

The procedure for numerical integration is as follows. Initial conditions are first
selected: ¢%, ¢2, ¢4 and from this initial state the concentrations of the three compo-
nent species are altered stepwise using ‘fluxes’ defined from the differential equa-
tion given above, with a finite time increment At.

Two different fluxes exist:
e  Fyq,: ‘association’, A+B — AB for which  Fiy=kqycacp - At
e  F,q: ‘dissociation’, AB — A+B for which  Fy; = kyicap - At (9.9)

The concentration changes are defined in terms of these fluxes as follows:

o Acy =-Fpp+Fn

o Acy =-Fyy+ Fn (9.10)
* Acap =—Fu+Fp

from which new concentrations are obtained using the following general expres-
sion, in which ¢; 44 is the ‘old’ concentration of the species (i) before the incremental
change Ac; :

Ci= Ci,old + ACL' (911)
The formulae given in Eqn. 9.9 are prototypes for bimolecular (F;,) and monomo-

lecular (F,;) elementary reactions respectively. By combining these prototype equa-
tions, kinetic schemes of any desired complexity can be described and analysed.
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9.2
Applications

9.2.1
Linear regression

Situations arise very often where data need to be fitted to linear equations. Linear
regression is one of the classical procedures in general regression analysis, and
before the advent of accessible non-linear fitting methods it was the only one that
could be readily used. For n data pairs in the form (x,y) where y is a function of x,
the linear equation of the form y= a + bx that minimises the sum of errors squared

(SSD) is given by:
(322) () - (35) ()
ny x* — (Zx)

intercept a =

Slope b — - (2) <Ezy) (9.12)

ny x? — (Zx)

(Exercise 2: Linear regression)

9.2.2
Michaelis—Menten kinetics

The Michaelis—Menten model shown below is the simplest mechanism for describ-
ing the kinetics of enzyme catalysed reactions:

k k
S+E,§ESE>E+P (9.13)

According to this mechanism, the rate of the reaction depends on the rate con-
stants kyp, ky1, and k. In the simple mechanism shown above and with the
assumption that ES is in a steady state Ky, is defined as Ky, = (kg + k21)/k12. The
dimensions of K,,; are concentration and (time)"1 respectively. The rate of the reac-
tion v (dimension: concentration/time) is given by the expression 9.14 and vy, is
equal to kyg + Cp o The dependence of the reaction rate on substrate concentration
is given by Eqn. 9.14, from which it can be seen that the kj, value is the concentra-
tion of substrate than gives half of the maximum rate vy, =Kkeg: * CErotar - (¢f- €q. 8.22)
c

Cs S
.C =7 9.14
cat E total c K max ¢ KM ( )
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Direct Plot Lineweaver-Burk Plot
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Figure 9-3.  Error propagation in the direct analysis and Lineweaver—Burk
analysis of Michaelis—Menten kinetics.

To evaluate Ky, and k., the rate of reaction is measured as a function of substrate
concentration and the two kinetic parameters are determined using Eqn. 9.14. The
classical method of doing this is by fitting the data to a linearised form of Eqn. 9.14
such as the Lineweaver-Burk plot shown in Eqn. 9.15 below: (cf. eq. 8.24)

=

1 1 1
=1 , M1 (9.15)
V(Cs) Vmax  Keat Cg

From this it follows that a plot of 1/v against 1/cg should give a straight line with
an X-intercept of e K,, and a Y-intercept of 1/k.,. The Lineweaver—Burk analysis
illustrates very clearly the sort of problem that can arise when dealing with line-
arised data. An assumption that underlies simple linear regression following the
procedure discussed in the previous section is that all of the data points have the
same error, or specifically, standard deviation. This assumption is no longer valid
when the data are transformed as is shown in the above diagrams. The diagram on
the left illustrates a series of measurements where the data all have the same error;
on the right, the same data are shown after transformation for Lineweaver—Burk
analysis. It can be seen that the data points at low concentration (i.e. at high values
of 1/v and 1/c,) have a much higher error than the other points, and the situation is
made worse because these inaccurate points are also the ones that exert the most
leverage on the linear regression, and hence on the derived kinetic parameters.

In the attached exercises we discuss three methods for analysing Michaelis—
Menten kinetics:

¢ In the first approach, we examine the rate progress curves at various sub-
strate concentrations, and use linear regression to evaluate initial rates.
These initial rates are then fitted to the Michaelis—Menten equation (Eqn.
9.14) (Exercise 3: Michaelis—Menten kinetics I). This method has the advan-
tage of being simple and robust. It has the disadvantage that the choice of
data points used to obtain initial rates is often arbitrary, and also that the pro-
gress curves at low substrate concentrations show marked curvature because
of substrate depletion.
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¢ A further disadvantage of the above method is that linear regression is per-
formed by the investigator and the least squares fit is carried out subse-
quently on the data derived from this linear regression. Thus the fit is not to
the original raw data, and this is a situation that should be avoided if possible.
This is not the case in the second approach to fit Michaelis—Menten kinetics
(Excercise 7: Michaelis—Menten kinetics II). Here the Michaelis—-Menten ana-
lysis is directly coupled to the linear regression and the fit is performed with
the original data, thereby reducing the risk of operator subjectivity.

¢ The third approach uses an integrated form of Eqn. 9.14, which enables us to
analyse the time dependence of product formation cp(t) directly to evaluate
Ky and kg, directly (Exercise 22: Analysis of Michaelis—Menten kinetics III).
The integration is carried out numerically. This method allows data to be
obtained from a single reaction progress curve, but it too suffers from some
disadvantages, notably that many enzymes tend to lose activity in the course
of an assay, and also that most enzymes show product inhibition. Both of
these effects would cause pronounced curvature, reducing the rate of reaction
and distorting the derived estimates of Kys and kg

(Exercise 3: Michaelis—Menten kinetics I, Exercise 7: Michaelis—Menten kinet-
ics II and Exercise 22: Michaelis-Menten kinetics II1)

9.2.3
Dissociation kinetics

Dissociation reactions of the general form AB — A+ B are monomolecular pro-
cesses, in which the rate of decay of the complex is proportional to its concentration.
The concentration dependence of csp is given by the following differential equation:

deyg

a2t

AB (9.16)

which on integration yields Eqn 9.17 in which c4p(t) is the concentration of com-
plex at any time ¢, and ¢35 is the initial concentration at time t=0:

Cap(t) = 0 &1 (9.17)

Analysis of dissociation processes yields values for the rate constant k,;, whose
dimensions are (time)™". This rate constant is related to the lifetime (7) of the com-
plex AB by the expression 7=(k;)”", and to the halflife (t;,,) by the expression
112 = (In2/ky1).

(Exercise 4: Analysis of dissociation kinetics and Exercise 5: Global fitting of mul-
tiple data sets)
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9.2.4
Binding data

The equilibrium constant for a simple bimolecular association process

Kags
A+B= AB (9.18)

is defined by the expression:

K =_AB (9.19)

This equilibrium constant is expressed as the association constant which has
dimensions (concentration)™, in molar terms M. The dissociation constant Kp;g is
the reciprocal of Ky and has dimensions of concentration (M). The objective of the
following derivation is to obtain an equation of the form cap="f(ca sot, CB 1ot Kass), i1
which ¢; ;. are the total or stoichiometric concentrations of the components i (which
are known), in contrast to the quantity ¢; in Eqn. 9.19, which are the free concentra-
tions of the species in solution, which are not known. An equation of this form will
enable us to calculate theoretical data.

Using the conservation conditions: ca;p;=ca + cap and cp=cp + cap Eqn. 9.19
can be written in the form:

c
K, = AB (9.20)
A (Cator = €ap)(Cppor = Cap)

The only unknown in this equation is the term csp. Expanding and rearranging
Eqn. 9.20 yields the following quadratic equation:

2 1
Cap ~ CaB (CA,tot T Cppor +%< ASS) t o Cppar = 0 (9.21)
The solutions of a quadratic equation of the general form x* + p x + q= 0 are

given by the two roots x; and x;:

2

x,, = —g + (g) . (9.22)

In the present case only the negative square root term is physically meaningful,
so the concentration of AB is given by the following equation:

Cap = “Catot " CBot (9.23)

2
1 1
B Cator T Cpor T %( hs Cator T Coor T %( s
2 2
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Figure 9-4. Typical results of a normal and stoichiometric titration binding analysis.

To determine values of Ky binding data are needed where the total concentra-
tions of either A or B are comparable in magnitude to 1/Ky.
(Exercise 8: Binding equilibria)

9.2.5
Independent identical binding sites

The above model and equations have to be modified if one of the species (say A) has
several binding sites for the other species B. If the binding sites are independent
and do not interact, then binding to each site on A can be described by Eqn. 9.19
given above. Taking all of the binding sites into account yields a hyberbolic binding
curve whose binding equation only differs from Eqn. 9.23 in that for every molecule
of A n binding sites exit such that the total concentration of binding sites is n - ca sor:

2
1 1
Ly + CB tot +%<Ass _ L + CB.tot +%<Ass
2 2

TN Cpsor T CBtor

(9.24)

To obtain accurate estimates of the number of binding sites (1), binding experi-
ments (usually titrations) need to be performed under conditions where the total
concentration of A is relatively high, specifically that ca ;o >> 1/Kas these condi-
tions define a ‘stoichiometric titration’ where effectively all of the B added is bound
until the sites on A are saturated. Titrations under these conditions are insensitive
to the value of the association constant, so to obtain reliable estimates of K,,, data
are needed from titrations at much lower concentrations, where ca ;,;<1/Kag. It
should be clear from this discussion that it is not easy to evaluate both n and Ky
accurately, and it is usually necessary to do a global analysis of several data sets,
obtained under different concentration conditions.

(Exercise 9: Independent identical binding sites I)
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9.2.6
Analysis of simple binding data

The equation given above for n identical, non-interacting binding sites (Eqn. 9.24) is
in principle soluble, although the solution is not straightforward. When binding is
more complex and the sites are of different affinity and interacting, then analytical
solutions cannot be obtained. However, analysis of the binding can be simplified by
carrying out experiments under conditions where one of the interacting partners
(say A) is present at a much lower concentration than the other. The concentration
of the partner in excess (B) is varied, and the proportion of available binding sites on
A which are occupied (cap/caso) 1S measured. The simplification in the analysis
arises because the free concentration of B can be taken to be the same as the stoi-
chiometric concentration (since cap << ¢p). Eqn. 9.20 can be simplified considerably
yielding, after inserting the conservation condition for A and rearrangement:

Cap _ _ CpKas (9.25)
CA‘tot 1+ Cp KASS

9.2.7
Independent non-identical binding sites

Consider a macromolecule A that can bind several molecules of B. In the simplest
case, where A possesses two binding sites for B, there are four possible species, A,
AB, BA and BAB, whose concentrations depend on three binding constants:

K B+AB
AN

B+A+B BAB (9.26)

K2\\ K“//

BA+B

Under conditions where ¢4 ;o; << Cp 01, terms involving the total concentration of
A do not occur in the analysis (as shown above), and it is therefore not possible to
use Eqn. 9.24 to analyse the stoichiometry of the binding equilibrium. However,
even under these experimental conditions, it is possible to obtain information about
the number of binding sites, provided the binding constants of the two processes
are sufficiently different in magnitude.

(Exercise 10: Independent binding sites II)

Information about the minimum number of binding sites for B on the macromo-
lecular species A can also be obtained if a signal can be measured which specifically
monitors the concentration of A fully saturated with B (BAB in our scheme). For
example, the enzyme DNA polymerase has two binding sites for metal ions, and
both need to be occupied for the enzyme to be active. If it is assumed that the two

337



338 | 9 Quantitative Analysis of Biochemical Data

sites are independent, and hence K; = K, and K; = K in Eqn. 9.26, the following
expression can be derived for the occupancy of the two sites (designated 1 & 2):

9. — ‘aB _ cp K
Ve 146K
c K
. — BA _ "B (9.27)

, = =
Catr 11K

and the proportion of A where both sites are occupied is given by:

_ Bap _ 0

12 —

0 -6 (9.17)

1 2

CA,tot

In the special case of identical binding sites (Kas1 = Kass2), the dependence of
0, on the total concentration of A (ca ) is weakly sigmoidal at low concentrations
of B, and not hyperbolic; this is a direct indication that A can bind more than one B.
The total concentration of bound ligand (= 6,+6,) follows a hyberbolic dependence,
as expected since the sites are independent.

(Exercise 11: Independent binding sites III)

9.2.8
Cooperative binding

In the previous section, we discussed the case where the various binding sites were
non-interacting; in this section we consider the other limiting case where A is either
free, or fully occupied by B as the species AB,, and the intermediate states AB, AB,,
.., AB, ; and AB,,_; are not populated. This behaviour arises because of positive
interactions between the sites resulting in cooperative binding; according to Eqn.
9.26, cooperative binding occurs when K3 >> K; and Ky >> K;. The model considered
here represents ‘all or none’ behaviour, which is not just a theoretical model, but
one which does actually occur with biopolymers.
In cooperative binding following the ‘all or none’ model

app
Ass
A+nB = AB, (9.29)

the association constant is defined by the expression:

Cap

Kass = L (9.30)

Introducing the conservation condition for A with the further assumption that
cap << cp yields the following equation:
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n
G
CaB, (CBJot) K

n

o =
Aot 1 4 (CBM) LK

(9.31)

This equation describes a sigmoidal binding curve, where the degree of sigmoidal
behaviour depends on the magnitude of n. The intrinsic binding constant of B for A
(Kass) can be determined from the apparent binding constant (KZI: f ) using the follow-
ing relationship:

n

K = (K

s = (Kass) (9.32)

(Exercise 12: Cooperative binding)

9.2.9
Association kinetics

The rate of a bimolecular association process A+B — AB is given by Eqn. 9.33:

d
Ay 0y Gy (9.33)

The rate constants for bimolecular association reactions have dimensions (con-
centration)™ (time)™'. Although this differential equation has a very simple form, it
does not have a very straightforward analytical solution. For this reason we use
numerical integration methods to simulate theoretical data. This is a general
approach that can be used to obtain solutions of complex kinetic processes.
Although it is always easy to formulate differential equations like Eqn. 9.33, which
express the time dependence of the various concentrations, solving the equations is
another matter; it is often impossible to obtain explicit analytical solutions of the
form c=f{t) from which concentrations of the reaction participants can be directly
determined. What can, however, be evaluated is the concentration change (or ‘flux’)
for a species in a given time interval At under given conditions:
=k

F 1 Cat) - cp(t) - At (9.34)

12

The solution can be obtained by proceeding stepwise (using small values of At)
and calculating cap(t) using the expression:

cyp(t+AL) =c,p(t) + F), (9.35)

This procedure is called numerical integration.
If we consider the following equilibrium:
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k
E+S= ES (9.36)
kZl

There are two different fluxes:

e [y E+S—ES forwhich Fiy=kiycpcs - At
L4 F21Z ES—E+S for which F21 = k21 CEs * At (937)

The concentration changes are defined as follows:

L4 AC5=—F12+ F21
L4 ACE=—F12+ FZl (938)
o Acgs=—Fn+Fp

from which new concentrations can be derived using the following expression in
which, as before, ¢; 54 is the old concentration of the species i before the new incre-
ment Ac;:

Ci=Ciold + Ac; (9.39)

(Exercise 17; Simulation of association kinetics using numerical integration, and
Exercise 18: Analysis of association kinetics)

9.2.10
Pre-steady state kinetics

Enzyme reactions proceed, in general, via several intermediate states. A simple
model incorporating multiple states is shown below: enzyme and substrate associate
to form an enzyme-substrate complex, which undergoes a conformational change to
ES* before breaking down into enzyme and product.

k1p k3 ¥ keat
E+S 2 s 2 Es*™ pyp (9.40)
k21 k33

Since the concentrations of all the intermediate states are constant under steady
state conditions, all of these states can, at least formally, be incorporated into a sin-
gle kinetic intermediate state. It follows that under steady state conditions, kinetic
data can provide no information about the existence and kinetic properties of inter-
mediate enzyme-substrate complexes. An understanding of the mechanism of an
enzyme catalysed reaction needs information about these intermediate states, which
is therefore usually obtained from kinetic studies before steady state has been estab-
lished, usually by rapid reaction methods. Comprehensive coverage of the techni-
ques and methods of analysis of pre-steady state kinetics is beyond the scope of this
chapter, but we discuss here methods for analysing simple exponential processes.
Two approaches are used. In the first, the observed signal S(t) is fitted to an expo-
nential function of the following form:
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t
S(t) = Ae_<A) , for decreasing signals (9.41)

t
S(t)=A (1 — ei(A) ) , for increasing signals

A is the amplitude of the reaction and 7 the time constant, with the dimension of
(time). If the kinetic mechanism of the observed process is known then rate con-
stants can be derived from the time constant. For example, for a simple dissociation
process, such as the back reaction in Eqn. 9.36 but without the forward association
process, the rate constant (k1) is given by 1/7. In this case, the value of 7 is indepen-
dent of reactant concentration.

If both forward and back reactions can take place, then 1/t depends on both ki,
und k,;. In the special case that the concentration of S is much greater than that of
E, then the association rate constant is given by the equation 1/7 = ki,¢s + k1. Values
of the two rate constants can be determined from the dependence of 7 on the sub-
strate concentration cg; a linear regression of 1/t vs. cg yields kq; as the slope of the
plot and k;; as the Y intercept. For this analysis to be valid it is important to be sure
that the observed reaction represents a single exponential process. If the reaction
involves more than one exponential processes, then more complex models need to
be considered, since the minimal number of reaction steps is given by the number
of exponential processes.

(Exercise 14: Fitting rapid reaction data to exponential functions and Exercise 15:
Error estimates for Exercise 14)

This method of analysis has several disadvantages, one of which is that intermedi-
ate parameters (7) are evaluated from the data which then form the basis for global
fitting of the data; consequently, the global fitting is not carried out on the raw data
directly. A second drawback is that the predictive power of this analysis as regards
mechanism is rather limited.

An alternative method is to use direct integration of the differential equations
that describe the mechanism of the reaction. An advantage of this procedure is that
the fitting is carried out directly to the raw data; a disadvantage is that numerical
integration has to be used, since in most cases, particularly those of any kinetic com-
plexity, the resulting systems of differential equations cannnot be integrated analyti-
cally.

(Exercise 20: Simulation of a complex enzyme catalysed reaction and Exercise 21:
Analysis of the kinetics of a complex enzyme catalysed reaction)

9.2.11
pH dependence of enzyme catalysed reactions

The rate of an enzyme catalysed reaction is not only dependent on the concentra-
tions of enzyme and substrate, but also on the conditions of the reaction. An impor-
tant parameter affecting rate is the pH, defined as —log,oc(H"), and it is very com-
mon that enzymes have a pH optimum. pH can have several effects: 1) protons may
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participate in the catalytic reaction itself; 2) the protonation state of substrates and
co-substrates may alter, with consequent effects on rate; 3) the protonation state of
the enzyme itself may alter. In our example here, we deal with the last case. Proteins
contain many groups that can undergo protonation-deprotonation reactions, includ-
ing the N-terminal amino and C-terminal carboxyl groups and the side chains of the
following amino acids: Asp, Glu, His, Cys, Tyr, Lys and Arg. The state of protonation
of a group is conveniently represented by its pK, value, which is the negative decadic
logarithm of the dissociation constant for the protonation reaction:
c(H )e(A)

* K= c(HA)

(9.42)

e pK, =—log K,

a

The proportions of a group A in the protonated 6(HA) and deprotonated 6(A")
states can be evaluated using Eqn. 9.42:

-y = 10 Pk
bla7) = - TR 9.43
) c(A,,) c(HT)+K, 1071 41077 (9.43)

O(HA) =1— 0(A")

The following questions are important for analysing the pH dependence of
enzyme catalysed reactions:

¢ how many protonation reactions participate?
e which protonation state must the pH-sensitive groups on the enzyme be in?
e what are the pK, values of these groups?

We consider a general model to analyse the protonation equilibria. If the enzyme
possesses n groups that can participate in protonation-deprotonation equilibria,
then in principle 2" different species can be formed. For example, if n= 3, all three
groups can be protonated (HHH), two (HH-, H-H and -HH), one (H-, -H- and
—H) or none (—). The probability (P) of occurrence of these species, and hence their
relative concentrations, depends on the product of the probabilities that each indivi-
dual group is in a particular state:

e P(HHH) = P(group 1 is protonated) x P(group 2 is protonated) x P(group 3
is protonated)

e P(HH-) = P(group 1 is protonated) x P(group 2 is protonated) x P(group 3
is unprotonated)

e etc

The probability of a group being in a particular protonation state is given by Eqn.
9.43, and combination of these probabilities multiplied by the total concentration of
enzyme yields the concentrations of the different species.
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The turnover rate is used as an ‘effect’ or signal to monitor the protonation, and
thus the observed rates can be used to analyse the thermodynamic protonation equi-
libria. In the general case, every species would be assigned an intensity factor, and
the signal (observed rate of the reaction) would be the sum of all of these factors.
For our analysis, we make the simplifying assumption that only one species is cata-
lytically active.

(Exercise 16: pH dependence of enzyme catalysed reactions)

9.2.12
Analysis of competition experiments

Competition experiments are widely used in the biosciences, particularly in studies
of binding interactions. A simple example is shown in Eqn. 9.44.

K

23
AB+C= A+B+C= A+AC (9.44)
12

In this example, the equilibrium between A, B and AB is affected by the addition
of C. The popularity of the competition technique is due to the fact that it can be
used to investigate interactions (in this case the binding of A + C = AC) without
having to detect the participating species (free C and the complex AC). The method
relies on using one interaction (here A + B = AB) as a reporter to monitor the other.
This assumes, of course, that a suitable signal is available to follow the formation of
AB. The diagrams below illustrate (left) the formation of AB, and (right) the effect of
adding C to a system containing A, B and AB: on addition of C the species AC is
formed at the expense of AB whose concentration falls, with a concomitant decrease
in the observed signal.

It is also a desirable feature of competition experiments that they allow more pre-
cise comparison of the binding of different species (in this case B and C) to a com-
mon target (A) than is possible in separate binding experiments. It is also possible
to use this approach with a single experimental set-up to test the binding of many
different ligands to A, on the basis that these ligands all compete with B for the
same binding site.

The analysis of coupled equilibria is the most complex problem that is considered
in this chapter. It may seem surprising that such apparently straightforward systems
like those shown in Eqns. 9.26 and 9.44 should present such great difficulties in
analysis, the more so because it is a trivial matter to calculate the equilibrium con-
stants, if the concentrations of the various species are known. However, that situa-
tion arises very rarely for several reasons:

e  in most investigations only some of the species can be detected

e it is usually the case that only one ‘signal’ is measured, whose dependence
on the concentration of reaction participants may be complex and must be
derived from the model

e experimental error
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A+B=AR AB+C=4C+B
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Figure 9-5. Indirect analysis of molecular interaction of A and C by competition.

Proceeding as we have done before with complex systems, we calculate theoretical
data to deal with these systems. Since straightforward analytical solutions are not
available, even for such simple cases as Eqn. 9.44, numerical methods are used to
simulate solutions of the equilibria.

(Exercise 23: Analysis of competitive binding equilibria)

9.3
Guide to the CD

e The file ‘chapter 9.pdf’ contains the text of chapter 9.

e The file ‘Introduction and theory.pdf’ contains the Introduction.

e The file ‘Guide to the exercises.pdf’ contains advice about solutions to the
exercises.

¢ The directory ‘Solutions’ contains programmed worksheets with solutions for
all of the exercises.

e The file ‘readme.xls’ in the ‘Solutions’ directory describes the colour coding
used in the cells in the accompanying Excel files.
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Base units

physical quantity name of unit abbreviation

lenth metre m

mass kilogramm kg

time second s

current ampere A

temperature kelvin K

luminous intensity candela cd

amount of substance mole mol

Derived Units

physical quantity definition name of unit abbreviation
area square metre m?

volume cubic metre m?

density mass/volume kg/m?
specific volume volume/mass m?*/kg
molar mass mass/amount of substance kg/mol
concentration amount of substance/volume mol/m>
molar concentration molarity (M) 1M=1mol/l"
frequency events/time hertz 1Hz=1/s
force newton 1N=1kgm/s®
pressure force/area pascal 1Pa=1N/m*
energy joule 1J=1Nm
power energy/time watt 1W=1]/s
dynamic viscosity Pas

electric potential volt \

electric conductance siemens AV
electric resistance ohm 1Q2=1V/A
electric charge current - time coulomb 1C=1A/s
electric capacity charge/voltage farad (F) C/v
radioactivity events/time bequerel (Bq) 1/s
enzyme activity katal (kat) mol/s

* The litre is defined as 10~ m® = 1 dm?. This book uses the symbol 1 in
preference to the alternative allowed symbol L.
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Appendix II: Conversions into SI-Units

Force
n (Newton) dyne
1N 1 1.10°
1 dyne 1-10° 1
Pressure
Pa bar atm Torr
1Pa (pascal) 1 107 0.986923 - 10~ 7.50062 - 10~
1bar (10° dyn - cm™ 10° 1 0.986923 7.50062 - 10°
1atm 1.01325-10°  1.01325 1 760
1 Torr 1.333224 - 10 1.333224-107° 1.315789-10° 1
Energy
J kWh keal MeV
1J (joule) 1 2.778 - 107 2.388 107" 6.242 10"
1 kWh (kilowatt hour) 3.6-10° 1 8.598 - 107 2.247 - 10"
1 kcal (kilocalorie) 4.187 - 10° 1.163- 107 1 2.614 - 10"
1 MeV (mega electron volt) 1.602-10™°  4.450-10%°  3.826.1077 1




