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9.4 Preface

The data analysis exercises on this CD are based on the use of Excel spreadsheets. Functional sheets
can be programmed in very many different forms, and it is useful to define certain rules or guidelines
which will help the reader to use them more effectively and to locate potential errors. These guidelines
are usually contained in the instructions for the exercises, and it is important that they should be
followed carefully, even by users who are familiar with the specific data handling problem. The test
data for the analyses are in the Excel file “Test Data.xls” on this CD. Pre-programmed data
spreadsheets are in the folder “Solutions” stored under “Exercise XYZ.xls”. These files can be used to

track down errors in user programmed files, or directly to analyse experimental data.
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9.5 Introduction to MS-Excel

Excel is a program that carries out mathematical operations in a spreadsheet format. When the
program is opened, a spreadsheet appears which is composed of many cells organised in columns and
rows; columns are denoted by letters A,B,C etc. and rows by numbers 1,2,3, etc. A cell is uniquely
identified by specifying both, so E6 is the cell at the junction of column E and row 6. Cells can contain
text, numbers or formulae. A cell containing a formula uses the values contained in other specified
cells to calculate the value in its own cell. It should be noted that although the cell actually contains a
formula, by default only the result is displayed. The use of formulae in this way enables mathematical
operations to be carried out simultaneously on multiple data elements. If the number entered in a cell

which is specified by a formula is altered, then the new number is automatically used in the Excel
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calculation. The diagram below illustrates some of the important elements in an Excel spreadsheet (as

shown here in the layout of Excel 97):
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To enter data into a cell move the cursor to the cell using the mouse or arrow keys, left-click to

highlight, enter the number or formula and complete the operation by pressing the ENTER key.

e To enter complex functions, highlight the cell, then left-click with the mouse on the formula bar,
and enter formulae or text, or alternatively edit the existing contents of the cell.

e Formulae can either be entered directly as text, or by selecting the desired cells using the mouse.
For example, if one wished to insert the quantity =A4+1 into cell C4 (all formulae begin with the =
sign), first click on C4, type “=", click on A4, type “+1” and press the ENTER key.

o “=B4+C4” written in A4 means that Excel will calculate the sum of the numbers in cells B4 and C4
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and will place the result in cell A4. This operation is done easily: click on A4, type , click on
B4, type “+” click on C4 and then press ENTER.

e Relative cell references: on normal entering of a formula, the cell references are defined by their
relative position on the spreadsheet. For example, if the expression “=B4+1” is placed in cell A4,

this means that Excel takes the value in the neighbouring cell on the right and adds one to it. If this



cell is copied to AS, the formula is changed by Excel to “B5+1”, and similarly copying to B4 would
change the formula to “C4+1”.

o A fixed cell reference can be specified using the $ symbol, and in this case the cell reference is not
altered on copying. For example the expression “=$A$4+5” would always take the number in cell
A4 and add 5 to it. Fixed cell references can also be set up using <F4>, either by pressing the <F4>
key or clicking on <F4> after entering the formula. Using a fixed cell reference for a number is
easier as changing the number in the cell means that the whole spreadsheet can be changed
immediately.

¢ Fixed and relative cell references can be combined, for example “=$A5+1” entered in A4 would be
changed to “=$A6+1” on copying to BS. The <F4> function can be used to alternate between fixed
and relative cell references.

e Regions of the spreadsheet can be specified as follows: “A2:C4” indicates a continuous region from
A2 to C4. “A2:A6;C2:C6” indicates two separate regions from A2 to A6 and from C2 to C6.
Regions can either be entered directly or highlighted using a mouse. Separated regions can be
highlighted with a mouse by pressing the Ctrl key.

e In order to keep the structure of the spreadsheet clear, values of the independent variable (x) are
always entered as the first column. Directly above these values there is a column label. The
corresponding y values are placed in neighbouring columns, also labelled. All of the values in a
particular row relate to the x value in the first column of that row.

e A file comprises (in general) several spreadsheets which can be accessed by clicking on the Sheet

Tab.

Highlighting cells

Click the mouse on the corner of a region that is to be highlighted, hold down the left button and drag
over the desired region. Cells can also be highlighted using SHIFT and «—, T, — or . Separated areas
are highlighted as follows: highlight the first area as described above, then press the Ctrl key and
highlight further areas by left-clicking with the mouse.

Copying cells

To copy a formula from one cell to another cell in column A, highlight the formula and then press
Ctrl-C (“C” stands for copy, and the formula is now in the clipboard). Press shift, and usingl, <, T
and — enlarge the highlighting over all the cells that should contain the formula. End the operation by
pressing ENTER.



There are at least three ways of making entries in Excel: keyboard, combined keyboard and mouse,
and mouse. The example just given illustrates how to copy a formula by keyboard operations.
Alternatively, the contents of a cell can be copied to the clipboard (using Ctrl-C or Shift-Del, or using
the mouse and the “Edit/Copy” command in the main menu), and then highlight the desired area and
press ENTER. The same can be achieved by clicking on a cell, and then on the heavy corner in the cell
frame, and then enlarge the highlighted area by left clicking and dragging the mouse. In what follows,

only one mode of operation is described, chiefly using the keyboard.

Creating graphs and diagrams

e Graphs and diagrams can be created as follows: first the appropriate data cells are highlighted,
preferably with the relevant title, and then click on the Chart Wizard and select the desired
graphics, for example: XY (scatter) with unsmoothed lines, complete by selecting Finish.

e To remove the grid lines from the graph, click on a line and press Delete.

e To alter the grey background of the plot, double-click on the surface and from the resulting Menu
select for Border “black” and Area “none”.

e To change the axis labels, click on the diagram and select “Chart/Options”.

e We adopt the convention here that experimental data are represented by points without lines and
fitted results are lines without points. To change the appearance of the fitted curves, double-click on
a curve and select “black” for Line, and “none” for Marker. For the data points select “none” for
Line and “black” for Marker.

e To present the data on a logarithmic X-axis, double-click on the X-axis, select “Scaling” and then
“Logarithmic*.

e To generate a bar diagram, highlight the data, click on the “Chart Wizard* and select “Column* and
then “Finish*.

Use of the Solver Module
The Solver module can be used to optimise values in specific cells as a result of varying the values in
other cells. We use it chiefly to minimise the sum of errors squared by variation of the parameters of a

model. To do this click on “Solver in the “Tools” menu. The following window appears:
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e The Target Cell is the value to be minimised. To select D4 for example either enter “D4” in the
box, or click on the “Set Target Cell* box in the Solver window, and then click on the cell D4.

e Select “Min”.

e “By changing cells* indicates the cells whose values are to be varied. For example, to select cells
B1 and B2 either enter “B1;B2” (or “B1:B2”) into the box, or click on the box then click with the
mouse on B1 hold down the left button and drag to B2.

Click on “Options‘:

Solver Options HE

Max Time: W seconds
Iterations: 100 Cancel
Precision: 0.000001 Load Madel, ..
Tolerance: 5 % Save Model,..
Conyergence: 0.001 Help

[ Assume Linear Madel v ise Automatic Scalings

[ Assume Mon-Negative [ Show Iteration Results
Estimates Derivatives Search

* Tangent f* Eorward f* Mewton
" Ouadratic " Central " Conjugate

e “Use Automatic Scaling* must be selected.

e “Precision is set to 0.00000001, “Convergence* to 0.000001.

e The other fields are left at default values. If minimisation does not work, try selecting “Quadratic”,
“Central” and “Conjugate”

e C(lick on OK to return to the previous window.

e Select “Solve®.



e [f the minimisation is successful select OK and the result appears on the screen. If an error

message appears select Cancel.

Checking the installation of MS-Office

The Solver option of MS-Excel used on this CD is located in the “Tools” menu. Unfortunately, Solver
is not a standard option in MS Office setup, and it may therefore not be available or activated on some
computers. If there is no “Solver” entry in the Tools menu of your computer, select “Tools/Add-Ins®.
Scroll down the list of available Add-Ins in the window, click on the “Solver Add-In" and finish with
OK.

Add-Ins

Add-Ins available:

W Lookup Wizard =
I Microsoft AccessLinks Add-In

W Microsoft Bookshelf Integration

™ M5 Query Add-in for Excel 5 Compatibi
[~ ODBC Add-In Browse...
W Report Manager

W Solver Add-In

™ Template Utilities

M Template Wizard with Data Tracking

I Update Add-in Links

M web Form \Wizard -

(0]:4

Cancel

il

Conditional Sum YWizard

Helps you create formulas to sum selected data in lists,

If there is no “Solver Add-In” entry in the Add-Ins window, or if “Solver” still does not appear in the
“Tools” menu, re-install Excel in the full version form the MS-Office CD. If you use a different Excel

version also consult the online help.

Exercise 1: Introduction to the use of MS-Excel.
Set up a spreadsheet in which the equation y=x’-50x-25 is calculated in the range x=0 to x=10 with

intervals of 0.5, and present the results in graphical form.
Objective of the exercise: to gain experience of using MS-Excel

Instructions:

e Open an empty spreadsheet.

e In box Al enter “X-values®, in B1 “Y-values®.
e In A2 enter the value “0”.

e In A3 enter the expression “=A2+0.5%.
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Move to row 3 of column A (A3), and enter “=%, use the up-arrow 1 to move the cursor to cell A2
enter “0.5” and press ENTER.

To copy the formula to the other cells in column A, return to cell A3 press Ctrl-C (“C” for copy, to
place the formula in the clipboard). Press Shift and extend the highlighting using the | to row 22
and press ENTER

Ce__9

The y-values are entered in row B. Move to B2 and enter “=", move the cursor to cell A2 using the
<« arrow, enter the expression ”3-50*", move the cursor again to A2 with the <~ and enter “-25”,
complete by pressing ENTER. Note that the “-symbol does not appear on the screen until the next
symbol is entered.

This has entered the formula A273+50*A2-25 into cell B2. This formula is copied to the other cells
of the rows up to cell B22 using Ctrl-C as described above, and this generates the desired set of
data.

Create a graphics plot of the data with column A as x-values and column B as y-values. To do this,

highlight the data from A1l to B22, click on Chart Wizard, select “Scatter(XY)”, and chose the plot

that shows only lines.



The result should look something like the following:

i Exercise 1 xls
A, B C D E F e

1 |x-values y-vallles

2 0 25

3 0.5 49 875 500

4 1 74

5 15 -96 675 500 1

6 2 -7 400 -

7 2.5 134 375 —

8 3 -148 ]

g 35  -157.125 g 207

10 4 -161 = 100 -

11 4.5 -158.875 . | | | | |

12 5 -150 2 4 5 A m P

13 5.5 -133 625 -100 1

14 B -109 200

15 6.5 -75.375 « values

16 7 -32

17 7.5 21.875

18 g 87

19 8.5 164125

20 g 254

21 9.5 357.375 | _I |
22 10 475 _
4[4[ p (M} x"3-50x-25 / | 4] | [

Exercise 2: Linear Regression.

In this example we shall determine the initial rate of an enzyme reaction using linear regression. The
aim of the exercise is to programme a spreadsheet that will carry out a linear regression, and enable the
results to be shown graphically. We shall also show how outliers can be treated without loosing the

original data.

Objectives of the exercise: manipulations with MS-Excel functions, treatment of outliers,

programming a linear regression.

Useful background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)

e Linear regression (Sect. 9.2.1)



Instructions:

Open a new table.

The first row contains the titles for the two columns: “t [min]” for the x-values in column 1, and “%
product” as the readings in column 2.

Column 3 contains a copy of the data in column 2 which can be edited without deleting the original
data.

Ce__9

Go to the second row of column 3 (C2), enter and use the left arrow “<—” to move the cursor to
cell B2 and press ENTER.

To copy the formula to the other cells in column C, leave the cursor in C2 and press Ctrl-C (the
formula is now held on the clipboard). Press Shift and enlarge the highlighted region with the down
arrow “J”, and complete the operation by pressing ENTER.

The Excel functions “intercept” and “slope” are now used.

The intercept function: move the cursor to C13 and enter “=intercept(”; highlight the y-values with
the mouse (column C, without a title), enter ““;”, highlight the x-values (column A, without a title),
and then press ENTER.

The slope function: move the cursor to C14, enter “=slope(” highlight the y-values with the mouse,
enter “;”, highlight x-values, and press ENTER. This slope corresponds to the initial rate of the
reaction (v°) expressed in %product/min.

We now calculate the predicted data for the linear regression in column D: to do this, move the

C__9

cursor to D2, enter , click with the mouse on C10, press <F4>, “+” then click with the mouse on
A2, enter “*”, click with the mouse on C11, press <F4> and then ENTER.

Copy the formula into the other cells in column D (using Ctrl=C, see above).

Create a plot of the data points and the linear fit: first highlight the results to be plotted by moving
the cursor to Al, and highlighting cells to B8, press Ctrl and then highlight D1 to D8. Click on
Chart Wizard, and then proceed as described above in Creating graphics.

Data points that deviate significantly from the linear fit can be deleted from column C. This is often

the case for data points occurring at the end of the set of data, where deviations from the linear

initial rate can become pronounced.

The result should look like the following. In this example the final data point is excluded from the

linear regression.

10



&l Exercise 2.xls =13

A B C D E F G H | z

| 1 [t[min] % product for LR LR
2 5 1.45 145 0.70851106 35
ER 10 0.77 0.77 1.46906158
4| 20 3.98 3.98 299016262 | Y7
| 5 30 3.72 372 451126366 25 | .
| 6 45 5.98 508 6.79291522
| 7 80 10.04 10.04  9.07456678 20 1 + % product
Ex 90 12.67 12,67 13.6378699 15 | —IR
9 120 1864 1864  18.201173
|10 150 22.9 22.9 22.7644761 10 1 Zsichnungsféche |
|11 200 256 30.3609813 5 ]
|12
| 13 | s-intercept -0.05203948 0 . . =
| 14 | v [% prod/min]  0.1521101] _| 0 100 200 300
| 15

16 -
M4 M0 |« | I

We must now convert the initial rate into turnovers/min (v’=v/Cg tot).

First, we need to make place at the top of the spreadsheet. Click on the row heading of row 1 and
highlight rows 1-3. Right click the mouse on one of the row headings and select “insert cells”.

In the new A1 cell, insert “c(E) [nM]”, and in A2 “c(S) [uM]”

The numerical values are inserted in B1 and B2.

In A19 the term “v’ [1/min]” is entered.

Since data are entered in %product and the time increment is min, the slope of the linear regression
gives the initial rate in %product/min. This has to be divided by 100, multiplied by ¢(S) (in uM),
multiplied by 1000 and finally divided by c(E) (in nM) to yield the number of turnovers per enzyme
molecule per minute (v’).

This is done as follows: in cell B19 place “=" then click on C14, type “/100*”, click on B2 and

insert </, click on B1 and enter “*1000”. The evaluated turnover rate is now in B19

200
The result is rounded to 2 decimal places by clicking twice on the *** —symbol.

11



2l Exercise 2.xls _[O] x|

A B c B E F G H | =
|1 [o(E) [nM]
[ 2 [o(s) [um] 0.1 a5
3
| 4 |t [min] % product for LR LR 30 1
5 | 5 145 145 070851106 | . | .
| 6 | 10 0.77 077 146906158
|7 20 3.98 3.98 299016262 20 A * % product
g 30 3.72 372 451126366
9 | 45 5.98 598 679291522 | 151 —Lk
| 10| 50 10.04 10.04| 9.07456678)| 44
11 80 12.67 12.67 13.6378699
| 12| 120 18.64 1864 18201173 54
| 13 | 150 22.9 22.9 227644761
14 200 2586 30.3699813 s ' '
| 15 | ] 100 200 300
| 16 | w-intercept -0.05203946
17| v [Sprodimin] 01521101
18 | — L
19 v [1/min] 0.08
|<m2 A | <] | Il
Result

The fitted data give an initial turnover rate of 0.08 turnovers per enzyme molecule per min.

Exercise 3: Michaelis-Menten Kinetics I
Evaluate the specimen data by linear regression and fitting the initial rates using the Michaelis-Menten
Model. Carry out an error analysis by systematic removal of individual data points in the Michaelis-

Menten fitting.

Objectives of the exercise: MS-Excel programming using multiple data sheets; non-linear regression
using the MS-Excel Solver module; programming a data table for Michaelis-Menten kinetics; error

estimation.

Exercise 3 is linked to Exercise 2.

Background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)
e Introduction to error estimation (Sect. 9.1.10)

e Michaelis-Menten kinetics (Sect. 9.2.2)

Instructions
Firstly, carry out linear regressions on the five kinetic data sets, each on a separate Excel spreadsheet.
e One spreadsheet is used for each substrate concentration, and together these spreadsheets form a
file.
12



To copy an already existing spreadsheet, right click with the mouse on the sheet tab at the bottom,
select Move/Copy, click on Copy, then OK. Alternatively, left click and hold down on the sheet tab,
press Ctrl, move the mouse to right and release.

A single click on the sheet tab changes between the various spreadsheets in a file. The “Window”
menu can be used to change between the various open files.

It is helpful to use the substrate concentrations as the spreadsheet name. To do this, double click on

the sheet tab and enter the new name.

For the Michaelis-Menten evaluation, change to a new spreadsheet that we call “MMK””:

There are only two parameters: Ky, und k.

In cell Al enter “K,, [uM]”, in A2 “keqt [1/min]”. Initial values of 2 are entered into B1 und B2.

The headings of the data files are entered into row 5: “c(S) [uM]”, “v’ [1/min]”, “v’,theo”, “error®”.
v’ again is defined as v/Cg tor.

From row 6 onwards, the substrate concentrations are entered into column A, and the initial
reaction rates from the linear regressions in column B (with units 1/min).

The linear regressions and the evaluation are linked online: enter “=", left click on the sheet tab
containing the relevant linear regression, and click on the cell containing the result (the value
k/min), and press ENTER. When c(S)=0.1 uM the value shown is “='0.1'"B19* (sheet 0.1, cell
B19). Now, when the linear regression changes, the values in the Michaelis-Menten table alter
correspondingly.

Column C contains the theoretical data, i.e. the calculated values ke, * cs/[Ki + ¢s]. To calculate
this, the following expression is entered into C6: “=$B$2*A6/(A6+$B$1)”. This formula can either
be typed in directly, or using the mouse and <F4> as described above, followed by copying the
formula into the other cells of column C.

Column D contains the squares of the deviations between the experimentally measured and
calculated values, entered as: “=(B6-C6)"2”. (Note that the *-symbol does not appear until the next
character is entered.)

In cell D4 we enter the sum of deviations squared. To do this, the Excel function “sum” is used.
Enter in D4: “=sum(” + then highlight the individual errors with the mouse, and press ENTER. This
is the value that we will shortly minimise in the fitting step.

Graphical presentation: highlight the area A5-C10, click on the Chart Wizard, and select
XY (Scatter), etc., as before. The plot should show the data points as symbols without line, and the
theoretical values a line without symbol. This is done by double-clicking on the plot, then double-

click the relevant curve and select as appropriate from the menu.
13



So far, the results should look something like the following:

&l Exercise 3.xls =13

A, | =
1 |Kn [uM] o
2 ke [1/MN]
el 16
5 c(S) [HM] v exp [14min] v, theo error? 1.2 1
6 0 0 14
7 0.1 0.08 00952381  0.000367989 0a 4 + .exp [1/min]
8 0.5 0.29 04 0012383819 06 Ul
g 1 043 0.66666667  0.054600111 0l /e
10 2 0.59 1 0166182571 0 ] —
11 5 077 142857143  0.430643682 '
12 0
13 0
14
B a5 w s MMK 01405 /172757 [4] | ol

e We are now in a position to do the data fitting. Call up Solver from the tools menu, and minimise

the value of D4 as B1 and B2 are varied. The result of the minimisation should look as follows,

with the data fitting well to the theoretical curve.

&l Exercise 3.xls [=1E3

=

v exp [1/min] ', theo

0.08
0.29
043
0.59
077

0
0.07414977
0.28261005
043573501
0.58764401
0.76911519

error?

3.63011E-06
3.72996E-05
7.48029E-06
2.78197E-05
1.03798E-05

09
0.8 A
0.7 A
0.6 A
0.5 A
0.4 1
0.3 A
0.2
0.1 4

+ v exp [1/min]

¥ theo

A,
1 |Km [M]
2 | beq [14min]
3
il
5 |elS) [WuM]
5] 0
7 01
8 0.5
e 1
10 2
11 5
12
13
14
I{Ai b MME 0108 £1482458
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e To remove points from the fitting process, the relevant error squared data point is simply deleted

from the co

lumn.

e To restore the error squared point to the fitting, re-enter the formula in the respective cell.

e The error analysis is carried out, by removing one error squared term at a time from the data in

column D and repeating the minimisation step. The system carries out the fitting omitting the

selected point, and we obtain new values for the solution. On omitting the errors squared term for

the last data point, we obtain the following values for Ky, (1.10 pM) and ke, (0.92 min™), and we



use the deviation of these values from the values determined from the other of the data points as an

estimate of the error.

Result
The best values of the parameters to fit the data are: K,, = 1.18 (£0.08) uM and k., = 0.95 (£0.03)

min™.

Exercise 4: Determine the apparent first order rate constant of dissociation kinetics

Objective of the exercise: Evaluation of the kinetics of a dissociation process. Establishing the
robustness and accuracy of the fit by examining the effect on parameter estimates of omitting
individual points from the fitting process. Programming a spreadsheet for dissociation kinetics. Error

estimation.

Background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)
e Linear regression (Sect. 9.2.1)

e Dissociation kinetics (Sect. 9.2.3)

Instructions

e We make the assumption that only the species AB contributes to the measured signal, and that the
there is a constant background (BL).

e The first three rows contain the parameters: Al: “k.;”, A2: “BL” and A3: “f”.

e In cells B1-B3 we enter 1 as initial values for k_;, BL and f.

e Row 6 contains the titles of the data sets: “t [min]”, “CPM”, “CPM,theo”, “error®”.

e From Row 7 onwards, the times are entered in column A, and the measured data in column B.

e Column C contains the theoretical data: enter “=$B$2+$B$3*exp(-A7*$B$1)”.

e Column D contains the errors squared. The sum of errors squared is placed in cell D5.

e Define the graphics plot: highlight columns A, B und C from row 6, then select Scatter(XY) from
the Chart Wizard.

e Minimise the value of the sum of error squared in D5 with respect to variation of B1-B3.

e Note that in this evaluation, rather untypical, there are no concentrations (cpm is used instead).
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e To remove points from the fitting process, the relevant error squared data point is simply deleted

from the column.

e To restore the error squared point to the fitting re-enter the formula in the respective cell.

The spreadsheet should look something like the following:

: Exercise 4.xls

1 |k [min) 0.12

7t £33.1260083

3 |BL 52 05406586

4 200

5 [ 18430 747] 1

6 |t [min] CPM.oxp CPMtheo  error® S0

7 0.25 7056939205 665774762 1503.53823 = .00 4 + CPM.exp

3 05 7108760626 646.964224 4084 72308 —— CPMtheo

g 1 5105366268 611.055107 10103.9648 200 4

10 7 504.8990776 545608525 1657.25913

11 4 4608060893 436.805288 575.038483 0 :

12 8  306.0654934 285867716 407 950206 0 50 100

13 15 1482074542 149.851421 2.70262538 i L
14 30 6494754308 67 1605731 4 .8975017 eliilly

15 60 4946970057 5241451 867190258

|41§ » Mt Data set 1 [«] | Il

Result
The apparent first order rate constant of dissociation is k.; = 0.12 £0.01 min™. If, however, we assume
that the points at 0.25 min and 0.5 min are incorrect and omit these from the fitting, we obtain a value

for k,; of 0.09 min’".

Exercise 5: Global analysis of multiple data sets

Evaluate dissociation kinetics using three independent data sets simultaneously.
Object of the exercise: global analysis of multiple data sets.

Exercise 5 is linked to Exercise 4.
Background information about this exercise can be found as follows:

e (lobal fitting of multiple data sets (Sect. 9.1.9)

Instructions
e BL and f can vary from one experiment to another (they are local parameters)

e k; must be the same for all data sets because it is a physical constant (it is a global parameter)
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e A joint evaluation of all three data sets requires 7 parameters in total: k_;, BL,, f;, BL,, f, BL; and
f;. We use a separate spreadsheet to manipulate these parameters and to carry out the evaluation.
The fitting is carried out using this “master” analysis spreadsheet, and it is important that the
transfer of parameters is carried out correctly. All parameters are entered into the analysis
spreadsheet, and transferred to the subsidiary sheets. The sums of errors squared are calculated in

the subsidiary sheets, and then transferred back to the analysis sheet.

analysis sheet

* enter parameter

e take sum of error? from data sheets
* minimize sum of error?

par e DO re P a\
2, e, 2,
meter, wiater wiater

data sheet 1 data sheet 2 data sheet 3

» enter data » enter data » enter data

* take parameter from + take parameter from * take parameter from etc.
analysis sheet analysis sheet analysis sheet

e calculate sum of * calculate sum of e calculate sum of
error? error: error?

e First, each of the three data sets must be evaluated in their own data sheets. This, in brief, involves
the following steps: copying the table, alter the name, enter new data, prepare graphics, and

o Tiwlysspen a new empty spreadsheet, and change its name to “analysis”.

e In the analysis sheet, enter “k_;”, “f” and “BL” in A2, A3 and A4 respectively. The titles “Data set
17, “Data set 2” and Data set 3” are entered into cells B1, C1 and D1 respectively. In B2 is the
value of k_; (which is valid for all three data sets), in C2 to C4 are the f-values for the three data
sets, and in D2 to D4 the corresponding BL values. Initially all if these values are set equal to “1”.

e Row 5 contains the errors squared for the individual data sets, and “sum of error?” is entered into
cell AS.

e Now the numerical values for k.;, BL and f must be transferred from the master sheet to the data
sheets. To this end, go to the data sheet, select the field containing k_;, BL or f, type “=", move to
the analysis sheet, highlight the relevant field and press ENTER (Excel will return automatically to
the original subsidiary sheet). This process should be repeated with all 3 parameters in the three

subsidiary tables.

e Note: from now on, these parameters must only be entered and fitted in the analysis sheet.
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Move to the analysis worksheet. Enter the sum of errors squared in rows 8-10. Note that the
direction of transfer is now reversed: the analysis sheet takes the sum of errors squared from the
subsidiary sheets. To do this, go to cell BS and enter “=", move to the appropriate subsidiary sheet
and highlight the cell containing sum of errors squared and press ENTER.

In cell ES we enter the sum of B5...D5.

Fitting: the value in E5 is minimised with respect to the variation of B2 to B4, C3 to C4, D3 to D4.
At the same time, all of the subsidiary sheets are evaluated.

Graphic plots can also be assimilated into the analysis worksheet. Go to the subsidiary sheets,
highlight Graphics, press Ctrl-C (this places the Graphics in the clipboard), move to the analysis
sheet, click in a cell and press Shift-Insert. The size and position of the plots can be altered using

the mouse.

The result should look like the following:

Ell Exercise 5.xds =13
2 B C D E F & H =
2 |ky [min] 0.11
3 |f £35.438724 575737446 390944959
4 |BL 37.5353134 119462321 17.7214202
5 |sum of error?| 19353 0478 291983529 172 518389 | GOSN
5]
7 data set 1 data set 2 data set 3
g
9 800 1000 70 b
B0 4
10 - 800 g
11| = s GO0 S 40
12 3 400 3 400 3 30 4
13 200 00 20 1 ry
10 4
14 0 oA : 0
15 0 20 40 ED a0 0 20 40  BOD 8O0 0 20 40 B0 a0
16 t/min t/min t/min -
17
18 Jﬂ
M 4 r wyanalysiz,{ dataset] / dataset? / datasetd / [4] | Ll 4
Result

The best global fit to all data sets is given by an apparent dissociation rate constant k.;=0.11 min’

Exercise 6: Weighting of data sets

1

Evaluate two dissociation kinetics data sets simultaneously. Use an appropriate weighting for the

errors squared.

Objective of the exercise: global data analysis; weighting factors.

Exercise 6 is linked to Exercise 5.



Background information about this exercise can be found as follows:

e Global fitting of multiple data sets (Sect. 9.1.9)

Instructions

First, proceed as in Exercise 5.

The analysis gives a value for k; of 0.17 min™. Checking this, however, shows that the fit to data
set 2 is poor. This arises because the effect factor of this data set is about 200 fold smaller than that
of data set 1. Consequently, the sum of errors squared of data set 2 is also much smaller, despite the
fact that the fit to the data is not good.

In order to give both data sets comparable weight, the weighting of the sum of errors squared of
data set 2 must be increased by a factor of 40000 (=200x200). This can be done by entering “='Data
set 2''D5*40000” in cell C5 of the analysis sheet.

A new weighted fitting leads to a value for k., of 0.26 min'. The two data sets are now of equal

importance in the fitting.

Without error weighting, the results look as follows:

Bl Exercise B no weights xls M[=1E3
piy B C D E F =

1 data set 1 data set 2

2 kg [min™]

2 f

4 |BL

5 |sum of error? 4571.02561 212728661

B

I Data set 1 Data set 2

3

9 1200 By

10 1000 59

11 800 4

12 o GO0 g 3

13 400 2 {4

200 14 * +* +*

14 D T T T T D T T T

15 0 200 40 B0 @0 0 20 40 B0 80

16 t/min t/min i

17

18 hd
4 4 » W]y Analysis { dataset] /£ dataset2 £ Kl | *l

Whereas with error weighting the results are as below:
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Bl Exercise B.xls M[=1E3
A, E C O E F =
{ data set 1 data set 2
2 |kq [min™] 0.26
3 |f 1011.79227 4 BE5E331
4 |BL 175279899 07830818
5 sumoferrorr  26750.6025 23909 0225 [ E0CCoNaRe|
5]
7 Data set 1 Data set 2
8
g 1200 51
10 1000 5
11 BOD 4
12 o RO0 § 3 4
13 400 2 1
200 + ’ 1
14 D T T T T D T T T
15 0 20 40 B0 BO 0 20 a0 =] B0
16 t/min t/min .
17
15 hd
M 4 » M[yAnalysis{ dataset] / datasst2 / |<| I LI i
Result

When the two data sets are weighted so that they are of equal significance in the fitting, the best fit
value is k;=0.26 min™ ; unweighted data sets give a best fit of k.;=0.17 min"', and data set 2 is very

poorly fitted.

Exercise 7: Michaelis-Menten Kinetics 11

Evaluate kinetic data according to the Michaelis-Menten model by direct fitting of the initial rates.
Objective of the exercise: evaluation of Michaelis-Menten kinetics

In Exercise 3 we evaluated the kinetics of an enzyme reaction following the Michaelis-Menten model.
We used linear regression to calculate the initial rates at different substrate concentrations, and these
initial rates were then fitted by non-linear regression to the Michaelis-Menten equation. One problem
with this approach is that the linear regression is carried out using somewhat arbitrary criteria, and the
non-linear fitting follows using derived or secondary data. This can introduce a subjective element into
the evaluation that may be particularly pronounced with noisy data. To minimise this element of
subjectivity, this exercise evaluates kinetic parameters from the primary data by directly coupling

linear regression of individual data sets with fitting to the Michaelis-Menten model.

Background information about this exercise can be found as follows:
20



e (lobal fitting of multiple data sets (Sect. 9.1.9)
e Michaelis-Menten kinetics (Sect. 9.2.2)

Instructions
First we calculate theoretical initial slopes for each substrate concentration using arbitrary initial
values for K., and K.

e This step basically follows the procedure developed in Exercise 3. Using these values and a y-axis
intercept that is also varied during minimisation, a straight line is calculated for each data set in a
subsidiary sheet. Then the errors squared are calculated between each data point and the
corresponding point on the straight lines. The sum of errors squared values are transferred back to
the main sheet, where minimisation is carried out.

e K, und kg are placed in row 1 and 2. In cell Al enter “Km [uM]”, in A2 “kcat [1/min]”. Initial
values of 2 are entered into B1 und B2.

e In A4 type ¢(E) [nM], in B4 type 1, for the enzyme concentration in nM.

e The headings of the data files are entered into row 6: “c(S) [uM]”, “v’,theo [1/min]”, “intercept”
and “error?”.

e From row 7 onwards, the substrate concentrations are entered into column A.

e In column B v’ values are calculated. The rate for an enzyme catalysed reaction (v’=V/Cg ) 1S given

by the Michaelis-Menten equation: V'(CS)chatXC—S. Therefore, for example B7 should

cg +K

contain the formula: “=$B$2*A7/(A7+$BS1).

e In column C “0” as starting value for the intercept is typed in any cell.

B Exercise 7.xls M=)
A B C D =
kea [1/min] 0.63 !

¢(E) [nM] 1

o= [ph] v' then intercept error
0.1 0.04701331 F024205743
0.5 0.18115782 [ 0253822555
1 0.2315896 [ -0.061 165945
10 2 0389573490 O11143124
11 5 0.50601079 019825567 .

4 4[> [bil analysis / LN iy

OO == | O | 77 | e | L] Pl

o

Now the subsidiary sheets need to be programmed:
e We need one sheet for each concentration. Name the sheets accordingly.
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The first two rows contain date required to calculate the straight line: Type “intercept” and “v’
[1/min]” in column A and in column B take the numbers from the analysis sheet. For example in the
0.1 sheet highlight B1, type “=", change to the analysis sheet by clicking on the analysis sheet tab,
highlight cell C5 and press ENTER. “ =analysis!C5” appears in B” of the 0.1 sheet. Put “
=analysis!B5” in B2 of the 0.1 sheet.

We put ¢(E) in nM in row 4, ¢(S) in uM in row 5.

In row 7 type the four the column headings: “t [min]”, and “% product, exp”, “% product, theo” and
“error”.

Row 8 and following contain the data in columns A and B.

In column C the theoretical straight line which represents the initial slope of the reaction at the
given substrate concentration is calculated. The amout of product (in %) formed in the initial phase
of the reaction during time t is given by:

Prod [%] = CE, tot [NM] X t [min] X v’ [1/min] X 100/cs_ ¢ [pM] /1000

Note, that the correction factor of 100 appears to obtain the amount of product in %, and the factor
of 1000 is necessary, because we specify the enzyme concentration in nM and the substrate
concentration in uM.

We must also add the intercept to this expression. Therefore, the final formula for example in cell
C8 is: =§B$4*A8*$B$2*100/$B$5/1000+$BS§1.

The errors squared are calculated in column D, the sum of errors squared is taken in cell D6.

Create a plot of the data points and the linear fit. Copy the plots into the analysis sheet.

The sum of errors squared of each subsidiary sheets is copied in column D of the analysis sheet, and

the sum of them is placed in cell D5.

B Exercise 7. xls M=l E3
A, B ) D E F ] o
1 |intercept -0.24205743 1 —
2 v [1imin] 0.04701391
3 3
4 |c(E) [nM] 1 25
5 |c(3) [uM] 0.1 N
5} 0.28294935
7 |tirme [min] % Prod, exp % Prod, theo errar® LR +
2 5 -0.32 000595736 0.097976R 1
g 10 052 022808171 0.03521629 sl e A
10 20 0.49 069522085 0.04335592 o
11 a0 1.37 1.16835999 0.04065369 o ' ' '
12 45 2 1.6735667 0.01598487 gs1® 20 40 0 B0 09
13 &0 248 257877741 0.00975653
14 i
14 4 (W[ analysis 50, {0571 /245 || | wil
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e Now D5 of the analysis sheet is minimized by variation of B1 and B2 and C7 to C11.

e Note, that in this analysis only data from the initial phase of the reaction should be used.

The result should look like the following:

il Exercise 7 xls _ O] %]
A B [ D E F 3 H | J i
[ 1K M) 1.24 —
2 kg [1imin] 0.63
3
4 [c(E) ] 1
| 5 |
B |c(S) U] v theo intercept arrar
7 01 00470139 -002420574 02929494
g 08 01811578 -02382293 01173642
g 1 02815896 -000611695 0.4408369
10 2 038957840 D114312 0.2248076
11 5 0A06801080 01982557 013134958
12
13 [1] " 0.5 '| 2 5
—14 1 .5 14 1
F 25 2 2 » e ::: *
—15 2 s . 1 L s [
17| - . . . . " e e
18 wl "
W [EE I ) - e * e i, [EE P
T ! ' ) a 1] o 1 * “l- =
37| a.l® ™ 0 @ s s ron a om om o a omom [T
22 -
4[4 ¥ [ M analysis {01 f0.5 4142457 |4 I il
Result

The data are fitted best by a K, of 1.24 uM and a k¢, 0of 0.63 min’.

Exercise 8: Binding equilibrium
Objective of the exercise: evaluation of a binary thermodynamic binding equilibrium; programming of

complex functions in MS-Excel

Background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)
e Introduction to error estimation (Sect.9.1.10)

e Analysis of simple binding data (Sect. 9.2.6)

Instructions

This exercise does not introduce anything new in terms of creating the spreadsheet. We assume that at
constant A the concentration of B is increased and that only AB contributes to the observed signal. The
concentration of A is a constant in the analysis, but the more complex mathematical expression of Eqn.

9.12 requires a stepwise approach in the programming.
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The first row of the spreadsheet contains the constants, in this case only one, the total concentration
of A (ca tot)-

The parameters are placed in the next rows (BL, f, K,). We take 0, 1 und 1x10” as initial values for
these.

Leave a row free.

Then the column titles are inserted (“Cp,tot 5 “Signal” etc.).

Concentrations are inserted in column A, the experimental reading in column B.

To calculate theoretical data, a stepwise approach is recommended to enter the equation. Enter p in
column C, q in column D, (p/2)*2-q in column E, and the square root of column E into column F.
To do this we use the Excel function SQRT (type “=SQRT(” + < + ENTER).

Then the theoretical concentration of AB is programmed into column G (Eqn. 9.12).

From this the theoretical signal can be calculated in column H: signale, = BL + CAB theo X T
Adjacent to this (Column I) are inserted the errors squared (from the differences between the

experimental and calculated signals), and above this the sum of errors squared.

The spreadsheet should look like the following:

‘ﬁ Exercize 8.xls M=l E3
A B C 0] E F G H | T

|1 |Cata [NM] 1.0E-01 —

|2 [BL 1 0E+00

| 3 [Fiam) 1 0E+02

4 |Kaes [M] 5 0E+07

5 | [o.56-06]

B |Cptot [nM] signal, [=k{u] 4] 8] fl SQRT[M] CAB theo [HM: signal,theu Brrore

7 0 1.00 -2.02E+01 0.00 101.58 10.08 0.00 1.00 1 4E-06

|5 | 5.00E+00 299 -2 52E+01 0.50 157.72 12.56 0.02 2.99 2 0E-06

|9 | 1.00E+01 432 -3.02E+1 1.00 296.37 15.05 0.03 432 1.3E-06

10| Z2.00E+01 599 -4 02E+01 2.00 401.15 20.03 0.05 5.89 2.3E-08

11|  4.00E+01 766 -6.02E+01 4,00 900.73 30.01 0.07 7.66 1.6E-06

12|  B.00E+01 5.00 -1.00E+02 g.00 2499 88 £0.00 0.08 9.00 1.2E-06

13|  1.00E+02 933 -1.20E+02 10.00 3599 .45 0.00 0.08 9.33 &.1E-07

14| 1.50E+02 9,82 -1.70E+02 15.00 7223.39 84.99 0.09 9,82 1.8E-08

15| 2.00E+02 10.09 -2 20E+02 20.00 1209732 | 109.99 0.09 10.09 | 1.2E-07

16| 2.50E+02 10.26 -2 7OE+02 25.00 1822126 | 134.99 0.09 10.26 | 4.8E-07

17| 3.00E+02 10.37 -3.20E+02 30.00 2559520 159.98 0.09 10.38 | 9.0E-07

4| ¥ Tpil\bind / |4l | »l

To make the sheet easier to follow, click on C in the column heading, and highlight the columns
from C to G. Right-click with the mouse in the column heading area and select Hide.

We create a graphics plot showing cg, experimental signal and theoretical signal.

The fitting is carried out by minimising the sum of errors squared with respect to variation of Kas,

BL and f.
24



& Exercize B.xls M=l E3
A B I H 1 J K L ] T
|1 |Ca o [M] 1.0E-07 —
|2 [BL 1 DE+0D
BE 1 DE+02 12.00
4 |Keos [M] 5.0E+07 p—
5 [2.56-06 ] |
| B [Coior [NM] signal, exp | signal theo|  error® 5.00 - prar—
K 0 100 100  14E-D6 | = siznafm;
s | 5.00E+00 299 293  20E-06 | & 6.00- '
| a | 1.00E+01 432 432 13E-06 | @
10|  2.00E+01 599 599  2.3E-08 4.00 -
11|  4.00E+01 TEE 766 1.6E-06
12|  5.00E+01 900 900 @ 1.2E-06 2.00 -
13|  1.00E+02 933 933 | 6.1E-07 +
14|  1.50E+02 982 982 | 1.8E-08 0.00 : : ;
15|  2.00E+02 10.09 1009 1.2E-07 0 100 200 300 amol
16|  2.50E+02 1026 1026  4.8E-07
17|  3.00E+02 1037 1038 9.0E-07 CB [nH] .
[a |« 'p ¥ bind |4 | >l
Result

The best fit to the data is obtained with Kg=5x10" M

Exercise 9: Independent identical binding sites
Analyse a binding process and evaluate the binding parameters n (number of sites) and Kags (the

association constant) assuming independent binding to identical sites.
Objective of the exercise: analysis of binding to obtain optimal values of n and K

Exercise 9 is linked to Exercise 8:
Background information about this exercise can be found as follows:
e Selection of appropriate models (Sect. 9.1.5)

e Independent identical binding sites (Sect. 9.2.5)

Instructions

Programming a datasheet to evaluate association constants following the procedures described in
Exercise 8 should be straightforward. We assume that the signal obtained in proportional to the
amount of B bound to A. An additional global parameter in this exercise is n, the number of binding
sites for B on A. Use Eqn. 9.13. A few tips:

e There are two data sets; the global parameters are n and K4, and the local parameters BL,, BL,, f;

and f>.
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e First, draw up two spreadsheets to evaluate the individual experiments and test these individually.

e Now programme an analysis sheet and carry out a global analysis of the two data sets.

&l Exercise 9.xls M [=1E3
A B G H 1 J K L Tl ] o —
| 1 |Ca, 10t [NM] 1,00E-01 —
| 2 |BL 1,00E+00
| 3 |[F(AB) 5 01E+01 data set 1
| 4 K M] 4 90E+07
| 5 |n 2 00E+00 12,00
| & | 1,E-02
| 7 |Ca.tot [NM] Sighal, eXp Capheo [NM] Signalthea  errar® 10.00 4
| & | i 100 000 1,00 1,0E-07 S
| 9 | 5,10E+00 299 0,04 289 1,3E-05 ’
| 10| 1.00E +01 432 0,07 4728 1,8E-03 E e + Signal. exp
ER 2,10E +01 593 0,10 6,07 6,6E-03 8 — Signal.theo
|12 | 400E +01 76 013 7 A3 1,1E-03 Anmd
|3 | 7.90E +(01 a00 0,16 5,96 1,5E-03 '
| 14 | 1,00E+02 932 017 932 1,7E-04 2004
| 15 | 1.55E+02 asz 0,18 8,85 8,6E-04 d
| 16 | 2 00E+02 oo 018 10,08 3,1E-08 0,00 i i .
| 17 | 2 ADE +02 0,25 018 10,23 G,8E-04 ] 00 200 ano 400
| 18 | 316E+02 07 014 10,41 1,1E-03 cB [nM] |
N
| 20| =
I:1< » [ Analysis ) data set 1, dataset? / || | Wl
&l Exercise 9.xls A=
A B C D E F G H [N
1 ] data set 1 data set 2
2 KASS [M-I]
3 |n
4 |BL
5 |F(AB)
6 |sum of error® 0,01349 3,02078E-05
7
g data set 1 data set 2
10 12,00 12,00
11
10,00 10,00
12
13 8,00 - 8,00 -
= - = -
14 S 500 * S?gnal, exp S 500 * S?gnal, exp
15 n —— Signal theo 7 — Signal theo
4,00 H 4,00 +
16
17 2,00 4 2,00 5
-» -
18 000 - - - 0,00 - - -
19 il 100 200 300 400 0 2000 4000 BOOO 8000
20 cB [nM] cB [nM]
21 —
22 s
M 4 » M\ Analysis{ dataset] £ dataset? / |4| | LI 4
Results

The two data sets can be only be jointly fitted with values for the binding parameters of n=2 and
Kass=5x10" M. Thus, the fact that two B molecules bind to one A was simply invisible on the basis of

data set 1 alone!
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Exercise 10: Independent binding sites 11

Evaluate binding data according to a simplified model, and test whether the data can be fitted

satisfactorily on the basis of a single binding site

Objective of the exercise: Fitting of binding data to simplified models; selection of appropriate binding

models.

Background information about this exercise can be found as follows:

e Selection of appropriate models (Sect. 9.1.5)

e Fitting data by the method of least squares (Sect. 9.1.8)
e Analysis of simple binding data (Sect. 9.2.6)

e Independent identical binding sites (Sect. 9.2.5)

Instructions

In this exercise we use Eqn. 9.16 for the analysis.

The global parameters are Kass1 and Kags 2, and the local parameters BL and f. Enter the parameters
in rows 1-4.

Row 7 contains the column headings: “cg [M]”, “signal,exp”, the saturation of site 1 with B “0,”,
the saturation of site 2 with B “0,”, the relative saturation of all binding sites “Opound”, the calculated
signal “signal,theo” and “‘error®”.

In column A enter the concentration of B, and the experimental signal in column B. Enter Eqn. 9.16
for site 1 into column C, e.g. in cell C8: “=§B$3+$B$4*$BS1*A8"$B$2/(1+$BS1*A8"$BS$2)”. In
column D enter the corresponding expression for site 2, and in column E the total saturation of all
sites (0,+6,). The calculated (theoretical) signal is entered into column F, the errors squared in
column G, and in G6 the sum of errors squared.

In the fitting we minimise G6 with respect to variation of B1 to B4.
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=] E3

il Exercise 10 A xls [_]
3 E E 0 E F G H ] K

1 |Kay. M | 4.96E+05

2 (K., .M | Z00E+02

3 |BL 0.098

4 i 1.994

5

5 e

T celM] zsignalexp B, A, Bhaund zignal.thea | error’ A

8 | 5.00E-07 05 1.99E-01 1.00E-04) 1.99E-01 4.94E-01 3.548E-05 -

a | 1.00E-05 075 331E-01 Z200E-04 3.32E-01) T7.59E-01 &.112E-05

10 | 2.00E-0B 11 4898E-01 401E-04 4.92E-01 1.09E+00) 7.B38E-0S 31

11 | 5.00E-0B 15 T13E-01 1.00E-03 7.14E-01| 1.52E+00 0.000419 = 251

12 | 1.00E-05 18 B32E-01 Z2O00E-03 8.34E-01 1.76E+00 0.0015241 E 2

13 | 2.00E-05 19 O08E-01 3.99E-03 9.12E-01 1.92E+00) 0.0002577 % 154

14 | 5.00E-05 2 9BIE-01| 982E-03 Aa7IE-01 203E+00 0.0011663 N

15 | 1.00E-0¢ 21 980E-01 1.96E-02 1.00E+00 2.09E+00 7.326E-05 o5

16 | 2.00E-0d 215 QO0E-01 3.85E-02  1.03E+00 2 1SE+00 1.917E-0 °

17 | 5.00E-04 23 O9BE-01 O.11E-02 1.09E+00 2. 27E+00 0.0012073 ; ;

18 | 1.00E-03 2d  988E-01 1.67E-01 1.16E+00 2.42E+00 0.0004205 LOET LOOE-DS - LOOE-D 1M0E-O

19 | 2.00E-03 ZBE 000E-01 286E-01 1.20E+00 2 EEE+00 1.225E-08

20 | 5.00E-03 31 1.00E+00 GO0OE-01 1.50E+00 3.09E+00 0.0001269 cg [M]

21 | 1.00E-02 3d 1 0O0E+00 BETE-01 1.67E+00 3.42E+00 0.0004557

22 | 2.00E-02 37 100E+00 SO0E-01 1.80E+00 3.69E+00 0.0001646
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e The evaluation of these data provides our first example of the

occurrence of local minima in data

fitting. If we take identical initial values for Kas1 and Kags2 , the program may attempt to fit the

data with two identical binding constants. That works satisfactorily for data set B, but not at all well

for data set A. In this case, it is advisable to start with significantly different initial values for the

binding constants, e.g.100 and 10000.

e To evaluate the data with one binding site, we make a copy of the spreadsheet, named in “1 site”,

calculate the theoretical signal for 0, and delete columns D and E. After deleting row 2, ES (sum of

errors squared) can be minimised with respect to variation of B1:B3. The best fit is significantly

worse than that possible with the assumption that n=2.
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e Data set B is evaluated similarly.

Result

Data set A can be fitted significantly better with two binding constants (K;=50000 M, K,=200 M)
than with one. Data set B also gives a better fit with two binding constants (K;=10000 M, K,=1000
M™), but the fit with a single binding constant (K; = 3450 M) is also quite reasonable. The results of
this exercise make two important points: 1) it is difficult to establish unequivocally that two binding
sites are present if their binding constants differ by only an order of magnitude, or less; 2) if the
binding constants do differ significantly, accurate analysis requires data in which ligand concentrations

are varied over several orders of magnitude, which can be experimentally very difficult to accomplish.

Exercise 11: Independent binding sites I11
Evaluate binding data according to a simplified model. Assume that there are two sites and that the

only species producing a signal is A fully saturated with B, i.e. BAB.
Objective of the exercise: Fitting of binding data to simplified models; how to avoid local minima.

Background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)
e Analysis of simple binding data (Sect. 9.2.6)
e Independent identical binding sites (Sect. 9.2.5)
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Instructions

e In this exercise we use Eqns. 9.16 and 9.17 in the analysis.

e The global parameters are Kas1 and Kagp, and local parameters BL and f. First, enter the
parameters into rows 1-4.

e Row 7 contains the column headings: “cg [M]”, “signal,exp”, “6,”the saturation of site 1 with B,
“0,” the saturation of site 2 with B, and “0,” the fraction of A in which sites 1 and 2 are both
occupied by B. The other headings are “Onoung” the relative saturation of all binding sites, and
“signal,theo” and “error?”, which have their previous meanings.

e Enter the concentrations of B in column A, and the measured signal in column B. Eqn. 9.16 is
entered into column C , for site 1 for example, the following expression is entered into cell C8:
“=A8*$B$1/(1+$B$1*A8)”. The corresponding expression for site 2 is entered into column D.
Column E contains the proportion of AB, (8,%0,) and column F to total site saturation (6,+6,). The
theoretical signal is evaluated in column G, the errors squared in column H, and the sum of errors
squared in cell H6.

¢ In the fitting, the value in H6 (sum of errors squared) is minimised with respect to variation of B1 to
B4.

e To check that Opong does in fact rise hyperbolically as the ligand concentration is increased,
highlight F7 to F18, press Ctrl-C, highlight the graphics and press SHIFT+INS. The curve for Oyound
appears on the plot. To remove this curve, highlight the graphics, then the curve, and press
DELETE.

e Local minima are also prone to occur in this analysis. The data were generated with the following
binding parameters: Kag =500 M'l, Kass2=100 M'l, BL=0.1 and F=2. However, from the following
initial values Kag1=100 M'l, Kass2=100 M (the same for the two Kags), BL=0.1 and F=1, the final
best fit result is Kag1=Kass2=187 M'l, BL=0.107 and F=1.959. The sum of errors squared for this
fit was 8.6x10™, If, however, the initial values for the two Kag are chosen to be very different, e.g.
Kass.i =100 M, Kps,=1000 M, BL=0.1 and F=1 the best fit solution is Kas ;=100 M, K x2=500
M'l, BL=0.1 and F=2. The sum of errors squared is 2.5><10'12, much smaller than the value for the
local minimum identified above.

e As a general rule, it is advisable to carry out the minimisation several times using different sets of
initial values, to exclude, as far as possible, the chance of returning results on a local minimum
rather than the global minimum.

e For real data, which are subject to error “noise”, it is difficult to extract reliable values of multiple

Kass constants from binding curves, in part because it is hard to be sure which are the local and
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which the global minima. In such cases, it is important to have sufficient data sets, evaluated

globally, to increase the accuracy of the analysis.

ﬁ Exercize 11.xls M= E
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Result

The optimal fit of the binding data is with two binding constants: K;=100 M, K,=500 M. There is a

local minimum at the following values: K;=K,=187 M

Exercise 12: Cooperative binding

Analysis of binding data according to an all-or-nothing model. Investigate whether, bearing in mind

the accuracy of the data, it can be decided whether one or two Bs bind to A.

Objective of the exercise: Evaluation of all-or-nothing binding equilibria; choice of models.

Background information about this exercise can be found as follows:

e Selection of appropriate models (Sect. 9.1.5)

e Fitting data by the method of least squares (Sect. 9.1.8)

e Binding equilibria (Sect. 9.2.4)

e (Cooperative binding (Sect. 9.2.8)
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Instructions

¢ In this exercise we use Eqn. 9.19 for the analysis.

e The global parameters are Ky and n, and local parameters BL and f. Enter these parameters into
rows 1-4.

e The column headings are entered into row 7: “cg [M]”, “signal,exp”, “signal,theo” and “error®”.

e Concentrations are entered into column A, and the measured signal into column B. Eqn. 9.19 is
entered into column C, e.g. in cell C8: “=$B$3+($B$4*$BS1*A8"$B$2)/ (1+$BS1*A8"$§BS2)”.

The error squared terms are in D, and the sum of errors squared in cell D6.

e The fitting minimises the sum of error squared (D6) with respect to variation of B1 to B4.
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e We check first whether the data can be fitted with an n value of 1 (with n=1 the all-or-nothing
model becomes a simple binding model). To do this, we create a copy of the spreadsheet, called
n=1, to distinguish it from the original sheet which is called n=2. We then set n equal to 1 and 2

respectively in the two speadsheets and minimise both sheets with respect to Kag, BL and f.
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e To compare the quality of the two fits, we copy both plots to a new spreadsheet.
e [t is evident that the fit to the data is much better for the n=2 analysis. This is much clearer when
the curves are presented with a logarithmic x-axis. Click on the plot, double click on the x-axis,

chose “Scaling”, then “Logarithmic”.
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Result

The data can be fitted to an all-or-nothing model with n=2 and K,,,=6700 M. This corresponds to a
Kass 0£99.3 M. An equivalently good fit is not possible with the assumption of a single binding site.
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Exercise 13: Analysis of binding data by different models

Analyse the data sets according to several different models: n=1, n=2 with independent binding sites,
n=2 cooperative binding. Which model fits the data best? For the various fits, plot the deviations
between experimental and theoretical data, and compare the absolute magnitude and scattering of the

deviations.

Objective of the exercise: choosing between models

This exercise is linked to Exercises 8-12.
Background information about this exercise can be found as follows:

e Selection of appropriate models (Sect. 9.1.5)

Instructions
e For each data set programme a separate spreadsheet for n=1, n=2 independent binding (Exercise
10) and cooperative binding (Exercise 12) and carry out the fitting.

e Prepare a plot of the deviations of the best fit of each of the models. To do this, we calculate the
deviations (expressed as: Signal,exp-Signal,theo) in the column next to “error®” . In the title row
(row 7) of this column, enter the model descriptor: “n=1", “n=2" or “coop”, as appropriate.
Highlight the relevant x-values and the deviations with the column heading, click on Chart Wizard,
and select bar diagram.

e Compare the plots of the deviations. The best fit should have the smallest deviations, which should

be distributed randomly.

For data set A, we obtain the following spreadsheets:
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The clearest way of comparing the quality of the fits is to show all of the errors in one diagram. To do
this, create a new spreadsheet, called Charts. Go to the spreadsheet n=1, click on the bar diagram,
press Ctrl-C, go to the Charts Table, highlight a cell with the mouse, and press Shift+INS. Then move
to the n=2 sheet, click on the bar diagram, press Ctrl-C, go to the Charts Table, highlight the diagram
that is already there, and press Shift+INS. The data for n=2 will be transferred into to diagram. Go to

the coop spreadsheet, and proceed as before, to present all three bar diagrams on one plot.
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Similar analysis for data set B gives the following picture:
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Result

Data set A fit best to a cooperative model, whereas data set B are best described by independent sites
with n=2. It should be noted that real data usually show more errors (noise) than the present test data,

and consequently it can be more difficult in practice to make decisions about which model is the best.



Exercise 14: Fitting rapid reaction data to exponential functions.
Fit the kinetic data to one or two exponential functions (Eqn. 9.25). Examine which model fits the data

better, and decide whether the difference is significant.

Objective of the exercise: programming exponential functions to fit kinetic data; selection of

appropriate models.

Background information about this exercise can be found as follows:
e Selection of appropriate models (Sect. 9.1.5)
e Fitting data by the method of least squares (Sect. 9.1.8)
e Global fitting of multiple data sets (Sect. 9.1.9)
e Pre-steady state kinetics, (Sect. 9.2.10)

Instructions

The theoretical data for the two models are calculated from the following equations:
S(t) = BL + A x [1-exp(-t/1)] and S(t) = BL + A; X [1-exp(-t/t1)] + Az X [1-exp(-t/T2)].

e The parameters T; [ms], Aj, To [ms], A, and BL are entered in the first 4 rows. Initial values are
taken to be 100, 100, 100 and 0, respectively.

e Row 7 contains the titles of the of the columns: “t [ms]”, “signal,exp”, “signal,theo” and “error®”.

e The times and experimental signals are entered into columns A and B respectively, from row 8
onwards.

e Eqn. 9.25 is entered into column C, e.g. for cell C8: “=$B$5+(1-EXP(-A8/$B$1))*$B$2+(1-EXP(-
A8/$§B$3))*$B$4”.

e The errors squared are entered into column D, e.g. for D8: “=(B8-C8)"2”

e The sum of errors squared: “=SUM(D8:D20)” are entered into cell D2.

e We produce plots with logarithmic x-axes, and the values “Signal,exp” and “Signal,theo”.

e The fitting is carried out by minimising the sum of errors squared (D2) with respect to variation of

B1 to BS.

e We obtain an error message because the algorithm is trying to use a negative value for 7.
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Solver encountered an erraor value in & target or
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* Keep Solver Solution
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e Select Cancel.
e The occurrence of this error means that we must select more realistic initial values for the
parameters. We chose 10 for the two times T, and 50 for the two amplitudes, and try the fitting

again.

We obtain a fit with T;=7,=32.2 ms. The sum of errors squared has the value 158.5 and the fit

looks a lot worse that we are used to. It appears that are systematic errors in the fit.

A | B | ¢ | o | E | F | & | H |
1 |t [ms] 32.2488097 sum of error?
7 A, 39 573949 [ 226 930107]
3 |1, [ms] 32.2485099
4 &, 39.5739486 | |
g BL 13.0697606 -
7 |t [ms] signal,exp signal theo  error® 100 4 * ;
8 1 10 154863874 30.1004472 S 1 .
9 2 152 17.8292273 £.91253619 S a0
10 5 271 244372125 7.09043736 LI .
11 10 406 341720378 41.3156954
12 20 54 49.6480619 18.9393654 L
13 50 69.8 754261481 316535427 0 . - .
14 100 80.9 $8.6552792 60.1443553 L e o (e
15 200 90.8 92.0573186  1.58085007 t[ms]
16 500 917 92.2176436 0.26795491
17 1000 96 92.2176582 14.3061093
18 2000 955 92.2176582 10.7737675
e Because of this poor result, we chose new initial values, 10 and 100 for the two T values, 10 for the

amplitudes and O for the background parameter BL, and try again.

This time the sum of errors squared is 11.9 and the solution is 7,=8.2 ms and 1,=78 ms. The fit
looks much better, as we would expect from the lower value of 11.9. It appears that the solution

Ti1= T7,=32.2 ms corresponds to a local minimum.
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500 917 94.0501376 552314682
1000 95 94 1268686 3.50862121
2000 955 941269953 1.88514203
5000 935 941269953 0.39312305
10000 937 941269953 0.18232495

In order to analyse both data sets globally, copy the spreadsheet that has just been made, and enter
the second data set into column B.

We then create a new spreadsheet to evaluate the data sets and call this “analysis”.

The two T values (which are valid for both data sets) are in cells B2 and B4, for each data set a
value for A; (in B3 and C3), for A, (in B5 and C5) and a background BL (in B6 and C6). The
parameters are transferred from the “analysis” spreadsheet to the subsidiary tables (e.g. we enter in
the filed for 1 for data set 1: “=analysis!B2”).

The error squared values from the subsidiary tables are transferred to the analysis table. This is
done by entering in B7 the sum of errors squared of data set 1: “='data set 1''D2” and in C7 that of
data set 2: “='data set 2'!D2”. In D7 we enter the sum of B7 and C7.

The plots from the subsidiary spreadsheets are copied into the analysis spreadsheet. Move to the
subsidiary spreadsheet, highlight the plot, press Ctrl-C, move to the analysis spreadsheet, highlight
any cell, and press SHIFT+INS. The plot can be move to a convenient position with the mouse.
Take initial values of 10 and 100 for the two T parameters, 10 all of the amplitudes and 0 for the
background BL, and minimise the value of D7 (the combined sum of errors squared) with respect
to variation of B2 to B6, C3, C5 and C6.

We can reduce the number of variables, for example, it is reasonable to assume that the amplitude
ratio Aj/A, is the same for both data sets. In the analysis spreadsheet, we can write for A, of data

set 2: A1(2)/A1(1)xA;(1) (“=B5/B3*C3”) and not include this value in the fitting.
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e Begin the minimisation again with initial values of 10 ms for both T parameters and 50 for the two
amplitudes. Under these conditions, we located a local minimum with data set 1. However, with
the two data sets, the algorithm locates the correct minimum, even with these starting parameters.
This result indicates that the analysis is more stable with two data sets.
e To fit the data to a single relaxation time, we set A,=0 and exclude T, and A, from the fitting.
{i Exercise 14 n_1_xls M=l E
A B © D E F E} H -
1 data set 1 data set 2 —
2 |1 [ms] 31.50
3 (A 79.3 101.9
4 |1z [ms] 9524
5 |Ag 0.0 0.0
B (BL 12.8 202
7 |sumoferof | 227.300184 ) 503.825945 | EINEE
g
190 120 140
1 100 - | 120 1
g0 . 1009
12 = i ®| @0
13 5 G0 5’ 50 A
] h
14 40 4 * 40 4
15 20 20 4
16 ut , , , 0 . : :
17 1 10 100 1000 10000 1 10 100 1000 10000
1 g t [ms=] t[m=] |
20
21 bl
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Result
The analysis with two relaxation times gives 1;=9.3 ms, 17,=98 ms, and the sum of errors squared was
33.4. Fitting to a single relaxation time is much worse; the sum of errors squared was 731, and the

fitting showed systematic deviations from the data.

Exercise 15: Error estimates for Exercise 14.

Evaluate the errors in the time constants determined in Ex. 14.
Objective of the exercise: error analysis
This Exercise is linked to Exercise 14.

Background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)

e Introduction to error estimation (Sect. 9.1.10)

Instructions

e First, we calculate the mean error of the measurement, using the square root of the sum of errors
squared in cell D7 of the analysis spreadsheet (“=SQRT(SUM(B7:C7))”). This value corresponds to
the total error of all data points.

e For comparison, we determine the sum of the measurements in the two subsidiary spreadsheets, and
transfer these to row 8 of the analysis spreadsheet.

e We calculate the relative mean error of all points in % in cell D9 (=D7/D8*100).

e The mean error amounts to only 0.4 %, which indicates that the fit was excellent.

e In DI and E1 we enter “min” and “max”.

e From the Tools menu select: Scenarios
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Scenario Manager HE
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Scenario name:
Cancel
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| X
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e Enter under Scenario name: “best fit”, “Changing cells”: $B$2:$B$6;$C$3;$C$6 (these cells can
be highlighted with the mouse), OK, OK, close

e Minimise and then maximise the two T values. Enter the condition that D9<=0.6. This corresponds
to an increase of 50% in all of the deviations. Select in the Solver window: “Subject to constraints”,
“Add”.

¢ In the following window enter D9, select “<="in the pull down menu and enter 0.6.

Add Constraint HE
Cell Reference: Constraint:
D9 A <= | fos ]

(04 | Cancel ‘ Add ‘ Help ‘




e Chose T, for minimisation. As usual, all of the variables are allowed to float (T}, T2, A, BL;, BL,).
Carry out the minimisation repeatedly until the result is constant. Start the minimisation again with
an initial value of 60. The result cannot be further reduced, so record the result of the minimisation
(62.62) in D2.

e In the Tools menu, select Scenarios, best fit, Show.

e Now maximise T;, and then find the minimum and maximum of 1,. Go from the limiting values

back to the best fit values, and note down all of the results.
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Result

The best fit value of T; was 98.3. This value could, however, lie between 64.26 and 167.78, although
we have only allowed an increase in the error of 50% over the best fit error. The best values for 1,
were: best fit time 9.3, error range: 5.54-13.85. The very large error range in the T estimates is
explained by the fact that the two parameters are correlated, and that an increase in T; can therefore at

least in part be compensated by a reduction in the value of 7, .
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Exercise 16: pH-Dependence of enzyme-catalysed reactions
Analyse the pH dependence of an enzyme catalysed reaction, with the assumption that it is affected by

up to 3 protonation equilibria.
Objective of the exercise: analysis of pH-effects; selection between models.

Background information about this exercise can be found as follows:
e Fitting data by the method of least squares (Sect. 9.1.8)
e Selection of appropriate models (Sect. 9.1.5)

e pH dependence of enzyme-catalysed reactions (Sect. 9.2.11)

Instructions

This exercise uses a general model to analyse thermodynamic measurements. In this model, ligands

(protons in the present case) bind to a macromolecule, which itself produces a signal (in this case a

rate) depending on the occupation of its ligand binding sites.

e If the enzyme has 3 protonatable groups, a total of 8 (=2°) different species can exist in solution:
HHH, HH-, H-H, H--, -HH, -H-, --H und ---, where H signifies the presence of a proton, and — the
absence. The probability of forming these species, and hence their relative concentrations, is given
by the product of the relevant probabilities that each group exists in a particular state, e.g. P(HHH)
= P(group 1 is protonated) * P(group 2 is protonated) * P(group 3 is protonated); or for P(H-H) =
P(group 1 is protonated) * P(group 2 is deprotonated) * P(group 3 is protonated).

e However, since we cannot correlate any of the pK, values to a group, their order is arbitrary.
Therefore, the number of possible species can be reduced to HHH, HH- (equivalent to H-H and -
HH), H-- and ---.

e The probability of an acidic group being in the deprotonated state is given by Eqn. 9.27:

0(-) = c(A)/c(Ages) = 107(-pKa) / [107(-pH)+10"(-pKa)]

e The probability of being protonated is then simply: P(protonated)= 1-P(deprotonated).

e From these conditions it is possible to simulate the concentration dependence of all 4 species on
pH. To do this, make a spreadsheet with the parameters pK;, pK,, pKs, F and BL in the first 5 rows.
Row 7 contains the headings of the columns: “pH”, “6(1-)”, “0(2-)”, “0(3-)”, “HHH”, “HH-*,*“H--*,

(13 29 (13

-, “H-“, “signal,theo”, “signal,exp”, “error?’. H- represents an easier model with only two
protonation steps, that ignores pKs.

e In column A (“pH”) we enter the pH values between 4 and 11 (at intervals of 0.2). Columns B, C
and D contain the probabilities that sites 1, 2 or 3 are deprotonated.

¢ So, for example, in cell B8 we enter: “=10"(-$B$1)/(10"(-A8)+10"(-$B$1))”.
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The concentrations of the species are given by the products of the probabilities that the groups are
in the required state: P(HHH) = P(group 1 is protonated) * P(group 2 is protonated) * P(group 3 is
protonated). So for cell E§ (HHH) we enter “=(1-B8)*(1-C8)*(1-D8)”.

We can interpret the observed enzyme turnover rate as an “effect”, and therefore the results of the
kinetic experiments can be used as a reporter to analyse the thermodynamic protonation equilibria.
In general, one would assign each of the possible species an effect factor, and the signal would be
the sum of all these factors. To make the problem more tractable, we assume that only one species
contributes to catalytic activity and that there is in addition a baseline rate (BL).

Since the activity rises in the transition from low to moderate pH, at least one of the groups in the
active species must be deprotonated, and since the activity falls again at high pH, at least one group
must be protonated. There are then three possible models: a model with two protonation equilibria
(H-) and two models with three protonation equilibria (HH-) or (H--).

In the (HH-) model, the theoretical signal is given by: FX(HH-)+BL. In the two protonation model
(H-) we ignore the third protonation equilibrium and the signal is given by: Fx(H-H + H--)+BL.
Enter the theoretical signal in column M, the measured signal in column N, and the errors squared
in column O. Column P contains the deviation between the theoretical and measured signals. The
sum of errors squared is entered into cell D2.

Prepare a XY-plot of the experimental and theoretical data, and also a column diagram of the
deviations.

We make a spreadsheet for each model and, as usual, minimise the sum of errors squared (D2) with
respect to variation of pK;, pK, and pKs.

To compare the results we place all of the error columns on a single diagram.
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Result

The best fit is obtained with a three protonation model (H--) with pK,-values of 6.0, 6.4 und 9.0. The
fit with the other models (H- and HH-) give 10-fold greater values of the sum of errors squared. In
addition, these models show systematic variation in the deviations between the experimental and
theoretical values. The data were in fact generated with a three protonation model with pK,-values of

5.9, 6.4 and 9.0.
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Note: This form of analysis is much less clear when non-optimal protonation states also have catalytic

activity.

Exercise 17: Simulation of association kinetics using numerical integration
Use Eqn. 9.22 to programme the simulation of a bimolecular association reaction: (A+B—AB).

Objective of the exercise: programming by numerical integration.

The rate of a bimolecular association reaction A+B — AB is given by the following equation:

deap/dt =k; X ca X cg (cf. Eqn.9.21)

from which it follows that the flux from A and B to AB can be written:
F1 =kj X ca X cg X At (cf. Eqn.9.22)

Background information about this exercise can be found as follows:
e Introduction to numerical integration (Sect. 9.1.11)

e Association kinetics (Sect. 9.2.9)

Instructions

e We have one parameter (k;) and one constant (At). Enter in A1 “k; [M™' s7]”, in A2 “At [s]”; in Bl
place 1 and in B2 0.1 as values for k.; and At.

e The titles to the columns are placed in row 4: “t”, “cA [nM]”, “cB [nM]”, “cAB [nM]” and “F,”.

e The initial values for the concentrations and the time are entered into row 5 A-D: 0 (t), 0.2 (ca), 0.2
(cg) und O(cap).

e The flux from A and B to AB is entered into column E. This flux is determined by the value of kj,
and is therefore defined as F;. This flux is from Eqn., 9.22, and in our case we place in ES5:
“=$B$2*B5*C5*$B$3/19”. 1x10° is a factor that corrects for differences in units, because the
concentrations are given in nM, but the units of k; should be given as s M™" .

e The integration begins in row 6:

e The time is given by the old time + At; so in A6 we write:"=A5+$B$2”.

e cu and cp are given by the old values minus the flux. Thus we write in B6: “=B5-E5”, and
analogously for C6.

e c,p is the old concentration plus the flux, thus in D6: “=D5+E5”.
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e Row 6 is highlighted and copied to row 250. To extend the highlighting use the Pg-Down key.
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e We now need to work with a graph. Go to cell Al of the table (Ctrl+Home). Highlight the column
titles and the visible data in columns A-D. Press SHIFT+END, then Shift+l. This extends the
highlighting to all of the data. Select XY (Scatter) from the Chart Wizard.
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Try out different simulations. Set the values of k to be small (1e5) and large (1e12).When the k
value is very large, it can happen that the flux in a time interval can be larger than the amount of A
and B available; that leads to negative concentrations and error messages. This problem can be
avoided by using smaller values of At. When the k value is too small, the simulation is very slow,
and 250 iteration steps are not enough to reach the end of the reaction. In this case, either use more

iteration or a larger value for the time interval.
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Exercise 18: Analysis of association kinetics.

Use numerical integration to analyse the kinetics of an association reaction.

Objective of the exercise: analysis of association kinetics.

Exercise 18 is linked to Exercise 17

Background information about this exercise can be found as follows:

e Introduction to numerical integration (Sect. 9.1.11)

e Association kinetics (Sect. 9.2.9)

Instructions

We use the spreadsheets created in Exercise 17.

First, we have to take account of the baseline and effect factors, and to do this we need space in the
spreadsheet. Right-click on the “2” in row headings and select Insert. Repeat; there are now two
new rows 2 and 3.

Enter “BL” in A2 and “f* in A3. As initial values, chose “1” and “100” in B2 and B3.

The theoretical signal is entered in column F (column title: “signal,theo”, and in cell E7 for example
enter “=D7*$B$3+$B$2).

Now, by fixing the size of At, select a time scale that covers all of the available data (final value
>200, so At = 1).

In column F (column title: “signal,exp”), enter the data in the correct rows. It is an uncomfortable
consequence of this way of programming that the At cannot be changed without re-entering the
data.

The error squared values are entered in column G. We are practising with intelligent programming,
which will allow us to use this spreadsheet with other data. This involves using the Excel function:
“if”.

Go to H7. Click with the mouse on the “=" next to the Formula Bar. A new pulldown menu appears

which we open.
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e Select: “More Functions”, “Logical” and “if”.

IF

Logical_test | y =
Yalue_if_true | A =
Yalue_if false | A =

Refurns one value if & condition you specify evaluates to TRUE and another value if it
evaluates to FALSE.

Logical_test is any walue or expression that can be evaluated to TRUE or FALSE.

@ Forrmula result = (0]4 | Canicel

e Enter G7=0 in “Logical test”. This can be done by clicking on G7 with the mouse, then entering
“=0”, and finish by pressing ENTER. When the condition is true, no data are in G, and thus no
calculation of error squared can be made.

e For this reason, enter “0” in “Value if true” (the unavailable “error squared” is 0).

e In “Value if false“ is the error squared, i.e. “=(F7-G7)"2”.

e Press OK. This formula will calculate the error> whenever there are data in column G; if there are
no data it will return zero.

e We now copy the formula in H7 in the column H, and enter the sum into H5 (“=Sum(H7..H252)”).

e We generate a new figure. Go to A1, and highlight all the visible rows in columns A, F and G (use
Ctrl). Select an XY (Scatter) from the Chart Wizard XY (Scatter).

e Highlight the graph. Select “Chart, and then “Source Data”.

¢ In the following window, select “Series”, and for both rows enter 7-252 for the X and Y values. In
the example shown below, both 34 are altered to 252. Click on Signal,exp to select the other curve,

and change the 34 into 252. Select OK.
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e For the experimental points, turn the line off, and the points on. For the fitted data, the other way
round: switch off points.

e The sum of errors squared is now minimised with respect to variation of k;, BL and f.

e Sometime there are problems in obtaining association rate constants if the initial values are set too

high. Chose a value for k; of 1x10” and try the fitting again.
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17 10 0.1633 1.00E+02 + 01 0

18 11 0.1603 5.00E+DT + 01 0

19 12 01575 0.00E-+00 - - 01 0

20 13 0.1548 0 100 200 300 kO 0

21 14 01521 t[s] 401 0

22 15 0.1495 k02 1.02EH02 6.4309E-07

23 15 014?1 [ LI I ' N e I IAOT AT JFAN | | N I M T I_I 2 D -

|4 [ 4 [ [#I] keass Fit |= | »

Result

The best fit of the data is to an association rate constant of 1.1x10° M s7! .

Using modern computers such simulations involving 2000 rows are no problem. It is recommended,
therefore, to program the sheet with more rows than in this example, because fast association rates
require a small At, and in general the errors inherent in numerical integration are smaller with smaller

steps.

Exercise 19: Simulation of approach to equilibrium
Programme the simulation of an approach to equilibrium following Eqn. 9.23. Use initial
concentrations of 0.2 uM and 0.1 pM for A and B respectively, rate constants k; = 1x10’ M s™" and
ki=1.0 s'l, with a time interval At= 0.01 s.
Objective of the exercise: programming numerical integrations.
Background information about this exercise can be found as follows:

o

Introduction to numerical integration (Sect. 9.1.11)

e Association kinetics (Sect. 9.2.9)
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e Programming numerical integrations and fitting experimental data to these are covered in

Exercises 17 and 18.

Instructions

e The rate constants k; and k.| and the time increment At are in rows 1-3

e Use columns A-F for the following: t, ca, CB, caB, F1, F.

e F, was defined in Exercise 18: Analysis of association kinetics. Remember that there was a
correction factor of 1x10° to allow for the difference in the units (concentrations are given in pM
but the units of the bimolecular rate constant k; should be s M™), i.e. F; = At x k; X ¢ X cg /1¢6.

e F is defined by the equation F_; = dt X k_; X cgs. No correction factor is needed for F_;.

e After entering the initial values we prepare a graph for ca, cg and cap .

e To recognise more clearly when equilibrium is reached, we alter At to 0.05.

‘ﬁ Exercize 19.xls |_ O] =]
A, B C D I E F 3

1 [k M7 5T 1.00E+07 !

2 |ky[57] 1.00E+00 J

3 |At[s] B 1]

4

5 |t [s] Cp [M] cp [ph] Cap [pM] Fi F.i

B 0 0.2 0.1 0 1.00E-02 0.00E+00

7 005  1.90E01  9.00E02 100ED2 8F5E03  A.O0E-04

8 0 (—+83-04 —ooacoa soicoa Taccoa o ooac (g

g 0.15 095 03

10 0.2 03

11 0.25 - ol I

12 0.3 ——cB ] 03

13 035 | _ qas L —— CAB [UM] 03

14 04 | g 03

15 045 | & g 03

16 0.5 03

17 .55 0.05 - 03

18 0.5 03

19 0.65 o : : : . : 03

20 0y 0 2 4 (5] 10 12 14 03

21 0.75 tIs] 03

22 0.8 3 B
44> M equsim £ | 4| | »l -

Result

With the initial values of the concentrations used and with k;=1x10’ M s and k=1 s equilibrium

is established after ca. 3-4 s.
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Exercise 20: Simulation of a complex enzyme-catalysed reaction.

Programme the simulation of an enzyme reaction involving a bimolecular association of enzyme and
substrate to form an ES complex which undergoes a conformational change preceding turnover. Use
initial concentrations of 5 pM for both enzyme and substrate, rate constants as follows: k;=1x10" M
s’ k,=0.1 s, ky, k, and k3 =1 s and a time interval At= 0.01 s. Find the combinations of rate

constants that lead to: 1) marked accumulation of ES; 2) marked accumulation of ES#; and 3)

accumulation of neither enzyme-substrate complex.
Objective of the exercise: programming of numerical integrations

We assume that the enzyme reaction follows Eqn. 9.24:

k ke K
E+S <™ ES <™ ES# — E+P
K-1 K-

In this model there are 5 different fluxes:

e F: E+S — ES with F; =k; X cg X cg X At
o F:ES — E+SwithF; =k X cgs XAt

e F,: ES — ES# with F, =k, X cpg X At

o F,: ES# — ES with F, =k, X cpss X At
o F;: ES# — E+P with F3 = ks X Cpsz X At

The concentration changes are given by the following relationships:
o Acg=-F +F,+F;

e Acs=-F+F;

o Acgs=-F,—-F,+F +F,

o Acgsp=-F3-F,+F

o Acp=+F;

Background information about this exercise can be found as follows:
e Introduction to numerical integration (Sect. 9.1.11)
e Pre-steady state kinetics (Sect. 9.2.10)
e Programming numerical integrations and fitting experimental data to these are covered in

Exercises 17 and 18.
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Instructions

e The spreadsheet is programmed as in Exercise 19.

e The quantities k;, k., ko, k., k3 and At are placed in the first six rows.

e Use columns A-K for the following: t, cs, Cg, Cks, Ces#, Cp, F1, F_1, F2, F, F3

e Concentrations are given in molarity (M), and therefore no correction factor is needed as in

Exercise 19.

ﬁ Exercizse 20.xls | _ (O] x|
& B C ] E F G H I J K L —

1 |k [s™"] 1.00E+07 . ! ﬂ
2 |kyls? 0.1 J
3 |k [s™] 1

4 |ko[s” 1

5 |k [s™] 1

B |at 0.

=

g8 |tls] | cE[M] cS[M] oESIM]  oES#[M] P [M] Fi F-1 [Fz F-2 Fa

g 0/ 5.00E-0F| 5.00E-06 1] 1] 0| 2.50E-06 1] 1] 1] 1]

10 | 0.01 2Z5S0E-06 250E-06 2.50E-06 1] 0| 6.25E-07 1] 2 5E-05 1] 1]

11 | 0.02 1.88E-06 1.55E-06 3.10E-06 2.5E-05 0| 3.53E-07 0 35.095E-05 2.5E-10 2.5E-10

12 | 0.03 1.53E-06 1.53E-06 S.42E-05| 5.547SE-05 2.5E-10) 2.34E-07 0 5.416E-05 5.547SE-10 5.547SE-10

13 | 0.04 1.30E-06 1.30E-06 5.61E-06 5.8527E-05 &.047SE-10 1.B9E-07 0__5.613E-03 5.5527E-10 #.5527E-10

14 | 0.05 1.13E-06 1.13E-0 1.2288E-09

15 | 0.06 1.01E-06 1.01E-O f. O0E-06 1.5785E-09

16 | 0.07 9.15E-07 9.10E-0 = 00E-06 | 1.93E-09

17 | 0.08 5.57E-07 8.31E-0 - ——T 2.2807E-09

18 | 0.09 7.74E-07 7.65E-0 4. 00E-0F - 2 GZ85E-09

18] 01 T20E-07 TIED g —c5M 2 8723E-09

20 | 011 BTT7E-07 6.63E-0| = 3.00E-05 - — =ES[M] 3.311E-09

21 | 012 6.3%-07 6.z2E-0] ¢ > 00E-06 | —— cES#[M] 3.6ddE-09

22 | 013 B.OTE-07 S.86E-0 .  ePM] 3.9707E-09

23 | 014 S5.80E-07 5.54E-0 1 D0E-0E - 4. Z909E-09

24 | 0.15 5.56E-07 5.26E-0 4. G042E-09

£5 | 0.16 5.35E-07 S.01E-0 0.00E-+00 T T T T . 4.9105E-09

26 | 017 S.17E-07 4.78E-0 0 1 2 3 4 g G 5. 2096E-09

27 | 0.18 5.02E-07 4.57E-O t [=] 5.5016E-09

28 | 019 4.83E-07 4.35E-0 5. TaE4E-09

29 0.2 4 TEE-O07 4. Z1E-07T 3 92E-U6T  B.UBGE-U7 O oo30E-U5] Z. 0TE-Ug 0T 3 977E-05 & UogE-0 G.06d4E-09 hi
4] 4 [ ¥ 5im | «] | Ml

Result
It is observed that ES accumulate if k.; and k, << kjXc,y and k,. ES# accumulates if k., k3 << k.

Neither intermediate accumulates if k3 and ko>> kjXc,y (in which: ¢,=(CE tor+Cs tot)/2).

Exercise 21: Analysis of the kinetics of a complex enzyme-catalysed reaction.

Analyse the data from model programmed in Exercise 20. Assume that the signal depends only on the
product concentration, and that we know from preliminary experiments that ki=1x10" s M, k, = 0.1
standk,=15s".

Objectives of the exercise: analysis of complex reactions.

Exercise 21 is linked to Exercise 20

57



Background information about this exercise can be found as follows:

e Introduction to numerical integration (Sect. 9.1.11)
e Pre-steady state kinetics (Sect. 9.2.10)
e Programming numerical integrations and fitting experimental data to these are covered in
Exercises 17 and 18.
Instructions

e Convert cp heo into Signal,theo. To do this, introduce rows for BL and F.

e Define the error? and the sum of errors squared.

e Minimise the sum of errors squared with respect to variation in k», k3, BL and F.

e Important note: for a rigorous analysis, it is necessary to obtain data spanning a range of different

enzyme and substrate concentrations. In these circumstances, it may be possible, using global data

analysis, to fit all of the rate constants in the kinetic scheme.

@l Exercise 21.xls | _ (O] x|

A E C [u] E F H | J K L N —
;I ks [57]] 1.O0E+OF sum of error? :I
| ka[s"] 1 J
| 3 |ke[="]| D4E158
4 |ko[s7] 0.1
5 |ka[s7"]] ZE2445
| & BL -0.07401
| 7 |F 1.97E-07
| & |at
| 3
| 10 |t[s] [cE[M] eS[M]  cES[M] cES'[M] cF [I] Fz F-2 F3 Signal,theo | Signalexp | emror”
| 11 0 G.00E-08 5.00E-08 1] 1] 1] 0 1] 0 -0.0740141 001 0.00705837
| 12 | 001 ZEOE-05 2B0E-0F| 2.G0E-0E 1] 0/ E.2BE-07| 3E-02 1.154E-08 1] 0 -0.0740141 1]
| 12| 002 1.30E-05 1.90E-05| 2.09E-06 1.15237E-0% 0/ 261E-07) 3E-08 14266E-08| 1.16397E-11] 2.02853E-10 -0.0740141 ]
| 14| 002 157E-05 167E-0E| J40E-0E 2B4212E-08 2.02863E-10)247E-OF JE-02 167I4E-02 ZB4012E-11 BEST4ZE-10 0020262 1]
| 15 | 004 1.3EE-DE 11 1.06293E-09 -0.0542362 1]
| 16 | 005 1.21E-06 an 11 147021E-09 -0.0338555 1]
| 17| 006 1.10E-08 50 4 11 1.88236E-09 -0.0048357 1]
| 18 | 007 1.02E-08 e 11 229442E-03  0.0323135 1]
| 19 | 002 453E-07 10 2Y03ZE-08 0.077E0315 1]
| 20 | 003 4.10E-07 &0 4 10) 3.10685E-03  0.1309654 1]
| 21 | 0.1 &TiE-07 7 50 Tignalthed |10 3B0301E-09 0.19228422 0.2 5.9533E-05
| 22 | 011 240E-07 .E 10 4 ® Zignalexp| (100 RES1BSE-09 026142262 1]
| 22 | 012 215E-OF o 10 42716EE-09 0.33824233 1]
| 24 | 013 FO5E-OF 10) 4E4247E-09 042255733 1]
| 25 | 014 FTFRE-OF 20 4 0 S.004E-03 051419296 1]
| 26| 015 FEGE-0F 10 4 10] 5.35G39E-03 061236483 1]
| &F | 016 FHGE-0F 0 . ; ; 10] GEIEIZE-03 0.71568434 1]
| 28 | 01T TATE-OF o 1 2 5 5 0 6.031E-09 083116112 1]
| 29 | 012 FHEOTF ¢ [=] 10) E35406E-09 095020441 1]
| 30 | 019 FIEE-OF 10 BEETE4E-03 1.07EE2418 ]
| 21 0.2 TI2E-07 e e e = o= 10| BATIEE-09) 1.20723194 12 B2INME-D5
|4 4] M) E+S=ES=ES#=E+P / [«] | EIl:

Result

The data set can be fitted satisfactorily to the scheme in Eqn.9.24 with the following rate constants:

ki=1x10" M s k=1 s, ka=0.46 s, k,=0.1 s, ks=2.6 57"
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Exercise 22: Analysis of Michaelis-Menten kinetics II1.
Use numerical integration of Eqn. 9.7 to evaluate kinetic data according to the Michaelis-Menten

model.
Objective of the exercise: analysis of Michaelis-Menten kinetics.

The rate of an enzyme reaction following the Michaelis-Menten model is given by Eqn. 9.7:

k(CS) = kcat XC%
S m

At a given substrate concentration, the rate is given by the expression:

oc c
. :cEtothc X >
’ K
CS+ m

at

ot

and in a finite time interval At the following amount of product Acp is formed:

Cs

—3 XAt
cg +K

Ac, =cp . Xk, X

~ VYE,tot cat

Background information about this exercise can be found as follows:
e Introduction to numerical integration (Sect. 9.1.11)
e Michaelis-Menten kinetics (Sect. 9.2.2)
e Programming numerical integrations and fitting experimental data to these are covered in

Exercises 17 and 18.

Instructions

e The two parameters K, [nM] and ke, [min™'], are entered in rows 1 and 2. We take initial values to
be 100 nM and 20 min"".

e The constant terms Cs o1, Crtot and At are entered in rows 4-6. We take a time increment At= 0.05,
and the enzyme and substrate concentrations are given in the data.

e Row 8 contains the column headings: “t [min]”, “cs [nM]”, “Cpheo [DM]”, “F”, “Cpexp [nNM]” and
“error®”.

e Columns A-C of row 9 contain the initial values of the concentrations and the time: 0 (t), “=B5”

(cs) and O (cp).
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Column D contains the flux of E to P. This flux is given by the above equation. In this case for D9:
“=B9/(B9+$B§1)*$B$2*$B$4*$B$6”.

The experimentally determined product concentrations are entered into column E.

The errors squared are entered in column F. We again must use the conditional programming with
the IF-function, so for F9: “=IF(E9=0;0;(C9-E9)"2)”.

The integration begins in row 10:

The time is given by the old time + At. So enter in A10: “=A9+$B$6”.

cs 1s given by the old value minus F. So enter in B10: “=B9-D9*.

cp is the old concentration plus F. So enter in C10: “=C9+D9”.

Row 10 is highlighted and copied to all rows up to no. 409. Use the Pg-down key to enlarge the
highlighting.

The sum of errors squared is entered in cell D2.

Make a graph of cp heo and Cpexp vs. t. Use a line for cp meo Without data points, and only data points

for Cp exp.

The spreadsheet should look like the following:

& Exercise 22.xls H=] E3
a E C u] E F G H | J K —

1 K. [nM] 430 35774 sum of errar’ ;I

2 koo Imin™l | 19734864 26.808215 1000 -

3

4 | cg,, [Nl] 5

5 |5 M) 1000 oo

B |4t .oos

7

g | rt[min] oz [mM)] cp [MM].thea F cp [MM]exp | emrar’

9 0 1000 0 33104851 0.001  0.000001 E

10 005 99665951 3.3104851| 3.3065713 0 is

11 0.1 99335764 E6.6173565 35.5032454 u} o

12 015 990.0734| 9.5206019| 32996073 0

13 0.2 95677973 13220209 3.295957 u}

14 0.25 933453583 16.516166| 3.2922943 1}

15 0.3 95019154 19.805461 35.2856194 u}

16 035 97690292 23.09705 3.2549321 1}

17 0.4 97361799 26352012 3.2512323 0 0 10 15 20 25

15 045 970353676 29.663244| 3.2775202 1} t [minl

19 0.5 967.05924 32940764 32737955 30 5.6450955

20 0.55 96375544 36.21456| 32700583 1}

1 0.6 96051535 39484615 3 7663036 1} hl

M 4[> (WP analysis 1000 {500 £ 100 / ] TP

e We create a spreadsheet for each concentration.

e The global analysis is carried out as before using an analysis spreadsheet. Ky, ko and cgyor are

entered in the analysis spreadsheet in cells B1, B2 and B4.

e Substrate concentrations are entered in B5 to D5.
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e K, Keat, CEtot and csyor are transferred from the analysis spreadsheet to subsidiary sheets. To do this,
enter in place of the K, value in the subsidiary sheet: “=analysis!$B$1”. We proceed analogously

with Keat, CE ot and Cs tot -

e The sum of errors squared are transferred from the subsidiary sheets to the analysis sheet. They are
located in B6 to D6. So, for example in B6 write: “='1000"1$D$2“.

e Enter the sum of errors squared in E6.

e Copy the graph from the subsidiary sheet to the analysis sheet.

e Minimise E6 (sum of errors squared) with respect to variation of Ky, and ke,

The result should look something like the following:

3 Exercise 22 xls [_ O]
) B c & E F G H [ =

1 [0 490 1 =

2 k. [min'] 19.7

3

4 | g [M] 5

§ |cS,.. [nM] 1000 500 100

E | sumof erraor® Z6.8 9.5 1 .T_

-

&

- 1000 500 100

1? 1000 600 120

12 800 - 500 100

13 | = = 400 —

1a | £ 600 - E g B0

15 | S = 300 £ 6D

5| % 400 - S 200 % a0

17 200 - 100 20

15 0

19 0 10 20 30 L ' ;

20 0 10 20 30 ) o 10 20 30|
1 t [min] t [min] t [min]

2z =
4[4 [» [w analysis ¢ 1000 500 £ 100 / || | mwil;

Result

The data can be fitted to the Michaelis-Menten model with a K., value of 490 nM and a k.,; value of

19.7 min™'.

Exercise 23: Analysis of competitive binding equilibria.
Analyse the data according to the binding model in Eqn. 9.28. We assume that the signal arises solely
from the species AB. K| is taken to be 1x10° M,

Objective of the exercise: analysis of competitive binding processes.
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K, K,
AB+(C «=—F A+B+C «=—— A+ BC

Since analytical solutions of processes even as simple as that shown above (Eqn. 9.28) are intractable,
we will employ numerical methods. From an arbitrary initial state (e.g. only free A, B and C present)
we calculate for both isolated equilibria the final equilibrium concentrations, and the concentration
changes needed to establish equilibrium. We then use these fluxes. Since, in every step, there are
several fluxes, whose coupling is not taken into account, this approximate procedure takes us towards

the equilibrium, but not directly to it. So the equilibrium has to be located iteratively.

We may write:

K| = cAB,Equil./(CA Equil. X CB,Equil.)

or:

CAB.Equil. = K1 X CA Equil. X CB,Equil.

in which: ¢; gquit 1s the equilibrium concentration of i.

We are looking for the flux F, necessary to take us from the present concentrations to the equilibrium
concentrations:

CAB.Equil. = CAB T F

CA,Equil. = CA- F

CBEquil. = CB- F

Thus, we have:
(capt+ F)=K; x(ca—F)x(cg—F)

and:
Fz-(CA+CB+ 1/K1)XF+CAXCB—CAB/K1 =0

F=-p/2-[(p/2y-q]"
(Only the negative root is physically meaningful).

We calculate these fluxes for the two equilibria, and use these. We reach a new concentration state,

which is not the true equilibrium state, since we have not taken the coupling of the equilibria into
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account. So the operation is repeated with newly calculated fluxes, and after ca. 50 iterations, we reach
a stable equilibrium. The concentrations correspond to the joint equilibrium specified by the two

thermodynamic association constants K; and K.

For practical applications it is important that the calculated fluxes are not too large so that calculation
does not overshoot the target. So, for example, if K; and K, are very large, and ca>cg and cc>cp, our
initial analysis of the first equilibrium will show that almost all of the B must flow to AB. At the same
time, analysis of the second equilibrium will show that all of the B should flow to BC. When we take
account of the two fluxes, we obtain negative concentrations in the first iteration. Since in this
example, there are at most two fluxes for a single species (free B), this complication can be avoided by
reducing every flux by 50%.
Background information about this exercise can be found as follows:

e Introduction to numerical integration (Sect. 9.1.11)

e Analysis of competition experiments (Sect. 9.2.12)

e Programming numerical integrations and fitting experimental data to these are covered in

Exercises 17 and 18.

Instructions

e We need an analysis spreadsheet for each cc o1, in Which the dependence of the concentrations ca,
cB, Cc, CaB, and cpc on the constants K; und K, are evaluated for given values of ca total, CB total and
Cctotal -

e Rows 1 and 2 contain the variables K; and K,. We use 1¢€9 for K; and 1e6 for K.

e In row 4 we enter the analysis parameter “F-reduction”, which is not going to be fitted; we use a
value of 0.5.

e Inrow 7 we enter the column headings: “cy [nM], “cg [nM]”, “cc [nM]”, “cap [NM]”, “Cac [nM]”.

e The fluxes are then entered; for flux 1: in F6 we write “F;*, in F7 “p*, in G7 “q* and in H7 “F*.

e Flux 2 is entered similarly in columns I-K.

e In row 8 we enter the initial concentrations. We use 10, 10, 1000, 0 and 0 nM for A, B, C, AB and
AC.

e The fluxes are given by the equation shown above, so in row 8 p: “=-(A8+B8+1000000000/$B$1)”
(the factor of 10° is needed because concentrations are given in nM whereas binding constants are
M), q: “=A8*B8-1000000000*D8/$B$1” and F1 “=$B$4*(-F8/2-SQRT((F8/2)"2-G8))*, where
multiplication with B4 introduces the flux reduction. The entries for flux 2 are entered

o TilogioeslYrow 8, columns F-K) is highlighted and copied to row 9.
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The concentrations in row 9 are given by the simple expressions: cA “=A8-H8-K8”, ¢B “=B8-H8”,
cC “=C8-K8”, cAB “=D8+H8” and cAC “=E8+KS8”.

Columns F and G, and I and J are now hidden.

Highlight row 9 down to row 500.

We create a graph of the columns A to E. On this occasion we use a simple line (not XY) because
there are no X-values. Do not apply data symbols.

The graph is of limited value because there is too much C present. Highlight the graph, click once
on the legend, then once on the line for C in the legend. The line is now highlighted. Press DEL
and C disappears from the plot. We can now see that equilibrium has in fact been achieved.

In E1 we enter the value of cap at the end of the simulation: “=D200*

To make the graph more attractive, click on the X-axis and press DEL.

To check whether everything has been done correctly, we enter in C1 and C2 the equilibrium
concentrations that were reached at the end of the iterations: K, (in C1) “=D200/A200/B200” and
K, (in C2) “=E200/A200/C200”. We should now have the same numbers in B1 and C1 and in B2
and C2 .

The result so far should look something like the following:

'ﬁ Exercise 23.xls M= E3
A, E C D E H K 3‘
1 [Kap M) 1.00E+HJ3  1.00EHIS cap [nM] 3.63E+H10 ! o
2 |Kae M) 1.18E+H06 1.18E+0B
3
4 |F-reduction _
]
3]
7 |Ca [nM] cp [NM)] o [ni] Cap [NW] Car [nM] F1 FZ
g 10 10 100 a o 1.81E+HI0 5.23E-M
H FA7EHID BOREHIO 9.595E+HN 1.91E+H10 5. 23E-M 8.81E-M1 1.62E-01

10 B.A2EHD  T2IEHIO  953E+HM | 27SEHI0 5.95E-01 4. 17E-1 3.563E-02

11 BO7EHIOD  B7YY9EHIOD  9.95EHN 3.21EHIO 7. 20E-01 2.04E-M -4 .09E-03

12| 587E4D -1 27E-02
13| 5.78E+| 12 1. 17E-02
14| 574E+0 . | -3.60E-03
16| 572E+D E—Y—v 5 77ED3
16| s571E+ B8 L -3.68E-03
17| s571E+0 5 ——cB M| -2.29E-03
18| &570E+0 | — CAB [ni] -1.39E-03
19| 570E+0 s — CAC [nM] -8.35E-04
20| &70E+ 2 -5 0DE-04
21| &70E+ o -2 97E-04
22| A70E+0 A7BED4
4.4 » |;IF\ ;nalysis Fi kDI'I'I_'FI'I ‘}:Eumpa,{r kEmpS: Fi knmp"r:{' komp3 |H4 Tm_ - o i m'_lm le
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e Now set a flux reduction value of 0.1. It takes significantly longer to reach equilibrium. With a

value of 1.0, we observe oscillations, but the system does become stable and converges on the

“correct” solution. A flux reduction value of 0.5 seems to be optimal.

e The rest is straightforward: a spreadsheet is created for every cc - In an analysis spreadsheet, K,

is defined and transferred to the subsidiary spreadsheets. The analysis spreadsheet also contains the

background BL and the effect factor f. The concentrations of AB for each value of c 1 are taken

from cell E1 of the relevant subsidiary spreadsheet. The theoretical signal is calculated from the cap

values using the values of BL and F. Then errors squared are defined, and minimised with respect

to variation in K2, BL and f.

*ﬁ Exercize 23.1ls M= E
A B C D E F G H —

1 [Kag [M] 1.00E+08 ! —
2 Kae M1 1.18E+16

3 |BL 9.99E+01

4 1.00E+13 4500

8 |Ca[nM] 10 4000

B |cp [nM] 10 [ 54753608 3500

7 o [nh] Cap [Nhd] signal,thec  Signal error® Sl

g 0 382EH00 394E+03 3.94E+03 3.1887E06 | 3§ 4707

g 100 3.63E+00  375E+H03  3.75E+03 S56215E-05 | % 2000

10 200 3.45E+00| 3.58E+03  3.58E+03 7.B405E-06 1500 -

11 500 3.05E+H10  36E+03  3.1BE+H03  1.2025E-05 1000

12 1000 2.55E+00  2BEEHI3  2BBE+03 1.2794E-D5 500 -

13 2000  1.54E+H00  205E+03  2.05E+03 7.4302E-0G 0 , ,

14 5000 1.14E+00  1.24E+03  1.24E+03 2.0139E-14 0 so00 10000

15 10000 6.79E-01  7.83E+02  7.83EH)2 5.8835E-06 cc [aM1

16 .
17

18 -
4| 4w [panalysis & kompl £ komp2z / kamp3 4 kompt £ komps £ k| 4] | I

Result

The binding constant for C to A is about 1.18x10° M.
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