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9.4  Preface 

The data analysis exercises on this CD are based on the use of Excel spreadsheets. Functional sheets 

can be programmed in very many different forms, and it is useful to define certain rules or guidelines 

which will help the reader to use them more effectively and to locate potential errors. These guidelines 

are usually contained in the instructions for the exercises, and it is important that they should be 

followed carefully, even by users who are familiar with the specific data handling problem. The test 

data for the analyses are in the Excel file “Test Data.xls” on this CD. Pre-programmed data 

spreadsheets are in the folder “Solutions” stored under “Exercise XYZ.xls”. These files can be used to 

track down errors in user programmed files, or directly to analyse experimental data. 

 
 

9.5  Introduction to MS-Excel 
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Excel is a program that carries out mathematical operations in a spreadsheet format. When the 

program is opened, a spreadsheet appears which is composed of many cells organised in columns and 

rows; columns are denoted by letters A,B,C etc. and rows by numbers 1,2,3, etc. A cell is uniquely 

identified by specifying both, so E6 is the cell at the junction of column E and row 6. Cells can contain 

text, numbers or formulae. A cell containing a formula uses the values contained in other specified 

cells to calculate the value in its own cell. It should be noted that although the cell actually contains a 

formula, by default only the result is displayed. The use of formulae in this way enables mathematical 

operations to be carried out simultaneously on multiple data elements. If the number entered in a cell 

which is specified by a formula is altered, then the new number is automatically used in the Excel 



calculation. The diagram below illustrates some of the important elements in an Excel spreadsheet (as 

shown here in the layout of Excel 97): 

 

 

Formula Bar 

Row Heading 

Column Heading 

Chart Wizard 

Sheet Tab 

 

• To enter data into a cell move the cursor to the cell using the mouse or arrow keys, left-click to 

highlight, enter the number or formula and complete the operation by pressing the ENTER key. 

• To enter complex functions, highlight the cell, then left-click with the mouse on the formula bar, 

and enter formulae or text, or alternatively edit the existing contents of the cell. 

• Formulae can either be entered directly as text, or by selecting the desired cells using the mouse. 

For example, if one wished to insert the quantity =A4+1 into cell C4 (all formulae begin with the = 

sign), first click on C4, type “=”, click on A4, type “+1” and press the ENTER key. 

• “=B4+C4” written in A4 means that Excel will calculate the sum of the numbers in cells B4 and C4 

and will place the result in cell A4. This operation is done easily: click on A4, type “=”, click on 

B4, type “+” click on C4 and then press ENTER. 

• Relative cell references: on normal entering of a formula, the cell references are defined by their 

relative position on the spreadsheet. For example, if the expression “=B4+1” is placed in cell A4, 

this means that Excel takes the value in the neighbouring cell on the right and adds one to it. If this 
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cell is copied to A5, the formula is changed by Excel to “B5+1”, and similarly copying to B4 would 

change the formula to “C4+1”.  

• A fixed cell reference can be specified using the $ symbol, and in this case the cell reference is not 

altered on copying. For example the expression “=$A$4+5” would always take the number in cell 

A4 and add 5 to it. Fixed cell references can also be set up using <F4>, either by pressing the <F4> 

key or clicking on <F4> after entering the formula. Using a fixed cell reference for a number is 

easier as changing the number in the cell means that the whole spreadsheet can be changed 

immediately.  

• Fixed and relative cell references can be combined, for example “=$A5+1” entered in A4 would be 

changed to “=$A6+1” on copying to B5. The <F4> function can be used to alternate between fixed 

and relative cell references. 

• Regions of the spreadsheet can be specified as follows: “A2:C4” indicates a continuous region from 

A2 to C4. “A2:A6;C2:C6” indicates two separate regions from A2 to A6 and from C2 to C6. 

Regions can either be entered directly or highlighted using a mouse. Separated regions can be 

highlighted with a mouse by pressing the Ctrl key. 

• In order to keep the structure of the spreadsheet clear, values of the independent variable (x) are 

always entered as the first column. Directly above these values there is a column label. The 

corresponding y values are placed in neighbouring columns, also labelled. All of the values in a 

particular row relate to the x value in the first column of that row. 

• A file comprises (in general) several spreadsheets which can be accessed by clicking on the Sheet 

Tab. 

 

Highlighting cells 

Click the mouse on the corner of a region that is to be highlighted, hold down the left button and drag 

over the desired region. Cells can also be highlighted using SHIFT and ←, ↑, → or ↓. Separated areas 

are highlighted as follows: highlight the first area as described above, then press the Ctrl key and 

highlight further areas by left-clicking with the mouse. 

 

Copying cells 

To copy a formula from one cell to another cell in column A, highlight the formula and then press 

Ctrl-C (“C” stands for copy, and the formula is now in the clipboard). Press shift, and using↓, ←, ↑ 

and → enlarge the highlighting over all the cells that should contain the formula. End the operation by 

pressing ENTER. 
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There are at least three ways of making entries in Excel: keyboard, combined keyboard and mouse, 

and mouse. The example just given illustrates how to copy a formula by keyboard operations. 

Alternatively, the contents of a cell can be copied to the clipboard (using Ctrl-C or Shift-Del, or using 

the mouse and the “Edit/Copy” command in the main menu), and then highlight the desired area and 

press ENTER. The same can be achieved by clicking on a cell, and then on the heavy corner in the cell 

frame, and then enlarge the highlighted area by left clicking and dragging the mouse. In what follows, 

only one mode of operation is described, chiefly using the keyboard. 

 

Creating graphs and diagrams 

• Graphs and diagrams can be created as follows: first the appropriate data cells are highlighted, 

preferably with the relevant title, and then click on the Chart Wizard and select the desired 

graphics, for example: XY (scatter) with unsmoothed lines, complete by selecting Finish. 

• To remove the grid lines from the graph, click on a line and press Delete. 

• To alter the grey background of the plot, double-click on the surface and from the resulting Menu 

select for Border “black” and Area “none”. 

• To change the axis labels, click on the diagram and select “Chart/Options”. 

• We adopt the convention here that experimental data are represented by points without lines and 

fitted results are lines without points. To change the appearance of the fitted curves, double-click on 

a curve and select “black” for Line, and “none” for Marker. For the data points select “none” for 

Line and “black” for Marker. 

• To present the data on a logarithmic X-axis, double-click on the X-axis, select “Scaling” and then 

“Logarithmic“. 

• To generate a bar diagram, highlight the data, click on the “Chart Wizard“ and select “Column“ and 

then “Finish“. 

 

Use of the Solver Module 

The Solver module can be used to optimise values in specific cells as a result of varying the values in 

other cells. We use it chiefly to minimise the sum of errors squared by variation of the parameters of a 

model. To do this click on “Solver“ in the “Tools” menu. The following window appears: 
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• The Target Cell is the value to be minimised. To select D4 for example either enter “D4” in the 

box, or click on the “Set Target Cell“ box in the Solver window, and then click on the cell D4. 

• Select “Min”. 

• “By changing cells“ indicates the cells whose values are to be varied. For example, to select cells 

B1 and B2 either enter “B1;B2” (or “B1:B2”) into the box, or click on the box then click with the 

mouse on B1 hold down the left button and drag to B2. 

 

Click on “Options“: 

 
 

• “Use Automatic Scaling“ must be selected. 

• “Precision“ is set to 0.00000001, “Convergence“ to 0.000001. 

• The other fields are left at default values. If minimisation does not work, try selecting “Quadratic”, 

“Central” and “Conjugate” 

• Click on OK to return to the previous window. 

• Select “Solve“. 
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• If the minimisation is successful select OK and the result appears on the screen. If an error 

message appears select Cancel. 

 

Checking the installation of MS-Office 

The Solver option of MS-Excel used on this CD is located in the “Tools” menu. Unfortunately, Solver 

is not a standard option in MS Office setup, and it may therefore not be available or activated on some 

computers. If there is no “Solver” entry in the Tools menu of your computer, select “Tools/Add-Ins“. 

Scroll down the list of available Add-Ins in the window, click on the “Solver Add-In” and finish with 

OK. 

 
 

If there is no “Solver Add-In” entry in the Add-Ins window, or if “Solver” still does not appear in the 

“Tools” menu, re-install Excel in the full version form the MS-Office CD. If you use a different Excel 

version also consult the online help. 

 

Exercise 1: Introduction to the use of MS-Excel. 

Set up a spreadsheet in which the equation y=x3-50x-25 is calculated in the range x=0 to x=10 with 

intervals of 0.5, and present the results in graphical form. 

Objective of the exercise: to gain experience of using MS-Excel 

Instructions:  

• Open an empty spreadsheet. 

• In box A1 enter “X-values“, in B1 “Y-values“. 

• In A2 enter the value “0”. 

• In A3 enter the expression “=A2+0.5“. 
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• Move to row 3 of column A (A3), and enter “=“, use the up-arrow ↑ to move the cursor to cell A2 

enter “0.5” and press ENTER. 

• To copy the formula to the other cells in column A, return to cell A3 press Ctrl-C (“C” for copy, to 

place the formula in the clipboard). Press Shift and extend the highlighting using the ↓ to row 22 

and press ENTER 

• The y-values are entered in row B. Move to B2 and enter “=”, move the cursor to cell A2 using the 

← arrow, enter the expression ”^3-50*”, move the cursor again to A2 with the ← and enter “-25”, 

complete by pressing ENTER. Note that the ^-symbol does not appear on the screen until the next 

symbol is entered. 

• This has entered the formula A2^3+50*A2-25 into cell B2. This formula is copied to the other cells 

of the rows up to cell B22 using Ctrl-C as described above, and this generates the desired set of 

data. 

• Create a graphics plot of the data with column A as x-values and column B as y-values. To do this, 

highlight the data from A1 to B22, click on Chart Wizard, select “Scatter(XY)”, and chose the plot 

that shows only lines. 
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The result should look something like the following: 

 
 

Exercise 2: Linear Regression. 

In this example we shall determine the initial rate of an enzyme reaction using linear regression. The 

aim of the exercise is to programme a spreadsheet that will carry out a linear regression, and enable the 

results to be shown graphically. We shall also show how outliers can be treated without loosing the 

original data. 

 

Objectives of the exercise: manipulations with MS-Excel functions, treatment of outliers, 

programming a linear regression. 

 

Useful background information about this exercise can be found as follows: 

• Fitting data by the method of least squares (Sect. 9.1.8) 

• Linear regression (Sect. 9.2.1) 
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Instructions: 
• Open a new table. 

• The first row contains the titles for the two columns: “t [min]” for the x-values in column 1, and “% 

product” as the readings in column 2. 

• Column 3 contains a copy of the data in column 2 which can be edited without deleting the original 

data. 

• Go to the second row of column 3 (C2), enter “=” and use the left arrow “←” to move the cursor to 

cell B2 and press ENTER. 

• To copy the formula to the other cells in column C, leave the cursor in C2 and press Ctrl-C (the 

formula is now held on the clipboard). Press Shift and enlarge the highlighted region with the down 

arrow “↓”, and complete the operation by pressing ENTER. 

• The Excel functions “intercept” and “slope” are now used. 

• The intercept function: move the cursor to C13 and enter “=intercept(”; highlight the y-values with 

the mouse (column C, without a title), enter “;”, highlight the x-values (column A, without a title), 

and then press ENTER. 

• The slope function: move the cursor to C14, enter “=slope(” highlight the y-values with the mouse, 

enter “;”, highlight x-values, and press ENTER. This slope corresponds to the initial rate of the 

reaction (v°) expressed in %product/min. 

• We now calculate the predicted data for the linear regression in column D: to do this, move the 

cursor to D2, enter “=”, click with the mouse on C10, press <F4>, “+” then click with the mouse on 

A2, enter “*”, click with the mouse on C11, press <F4> and then ENTER. 

• Copy the formula into the other cells in column D (using Ctrl=C, see above). 

• Create a plot of the data points and the linear fit: first highlight the results to be plotted by moving 

the cursor to A1, and highlighting cells to B8, press Ctrl and then highlight D1 to D8. Click on 

Chart Wizard, and then proceed as described above in Creating graphics. 

• Data points that deviate significantly from the linear fit can be deleted from column C. This is often 

the case for data points occurring at the end of the set of data, where deviations from the linear 

initial rate can become pronounced. 

 

The result should look like the following. In this example the final data point is excluded from the 

linear regression. 
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We must now convert the initial rate into turnovers/min (v’=v/cE,tot). 

• First, we need to make place at the top of the spreadsheet. Click on the row heading of row 1 and 

highlight rows 1-3. Right click the mouse on one of the row headings and select “insert cells”. 

• In the new A1 cell, insert “c(E) [nM]”, and in A2 “c(S) [µM]” 

• The numerical values are inserted in B1 and B2. 

• In A19 the term “v’ [1/min]” is entered. 

• Since data are entered in %product and the time increment is min, the slope of the linear regression 

gives the initial rate in %product/min. This has to be divided by 100, multiplied by c(S) (in µM), 

multiplied by 1000 and finally divided by c(E) (in nM) to yield the number of turnovers per enzyme 

molecule per minute (v’). 

• This is done as follows: in cell B19 place “=” then click on C14, type “/100*”, click on B2 and 

insert “/”, click on B1 and enter “*1000”. The evaluated turnover rate is now in B19 

• The result is rounded to 2 decimal places by clicking twice on the –symbol. 
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Result 

The fitted data give an initial turnover rate of 0.08 turnovers per enzyme molecule per min. 

 

Exercise 3: Michaelis-Menten Kinetics I 

Evaluate the specimen data by linear regression and fitting the initial rates using the Michaelis-Menten 

Model. Carry out an error analysis by systematic removal of individual data points in the Michaelis-

Menten fitting. 

Objectives of the exercise: MS-Excel programming using multiple data sheets; non-linear regression 

using the MS-Excel Solver module; programming a data table for Michaelis-Menten kinetics; error 

estimation. 

Exercise 3 is linked to Exercise 2. 

Background information about this exercise can be found as follows:  

• Fitting data by the method of least squares (Sect. 9.1.8) 

• Introduction to error estimation (Sect. 9.1.10) 

• Michaelis-Menten kinetics (Sect. 9.2.2) 

 

Instructions 

Firstly, carry out linear regressions on the five kinetic data sets, each on a separate Excel spreadsheet. 

• One spreadsheet is used for each substrate concentration, and together these spreadsheets form a 

file. 
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• To copy an already existing spreadsheet, right click with the mouse on the sheet tab at the bottom, 

select Move/Copy, click on Copy, then OK. Alternatively, left click and hold down on the sheet tab, 

press Ctrl, move the mouse to right and release. 

• A single click on the sheet tab changes between the various spreadsheets in a file. The “Window” 

menu can be used to change between the various open files. 

• It is helpful to use the substrate concentrations as the spreadsheet name. To do this, double click on 

the sheet tab and enter the new name. 

 

For the Michaelis-Menten evaluation, change to a new spreadsheet that we call “MMK”: 

• There are only two parameters: Km und kcat. 

• In cell A1 enter “Km [µM]”, in A2 “kcat [1/min]”. Initial values of 2 are entered into B1 und B2. 

• The headings of the data files are entered into row 5: “c(S) [µM]”, “v’ [1/min]”, “v’,theo”, “error²”. 

v’ again is defined as v/cE,tot. 

• From row 6 onwards, the substrate concentrations are entered into column A, and the initial 

reaction rates from the linear regressions in column B (with units 1/min). 

• The linear regressions and the evaluation are linked online: enter “=”, left click on the sheet tab 

containing the relevant linear regression, and click on the cell containing the result (the value 

k/min), and press ENTER. When c(S)=0.1 µM the value shown is “='0.1'!B19“ (sheet 0.1, cell 

B19). Now, when the linear regression changes, the values in the Michaelis-Menten table alter 

correspondingly. 

• Column C contains the theoretical data, i.e. the calculated values kcat * cS/[Km + cS]. To calculate 

this, the following expression is entered into C6: “=$B$2*A6/(A6+$B$1)”. This formula can either 

be typed in directly, or using the mouse and <F4> as described above, followed by copying the 

formula into the other cells of column C. 

• Column D contains the squares of the deviations between the experimentally measured and 

calculated values, entered as: “=(B6-C6)^2”. (Note that the ^-symbol does not appear until the next 

character is entered.) 

• In cell D4 we enter the sum of deviations squared. To do this, the Excel function “sum” is used. 

Enter in D4: “=sum(” + then highlight the individual errors with the mouse, and press ENTER. This 

is the value that we will shortly minimise in the fitting step. 

• Graphical presentation: highlight the area A5-C10, click on the Chart Wizard, and select 

XY(Scatter), etc., as before. The plot should show the data points as symbols without line, and the 

theoretical values a line without symbol. This is done by double-clicking on the plot, then double-

click the relevant curve and select as appropriate from the menu. 
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So far, the results should look something like the following: 

 

 
 

• We are now in a position to do the data fitting. Call up Solver from the tools menu, and minimise 

the value of D4 as B1 and B2 are varied. The result of the minimisation should look as follows, 

with the data fitting well to the theoretical curve. 

 
 

• To remove points from the fitting process, the relevant error squared data point is simply deleted 

from the column. 

• To restore the error squared point to the fitting, re-enter the formula in the respective cell. 
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• The error analysis is carried out, by removing one error squared term at a time from the data in 

column D and repeating the minimisation step. The system carries out the fitting omitting the 

selected point, and we obtain new values for the solution. On omitting the errors squared term for 

the last data point, we obtain the following values for Km (1.10 µM) and kcat (0.92 min-1), and we 



use the deviation of these values from the values determined from the other of the data points as an 

estimate of the error. 

 

Result 
The best values of the parameters to fit the data are: Km = 1.18 (±0.08) µM and kcat = 0.95 (±0.03) 

min-1. 

 

Exercise 4: Determine the apparent first order rate constant of dissociation kinetics 

 

Objective of the exercise: Evaluation of the kinetics of a dissociation process. Establishing the 

robustness and accuracy of the fit by examining the effect on parameter estimates of omitting 

individual points from the fitting process. Programming a spreadsheet for dissociation kinetics. Error 

estimation. 

Background information about this exercise can be found as follows: 

• Fitting data by the method of least squares (Sect. 9.1.8) 

• Linear regression (Sect. 9.2.1) 

• Dissociation kinetics (Sect. 9.2.3) 

 

Instructions 

• We make the assumption that only the species AB contributes to the measured signal, and that the 

there is a constant background (BL). 

• The first three rows contain the parameters: A1: “k-1”, A2: “BL” and A3: “f”. 

• In cells B1-B3 we enter 1 as initial values for k-1, BL and f. 

• Row 6 contains the titles of the data sets: “t [min]”, “CPM”, “CPM,theo”, “error²”. 

• From Row 7 onwards, the times are entered in column A, and the measured data in column B. 

• Column C contains the theoretical data: enter “=$B$2+$B$3*exp(-A7*$B$1)”. 

• Column D contains the errors squared. The sum of errors squared is placed in cell D5. 

• Define the graphics plot: highlight columns A, B und C from row 6, then select Scatter(XY) from 

the Chart Wizard. 

• Minimise the value of the sum of error squared in D5 with respect to variation of B1-B3. 

• Note that in this evaluation, rather untypical, there are no concentrations (cpm is used instead). 
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• To remove points from the fitting process, the relevant error squared data point is simply deleted 

from the column. 

e formula in the respective cell. • To restore the error squared point to the fitting re-enter th

 

The spreadsheet should look something like the following: 

 

er rate constant of dissociation is k-1 = 0.12 ±0.01 min-1. If, however, we assume 

at the points at 0.25 min and 0.5 min are incorrect and omit these from the fitting, we obtain a value 

Exercise 5: Global analysis of multiple data sets 

Evaluate dissociation kinetics using three independent data sets simultaneously. 

Object of the exercise: global analysis of multiple data sets. 

Exe s

ackground information about this exercise can be found as follows: 

l fitting of multiple data sets (Sect. 9.1.9) 

• 

 

Result 

The apparent first ord

th

for k-1 of 0.09 min-1. 

 

rci e 5 is linked to Exercise 4. 

B

• Globa

 

Instructions 
• BL and f can vary from one experiment to another (they are local parameters) 

k-1 must be the same for all data sets because it is a physical constant (it is a global parameter) 
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• 

, and it is important that the 

A joint evaluation of all three data sets requires 7 parameters in total: k-1, BL1, f1, BL2, f2, BL3 and 

f3. We use a separate spreadsheet to manipulate these parameters and to carry out the evaluation. 

The fitting is carried out using this “master” analysis spreadsheet

transfer of parameters is carried out correctly. All parameters are entered into the analysis 

spreadsheet, and transferred to the subsidiary sheets. The sums of errors squared are calculated in 

the subsidiary sheets, and then transferred back to the analysis sheet. 

 
ets. This, in brief, involves 

• 

• 

 

in D2 to D4 the corresponding BL values. Initially all if these values are set equal to “1”. 

• 

 highlight the relevant field and press ENTER (Excel will return automatically to 

the three 

• 

• First, each of the three data sets must be evaluated in their own data she

the following steps: copying the table, alter the name, enter new data, prepare graphics, and 

analyse. Then open a new empty spreadsheet, and change its name to “analysis”. 

In the analysis sheet, enter “k-1”, “f” and “BL” in A2, A3 and A4 respectively. The titles “Data set 

1”, “Data set 2” and Data set 3” are entered into cells B1, C1 and D1 respectively. In B2 is the

value of k-1 (which is valid for all three data sets), in C2 to C4 are the f-values for the three data 

sets, and 

• Row 5 contains the errors squared for the individual data sets, and “sum of error²” is entered into 

cell A5. 

Now the numerical values for k-1, BL and f must be transferred from the master sheet to the data 

sheets. To this end, go to the data sheet, select the field containing k-1, BL or f, type “=”, move to 

the analysis sheet,

the original subsidiary sheet). This process should be repeated with all 3 parameters in 

subsidiary tables. 

Note: from now on, these parameters must only be entered and fitted in the analysis sheet. 
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• 

 errors squared from the 

B5 and enter “=”, move to the appropriate subsidiary sheet 

• 

• 

aphics, press Ctrl-C (this places the Graphics in the clipboard), move to the analysis 

sert. The size and position of the plots can be altered using 

Move to the analysis worksheet. Enter the sum of errors squared in rows 8-10. Note that the 

direction of transfer is now reversed: the analysis sheet takes the sum of

subsidiary sheets. To do this, go to cell 

and highlight the cell containing sum of errors squared and press ENTER. 

In cell E5 we enter the sum of B5...D5. 

• Fitting: the value in E5 is minimised with respect to the variation of B2 to B4, C3 to C4, D3 to D4. 

At the same time, all of the subsidiary sheets are evaluated. 

Graphic plots can also be assimilated into the analysis worksheet. Go to the subsidiary sheets, 

highlight Gr

sheet, click in a cell and press Shift-In

the mouse. 

The result should look like the following: 

 

esult 

iven by an apparent dissociation rate constant k-1=0.11 min-1. 

ighting of data sets 

e an appropriate weighting for the 

errors squared. 

Exe s

 

R

The best global fit to all data sets is g

 

Exercise 6: We

Evaluate two dissociation kinetics data sets simultaneously. Us

Objective of the exercise: global data analysis; weighting factors. 

rci e 6 is linked to Exercise 5. 
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Background information about this exercise can be found as follows: 

ta sets (Sect. 9.1.9) 

Ins

• 

• .17 min-1. Checking this, however, shows that the fit to data 

d by a factor of 40000 (=200×200). This can be done by entering “='Data 

• Global fitting of multiple da

 

tructions 

First, proceed as in Exercise 5. 

The analysis gives a value for k-1 of 0

set 2 is poor. This arises because the effect factor of this data set is about 200 fold smaller than that 

of data set 1. Consequently, the sum of errors squared of data set 2 is also much smaller, despite the 

fact that the fit to the data is not good. 

• In order to give both data sets comparable weight, the weighting of the sum of errors squared of 

data set 2 must be increase

set 2'!D5*40000” in cell C5 of the analysis sheet. 

• A new weighted fitting leads to a value for k-1 of 0.26 min-1. The two data sets are now of equal 

importance in the fitting. 

Without error weighting, the results look as follows: 

 
 

Whereas with error weighting the results are as below: 
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Result 
When the two data sets are weighted so that they are of equal significance in the fitting, the best fit 

value is k-1=0.26 min-1 ; unweighted data sets give a best fit of  k-1=0.17 min-1, and data set 2 is very 

poorly fitted. 

 

Exercise 7: Michaelis-Menten kinetics II 

Evaluate kinetic data according to the Michaelis-Menten model by direct fitting of the initial rates. 

Objective of the exercise: evaluation of Michaelis-Menten kinetics 

In Exercise 3 we evaluated the kinetics of an enzyme reaction following the Michaelis-Menten model. 

We used linear regression to calculate the initial rates at different substrate concentrations, and these 

initial rates were then fitted by non-linear regression to the Michaelis-Menten equation. One problem 

with this approach is that the linear regression is carried out using somewhat arbitrary criteria, and the 

non-linear fitting follows using derived or secondary data. This can introduce a subjective element into 

the evaluation that may be particularly pronounced with noisy data. To minimise this element of 

subjectivity, this exercise evaluates kinetic parameters from the primary data by directly coupling 

linear regression of individual data sets with fitting to the Michaelis-Menten model. 
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Background information about this exercise can be found as follows: 



• Global fitting of multiple data sets (Sect. 9.1.9) 

• Michaelis-Menten kinetics (Sect. 9.2.2) 

 

Instructions 

First we calculate theoretical initial slopes for each substrate concentration using arbitrary initial 

values for Km and kcat. 

• This step basically follows the procedure developed in Exercise 3. Using these values and a y-axis 

intercept that is also varied during minimisation, a straight line is calculated for each data set in a 

subsidiary sheet. Then the errors squared are calculated between each data point and the 

corresponding point on the straight lines. The sum of errors squared values are transferred back to 

the main sheet, where minimisation is carried out. 

• Km und kcat are placed in row 1 and 2. In cell A1 enter “Km [µM]”, in A2 “kcat [1/min]”. Initial 

values of 2 are entered into B1 und B2. 

• In A4 type c(E) [nM], in B4 type 1, for the enzyme concentration in nM. 

• The headings of the data files are entered into row 6: “c(S) [µM]”, “v’,theo [1/min]”, “intercept” 

and “error²”. 

• From row 7 onwards, the substrate concentrations are entered into column A. 

• In column B v’ values are calculated. The rate for an enzyme catalysed reaction (v’=v/cE,tot) is given 

by the Michaelis-Menten equation: 
mS

S
catS Kc

ck)(cv'
+

×= . Therefore, for example B7 should 

contain the formula: “=$B$2*A7/(A7+$B$1). 

• In column C “0” as starting value for the intercept is typed in any cell. 

 
 

Now the subsidiary sheets need to be programmed: 

• We need one sheet for each concentration. Name the sheets accordingly.  
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• The first two rows contain date required to calculate the straight line: Type “intercept” and “v’ 

[1/min]” in column A and in column B take the numbers from the analysis sheet. For example in the 

0.1 sheet highlight B1, type “=”, change to the analysis sheet by clicking on the analysis sheet tab, 

highlight cell C5 and press ENTER. “ =analysis!C5” appears in B” of the 0.1 sheet. Put “ 

=analysis!B5” in B2 of the 0.1 sheet. 

• We put c(E) in nM in row 4, c(S) in µM in row 5. 

• In row 7 type the four the column headings: “t [min]”, and “% product, exp”, “% product, theo” and 

“error²”. 

• Row 8 and following contain the data in columns A and B. 

• In column C the theoretical straight line which represents the initial slope of the reaction at the 

given substrate concentration is calculated. The amout of product (in %) formed in the initial phase 

of the reaction during time t is given by: 

Prod [%] = cE, tot [nM] × t [min] × v’ [1/min] × 100/cS, tot [µM] /1000 

Note, that the correction factor of 100 appears to obtain the amount of product in %, and the factor 

of 1000 is necessary, because we specify the enzyme concentration in nM and the substrate 

concentration in µM. 

• We must also add the intercept to this expression. Therefore, the final formula for example in cell 

C8 is: =$B$4*A8*$B$2*100/$B$5/1000+$B$1. 

• The errors squared are calculated in column D, the sum of errors squared is taken in cell D6. 

• Create a plot of the data points and the linear fit. Copy the plots into the analysis sheet. 

• The sum of errors squared of each subsidiary sheets is copied in column D of the analysis sheet, and 

the sum of them is placed in cell D5.  
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• Now D5 of the analysis sheet is minimized by variation of B1 and B2 and C7 to C11. 

• Note, that in this analysis only data from the initial phase of the reaction should be used. 

 

The result should look like the following: 

 
 

Result 

The data are fitted best by a Km of 1.24 µM and a kcat of 0.63 min-1. 

 

Exercise 8: Binding equilibrium 

Objective of the exercise: evaluation of a binary thermodynamic binding equilibrium; programming of 

complex functions in MS-Excel 

Background information about this exercise can be found as follows: 

• Fitting data by the method of least squares (Sect. 9.1.8) 

• Introduction to error estimation (Sect.9.1.10) 

• Analysis of simple binding data (Sect. 9.2.6) 

 

Instructions 

This exercise does not introduce anything new in terms of creating the spreadsheet. We assume that at 

constant A the concentration of B is increased and that only AB contributes to the observed signal. The 

concentration of A is a constant in the analysis, but the more complex mathematical expression of Eqn. 

9.12 requires a stepwise approach in the programming. 
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• The first row of the spreadsheet contains the constants, in this case only one, the total concentration 

of A (cA,tot). 

• The parameters are placed in the next rows (BL, f, Kass). We take 0, 1 und 1×107 as initial values for 

these. 

• Leave a row free. 

• Then the column titles are inserted (“cB,tot
”, “Signal” etc.). 

• Concentrations are inserted in column A, the experimental reading in column B. 

• To calculate theoretical data, a stepwise approach is recommended to enter the equation. Enter p in 

column C, q in column D, (p/2)^2-q in column E, and the square root of column E into column F. 

• To do this we use the Excel function SQRT (type “=SQRT(” + ← + ENTER). 

• Then the theoretical concentration of AB is programmed into column G (Eqn. 9.12). 

• From this the theoretical signal can be calculated in column H: signaltheo = BL + cAB,theo × f 

• Adjacent to this (Column I) are inserted the errors squared (from the differences between the 

experimental and calculated signals), and above this the sum of errors squared. 

 

The spreadsheet should look like the following: 

 
 

• To make the sheet easier to follow, click on C in the column heading, and highlight the columns 

from C to G. Right-click with the mouse in the column heading area and select Hide. 

• We create a graphics plot showing cB, experimental signal and theoretical signal. 

• The fitting is carried out by minimising the sum of errors squared with respect to variation of KAss, 

BL and f. 
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Result 
The best fit to the data is obtained with KAss=5×107 M-1. 

 

Exercise 9: Independent identical binding sites 

Analyse a binding process and evaluate the binding parameters n (number of sites) and KAss (the 

association constant) assuming independent binding to identical sites.  

Objective of the exercise: analysis of binding to obtain optimal values of n and KAss 

Exercise 9 is linked to Exercise 8: 

Background information about this exercise can be found as follows: 

• Selection of appropriate models (Sect. 9.1.5) 

• Independent identical binding sites (Sect. 9.2.5) 

 

Instructions 

Programming a datasheet to evaluate association constants following the procedures described in 

Exercise 8 should be straightforward. We assume that the signal obtained in proportional to the 

amount of B bound to A. An additional global parameter in this exercise is n, the number of binding 

sites for B on A. Use Eqn. 9.13. A few tips: 

• There are two data sets; the global parameters are n and KAss, and the local parameters BL1, BL2, f1 

and f2. 
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• First, draw up two spreadsheets to evaluate the individual experiments and test these individually. 

• Now programme an analysis sheet and carry out a global analysis of the two data sets. 

 

 

 
 

Results 

The two data sets can be only be jointly fitted with values for the binding parameters of n=2 and 

KAss=5×107 M-1. Thus, the fact that two B molecules bind to one A was simply invisible on the basis of 

data set 1 alone! 
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Exercise 10: Independent binding sites II 

Evaluate binding data according to a simplified model, and test whether the data can be fitted 

satisfactorily on the basis of a single binding site 

Objective of the exercise: Fitting of binding data to simplified models; selection of appropriate binding 

models. 

Background information about this exercise can be found as follows: 

• Selection of appropriate models (Sect. 9.1.5) 

• Fitting data by the method of least squares (Sect. 9.1.8)  

• Analysis of simple binding data (Sect. 9.2.6) 

• Independent identical binding sites (Sect. 9.2.5) 

 

Instructions 

• In this exercise we use Eqn. 9.16 for the analysis. 

• The global parameters are KAss,1 and KAss,2, and the local parameters BL and f. Enter the parameters 

in rows 1-4. 

• Row 7 contains the column headings: “cB [M]”, “signal,exp”, the saturation of site 1 with B “θ1”, 

the saturation of site 2 with B “θ2”, the relative saturation of all binding sites “θbound”, the calculated 

signal “signal,theo” and “error²”. 

• In column A enter the concentration of B, and the experimental signal in column B. Enter Eqn. 9.16 

for site 1 into column C, e.g. in cell C8: “=$B$3+$B$4*$B$1*A8^$B$2/(1+$B$1*A8^$B$2)”. In 

column D enter the corresponding expression for site 2, and in column E the total saturation of all 

sites (θ1+θ2). The calculated (theoretical) signal is entered into column F, the errors squared in 

column G, and in G6 the sum of errors squared. 

• In the fitting we minimise G6 with respect to variation of B1 to B4. 

 27 



 
 

• The evaluation of these data provides our first example of the occurrence of local minima in data 

fitting. If we take identical initial values for KAss,1 and KAss,2 , the program may attempt to fit the 

data with two identical binding constants. That works satisfactorily for data set B, but not at all well 

for data set A. In this case, it is advisable to start with significantly different initial values for the 

binding constants, e.g.100 and 10000. 

• To evaluate the data with one binding site, we make a copy of the spreadsheet, named in “1 site”, 

calculate the theoretical signal for θ1 and delete columns D and E. After deleting row 2, E5 (sum of 

errors squared) can be minimised with respect to variation of B1:B3. The best fit is significantly 

worse than that possible with the assumption that n=2. 
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• Data set B is evaluated similarly. 

 

Result 
Data set A can be fitted significantly better with two binding constants (K1=50000 M-1, K2=200 M-1) 

than with one. Data set B also gives a better fit with two binding constants (K1=10000 M-1, K2=1000 

M-1), but the fit with a single binding constant (K1 = 3450 M-1) is also quite reasonable. The results of 

this exercise make two important points: 1) it is difficult to establish unequivocally that two binding 

sites are present if their binding constants differ by only an order of magnitude, or less; 2) if the 

binding constants do differ significantly, accurate analysis requires data in which ligand concentrations 

are varied over several orders of magnitude, which can be experimentally very difficult to accomplish.  

 

Exercise 11: Independent binding sites III 

Evaluate binding data according to a simplified model. Assume that there are two sites and that the 

only species producing a signal is A fully saturated with B, i.e. BAB. 

Objective of the exercise: Fitting of binding data to simplified models; how to avoid local minima. 

Background information about this exercise can be found as follows: 

• Fitting data by the method of least squares (Sect. 9.1.8)  

• Analysis of simple binding data (Sect. 9.2.6) 

• Independent identical binding sites (Sect. 9.2.5) 
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Instructions 

• In this exercise we use Eqns. 9.16 and 9.17 in the analysis. 

• The global parameters are KAss,1 and KAss,2, and local parameters BL and f. First, enter the 

parameters into rows 1-4. 

• Row 7 contains the column headings: “cB [M]”, “signal,exp”, “θ1”the saturation of site 1 with B, 

“θ2” the saturation of site 2 with B, and “θ12” the fraction of A in which sites 1 and 2 are both 

occupied by B. The other headings are “θbound” the relative saturation of all binding sites, and 

“signal,theo” and “error²”, which have their previous meanings. 

• Enter the concentrations of B in column A, and the measured signal in column B. Eqn. 9.16 is 

entered into column C , for site 1 for example, the following expression is entered into cell C8: 

“=A8*$B$1/(1+$B$1*A8)”. The corresponding expression for site 2 is entered into column D. 

Column E contains the proportion of AB2 (θ1×θ2) and column F to total site saturation (θ1+θ2). The 

theoretical signal is evaluated in column G, the errors squared in column H, and the sum of errors 

squared in cell H6. 

• In the fitting, the value in H6 (sum of errors squared) is minimised with respect to variation of B1 to 

B4. 

• To check that θbound does in fact rise hyperbolically as the ligand concentration is increased, 

highlight F7 to F18, press Ctrl-C, highlight the graphics and press SHIFT+INS. The curve for θbound 

appears on the plot. To remove this curve, highlight the graphics, then the curve, and press 

DELETE. 

• Local minima are also prone to occur in this analysis. The data were generated with the following 

binding parameters: KAss,1=500 M-1, KAss,2=100 M-1, BL=0.1 and F=2. However, from the following 

initial values KAss,1=100 M-1, KAss,2=100 M-1 (the same for the two KAss), BL=0.1 and F=1, the final 

best fit result is KAss,1=KAss,2=187 M-1, BL=0.107 and F=1.959. The sum of errors squared for this 

fit was 8.6×10-4. If, however, the initial values for the two KAss are chosen to be very different, e.g. 

KAss,1=100 M-1, KAss,2=1000 M-1, BL=0.1 and F=1 the best fit solution is KAss,1=100 M-1, KAss,2=500 

M-1, BL=0.1 and F=2. The sum of errors squared is 2.5×10-12, much smaller than the value for the 

local minimum identified above. 

• As a general rule, it is advisable to carry out the minimisation several times using different sets of 

initial values, to exclude, as far as possible, the chance of returning results on a local minimum 

rather than the global minimum. 

• For real data, which are subject to error “noise”, it is difficult to extract reliable values of multiple 

KAss constants from binding curves, in part because it is hard to be sure which are the local and 
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which the global minima. In such cases, it is important to have sufficient data sets, evaluated 

globally, to increase the accuracy of the analysis. 

 

 
 

Result 

The optimal fit of the binding data is with two binding constants: K1=100 M-1, K2=500 M-1. There is a 

local minimum at the following values: K1=K2=187 M-1. 

 

Exercise 12: Cooperative binding 

Analysis of binding data according to an all-or-nothing model. Investigate whether, bearing in mind 

the accuracy of the data, it can be decided whether one or two Bs bind to A. 

Objective of the exercise: Evaluation of all-or-nothing binding equilibria; choice of models. 

Background information about this exercise can be found as follows: 

• Selection of appropriate models (Sect. 9.1.5) 

• Fitting data by the method of least squares (Sect. 9.1.8)  

• Binding equilibria (Sect. 9.2.4) 

• Cooperative binding (Sect. 9.2.8) 
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Instructions 

• In this exercise we use Eqn. 9.19 for the analysis. 

• The global parameters are KAss and n, and local parameters BL and f. Enter these parameters into 

rows 1-4. 

• The column headings are entered into row 7: “cB [M]”, “signal,exp”, “signal,theo” and “error²”. 

• Concentrations are entered into column A, and the measured signal into column B. Eqn. 9.19 is 

entered into column C, e.g. in cell C8: “=$B$3+($B$4*$B$1*A8^$B$2)/ (1+$B$1*A8^$B$2)”. 

The error squared terms are in D, and the sum of errors squared in cell D6. 

• The fitting minimises the sum of error squared (D6) with respect to variation of B1 to B4. 

 

 
 

• We check first whether the data can be fitted with an n value of 1 (with n=1 the all-or-nothing 

model becomes a simple binding model). To do this, we create a copy of the spreadsheet, called 

n=1, to distinguish it from the original sheet which is called n=2. We then set n equal to 1 and 2 

respectively in the two speadsheets and minimise both sheets with respect to KAss, BL and f. 
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• To compare the quality of the two fits, we copy both plots to a new spreadsheet. 

• It is evident that the fit to the data is much better for the n=2 analysis. This is much clearer when 

the curves are presented with a logarithmic x-axis. Click on the plot, double click on the x-axis, 

chose “Scaling”, then “Logarithmic”. 

 

 
 

Result 

The data can be fitted to an all-or-nothing model with n=2 and Kapp=6700 M-2. This corresponds to a 

KAss of 99.3 M-1. An equivalently good fit is not possible with the assumption of a single binding site. 
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Exercise 13: Analysis of binding data by different models 

Analyse the data sets according to several different models: n=1, n=2 with independent binding sites, 

n=2 cooperative binding. Which model fits the data best? For the various fits, plot the deviations 

between experimental and theoretical data, and compare the absolute magnitude and scattering of the 

deviations. 

Objective of the exercise: choosing between models 

This exercise is linked to Exercises 8-12. 

Background information about this exercise can be found as follows: 

• Selection of appropriate models (Sect. 9.1.5) 

 

Instructions 

• For each data set programme a separate spreadsheet for n=1, n=2 independent binding (Exercise 

10) and cooperative binding (Exercise 12) and carry out the fitting. 

• Prepare a plot of the deviations of the best fit of each of the models. To do this, we calculate the 

deviations (expressed as: Signal,exp-Signal,theo) in the column next to “error²” . In the title row 

(row 7) of this column, enter the model descriptor: “n=1”, “n=2” or “coop”, as appropriate. 

Highlight the relevant x-values and the deviations with the column heading, click on Chart Wizard, 

and select bar diagram. 

• Compare the plots of the deviations. The best fit should have the smallest deviations, which should 

be distributed randomly. 

 

For data set A, we obtain the following spreadsheets: 
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The clearest way of comparing the quality of the fits is to show all of the errors in one diagram. To do 

this, create a new spreadsheet, called Charts. Go to the spreadsheet n=1, click on the bar diagram, 

press Ctrl-C, go to the Charts Table, highlight a cell with the mouse, and press Shift+INS. Then move 

to the n=2 sheet, click on the bar diagram, press Ctrl-C, go to the Charts Table, highlight the diagram 

that is already there, and press Shift+INS. The data for n=2 will be transferred into to diagram. Go to 

the coop spreadsheet, and proceed as before, to present all three bar diagrams on one plot. 
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Similar analysis for data set B gives the following picture: 

 
 

Result 

Data set A fit best to a cooperative model, whereas data set B are best described by independent sites 

with n=2. It should be noted that real data usually show more errors (noise) than the present test data, 

and consequently it can be more difficult in practice to make decisions about which model is the best. 
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Exercise 14: Fitting rapid reaction data to exponential functions. 

Fit the kinetic data to one or two exponential functions (Eqn. 9.25). Examine which model fits the data 

better, and decide whether the difference is significant. 

Objective of the exercise: programming exponential functions to fit kinetic data; selection of 

appropriate models. 

Background information about this exercise can be found as follows: 

• Selection of appropriate models (Sect. 9.1.5) 

• Fitting data by the method of least squares (Sect. 9.1.8)  

• Global fitting of multiple data sets (Sect. 9.1.9) 

• Pre-steady state kinetics, (Sect. 9.2.10) 

 

Instructions 

The theoretical data for the two models are calculated from the following equations: 

S(t) = BL + A × [1-exp(-t/τ)] and S(t) = BL + A1 × [1-exp(-t/τ1)] + A2 × [1-exp(-t/τ2)]. 

• The parameters τ1 [ms], A1, τ2 [ms], A2 and BL are entered in the first 4 rows. Initial values are 

taken to be 100, 100, 100 and 0, respectively. 

• Row 7 contains the titles of the of the columns: “t [ms]”, “signal,exp”, “signal,theo” and “error²”. 

• The times and experimental signals are entered into columns A and B respectively, from row 8 

onwards. 

• Eqn. 9.25 is entered into column C, e.g. for cell C8: “=$B$5+(1-EXP(-A8/$B$1))*$B$2+(1-EXP(-

A8/$B$3))*$B$4”. 

• The errors squared are entered into column D, e.g. for D8: “=(B8-C8)^2” 

• The sum of errors squared: “=SUM(D8:D20)” are entered into cell D2. 

• We produce plots with logarithmic x-axes, and the values “Signal,exp” and “Signal,theo”. 

• The fitting is carried out by minimising the sum of errors squared (D2) with respect to variation of 

B1 to B5. 

• We obtain an error message because the algorithm is trying to use a negative value for τ. 
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• Select Cancel. 

• The occurrence of this error means that we must select more realistic initial values for the 

parameters. We chose 10 for the two times τ, and 50 for the two amplitudes, and try the fitting 

again. 

• We obtain a fit with τ1= τ2=32.2 ms. The sum of errors squared has the value 158.5 and the fit 

looks a lot worse that we are used to. It appears that are systematic errors in the fit. 

 

 
 

• Because of this poor result, we chose new initial values, 10 and 100 for the two τ values, 10 for the 

amplitudes and 0 for the background parameter BL, and try again. 

• This time the sum of errors squared is 11.9 and the solution is τ1=8.2 ms and τ2=78 ms. The fit 

looks much better, as we would expect from the lower value of 11.9. It appears that the solution 

τ1= τ2=32.2 ms corresponds to a local minimum. 
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• In order to analyse both data sets globally, copy the spreadsheet that has just been made, and enter 

the second data set into column B. 

• We then create a new spreadsheet to evaluate the data sets and call this “analysis”. 

• 

• 

• 

• 

• 

The two τ values (which  are valid for both data sets) are in cells B2 and B4, for each data set a 

value for A1 (in B3 and C3), for A2 (in B5 and C5) and a background BL (in B6 and C6). The 

parameters are transferred from the “analysis” spreadsheet to the subsidiary tables (e.g. we enter in 

the filed for τ1 for data set 1: “=analysis!B2”). 

The error squared values from the subsidiary tables are transferred to the analysis table. This is 

done by entering in B7 the sum of errors squared of data set 1: “='data set 1'!D2” and in C7 that of 

data set 2: “='data set 2'!D2”. In D7 we enter the sum of B7 and C7. 

The plots from the subsidiary spreadsheets are copied into the analysis spreadsheet. Move to the 

subsidiary spreadsheet, highlight the plot, press Ctrl-C, move to the analysis spreadsheet, highlight 

any cell, and press SHIFT+INS. The plot can be move to a convenient position with the mouse. 

Take initial values of 10 and 100 for the two τ parameters, 10 all of the amplitudes and 0 for the 

background BL, and minimise the value of D7 (the combined sum of errors squared) with respect 

to variation of B2 to B6, C3, C5 and C6. 

We can reduce the number of variables, for example, it is reasonable to assume that the amplitude 

ratio A1/A2 is the same for both data sets. In the analysis spreadsheet, we can write for A2 of data 

set 2: A1(2)/A1(1)×A1(1) (“=B5/B3*C3”) and not include this value in the fitting. 
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Begin the minimisation again with initial values of 10 ms for both τ parameters and 50 for the two 

amplitudes. Under these conditions, we located a local minimum with data set 1. However, with 

the two data sets, the algorithm locates the correct minimum, even with these starting parameters. 

This result indicates that the analysis is more stable with two data sets. 

• 

• To fit the data to a single relaxation time, we set A2=0 and exclude τ2 and A2 from the fitting. 
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Result 

The analysis with two relaxation times gives τ1=9.3 ms, τ2=98 ms, and the sum of errors squared was 

33.4. Fitting to a single relaxation time is much worse; the sum of errors squared was 731, and the 

fitting showed systematic deviations from the data. 

 

Exercise 15: Error estimates for Exercise 14.  

Evaluate the errors in the time constants determined in Ex. 14. 

Objective of the exercise: error analysis 

This Exercise is linked to Exercise 14. 

Background information about this exercise can be found as follows: 

• Fitting data by the method of least squares (Sect. 9.1.8)  

• Introduction to error estimation (Sect. 9.1.10) 

 

Instructions 

• First, we calculate the mean error of the measurement, using the square root of the sum of errors 

squared in cell D7 of the analysis spreadsheet (“=SQRT(SUM(B7:C7))”). This value corresponds to 

the total error of all data points. 

• For comparison, we determine the sum of the measurements in the two subsidiary spreadsheets, and 

transfer these to row 8 of the analysis spreadsheet. 

• We calculate the relative mean error of all points in % in cell D9 (=D7/D8*100). 

• The mean error amounts to only 0.4 %, which indicates that the fit was excellent. 

• In D1 and E1 we enter “min” and “max”. 

• From the Tools menu select: Scenarios 
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• Select Add. 

 
 

• Enter under Scenario name: “best fit”, “Changing cells”: $B$2:$B$6;$C$3;$C$6 (these cells can 

be highlighted with the mouse), OK, OK, close 

• Minimise and then maximise the two τ values. Enter the condition that D9<=0.6. This corresponds 

to an increase of 50% in all of the deviations. Select in the Solver window: “Subject to constraints”, 

“Add”. 

• In the following window enter D9, select “<=” in the pull down menu and enter 0.6. 
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• Chose τ1 for minimisation. As usual, all of the variables are allowed to float (τ1, τ2, A1, BL1, BL2). 

Carry out the minimisation repeatedly until the result is constant. Start the minimisation again with 

an initial value of 60. The result cannot be further reduced, so record the result of the minimisation 

(62.62) in D2. 

• In the Tools menu, select Scenarios, best fit, Show. 

• Now maximise τ1, and then find the minimum and maximum of τ2. Go from the limiting values 

back to the best fit values, and note down all of the results. 

 

 
 

Result 

The best fit value of τ1 was 98.3. This value could, however, lie between 64.26 and 167.78, although 

we have only allowed an increase in the error of 50% over the best fit error. The best values for τ2 

were: best fit time 9.3, error range: 5.54-13.85. The very large error range in the τ estimates is 

explained by the fact that the two parameters are correlated, and that an increase in τ1 can therefore at 

least in part be compensated by a reduction in the value of τ2 . 
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Exercise 16: pH-Dependence of enzyme-catalysed reactions 

Analyse the pH dependence of an enzyme catalysed reaction, with the assumption that it is affected by 

up to 3 protonation equilibria. 

Objective of the exercise: analysis of pH-effects; selection between models. 

Background information about this exercise can be found as follows: 

• Fitting data by the method of least squares (Sect. 9.1.8)  

• Selection of appropriate models (Sect. 9.1.5) 

• pH dependence of enzyme-catalysed reactions (Sect. 9.2.11) 

 

Instructions 

This exercise uses a general model to analyse thermodynamic measurements. In this model, ligands 

(protons in the present case) bind to a macromolecule, which itself produces a signal (in this case a 

rate) depending on the occupation of its ligand binding sites. 

• If the enzyme has 3 protonatable groups, a total of 8 (=23) different species can exist in solution: 

HHH, HH-, H-H, H--, -HH, -H-, --H und ---, where H signifies the presence of a proton, and – the 

absence. The probability of forming these species, and hence their relative concentrations, is given 

by the product of the relevant probabilities that each group exists in a particular state, e.g. P(HHH) 

= P(group 1 is protonated) * P(group 2 is protonated) * P(group 3 is protonated); or for P(H-H) = 

P(group 1 is protonated) * P(group 2 is deprotonated) * P(group 3 is protonated). 

• However, since we cannot correlate any of the pKa values to a group, their order is arbitrary. 

Therefore, the number of possible species can be reduced to HHH, HH- (equivalent to H-H and -

HH), H-- and ---. 

• The probability of an acidic group being in the deprotonated state is given by Eqn. 9.27: 

θ(-) = c(A-)/c(Ages) = 10^(-pKa) / [10^(-pH)+10^(-pKa)] 

• The probability of being protonated is then simply: P(protonated)= 1-P(deprotonated). 

• From these conditions it is possible to simulate the concentration dependence of all 4 species on 

pH. To do this, make a spreadsheet with the parameters pK1, pK2, pK3, F and BL in the first 5 rows. 

Row 7 contains the headings of the columns: “pH”, “θ(1-)”, “θ(2-)”, “θ(3-)”, “HHH”, “HH-“,“H--“, 

“---“, “H-“, “signal,theo”, “signal,exp”, “error²”. H- represents an easier model with only two 

protonation steps, that ignores pK3. 

• In column A (“pH”) we enter the pH values between 4 and 11 (at intervals of 0.2). Columns B, C 

and D contain the probabilities that sites 1, 2 or 3 are deprotonated. 

• So, for example, in cell B8 we enter: “=10^(-$B$1)/(10^(-A8)+10^(-$B$1))”. 
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• The concentrations of the species are given by the products of the probabilities that the groups are 

in the required state: P(HHH) = P(group 1 is protonated) * P(group 2 is protonated) * P(group 3 is 

protonated). So for cell E8 (HHH) we enter “=(1-B8)*(1-C8)*(1-D8)”. 

• We can interpret the observed enzyme turnover rate as an “effect”, and therefore the results of the 

kinetic experiments can be used as a reporter to analyse the thermodynamic protonation equilibria. 

In general, one would assign each of the possible species an effect factor, and the signal would be 

the sum of all these factors. To make the problem more tractable, we assume that only one species 

contributes to catalytic activity and that there is in addition a baseline rate (BL).  

• Since the activity rises in the transition from low to moderate pH, at least one of the groups in the 

active species must be deprotonated, and since the activity falls again at high pH, at least one group 

must be protonated. There are then three possible models: a model with two protonation equilibria 

(H-) and two models with three protonation equilibria (HH-) or (H--). 

• In the (HH-) model, the theoretical signal is given by: F×(HH-)+BL. In the two protonation model 

(H-) we ignore the third protonation equilibrium and the signal is given by: F×(H-H + H--)+BL. 

• Enter the theoretical signal in column M, the measured signal in column N, and the errors squared 

in column O. Column P contains the deviation between the theoretical and measured signals. The 

sum of errors squared is entered into cell D2. 

• Prepare a XY-plot of the experimental and theoretical data, and also a column diagram of the 

deviations. 

• We make a spreadsheet for each model and, as usual, minimise the sum of errors squared (D2) with 

respect to variation of pK1, pK2 and pK3. 

• To compare the results we place all of the error columns on a single diagram. 
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Result 
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The best fit is obtained with a three protonation model (H--) with pKa-values of 6.0, 6.4 und 9.0. The 

fit with the other models (H- and HH-) give 10-fold greater values of the sum of errors squared. In 

addition, these models show systematic variation in the deviations between the experimental and 

theoretical values. The data were in fact generated with a three protonation model with pKa-values of 

5.9, 6.4 and 9.0. 



 

Note: This form of analysis is much less clear when non-optimal protonation states also have catalytic 

activity. 

 

Exercise 17: Simulation of association kinetics using numerical integration 

Use Eqn. 9.22 to programme the simulation of a bimolecular association reaction: (A+B→AB). 

Objective of the exercise: programming by numerical integration. 

 

The rate of a bimolecular association reaction A+B → AB is given by the following equation: 

dcAB/dt = k1 × cA × cB  (cf. Eqn.9.21) 

 

from which it follows that the flux from A and B to AB can be written: 

F1 = k1 × cA × cB × ∆t (cf. Eqn.9.22) 

 

Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Association kinetics (Sect. 9.2.9) 

 

Instructions 

• We have one parameter (k1) and one constant (∆t). Enter in A1 “k1 [M-1 s-1]”, in A2 “∆t [s]”; in B1 

place 1 and in B2 0.1 as values for k-1 and ∆t. 

• The titles to the columns are placed in row 4: “t”, “cA [nM]”, “cB [nM]”, “cAB [nM]” and “F1”.  

• The initial values for the concentrations and the time are entered into row 5 A-D: 0 (t), 0.2 (cA), 0.2 

(cB) und 0(cAB). 

• The flux from A and B to AB is entered into column E. This flux is determined by the value of k1, 

and is therefore defined as F1. This flux is from Eqn., 9.22, and in our case we place in E5: 

“=$B$2*B5*C5*$B$3/1e9”. 1x109 is a factor that corrects for differences in units, because the 

concentrations are given in nM, but the units of k1 should be given as s-1 M-1 . 

• The integration begins in row 6: 

• The time is given by the old time + ∆t; so in A6 we write:”=A5+$B$2”. 

• cA and cB are given by the old values minus the flux. Thus we write in B6: “=B5-E5”, and 

analogously for C6. 

• cAB is the old concentration plus the flux, thus in D6: “=D5+E5”. 
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• Row 6 is highlighted and copied to row 250. To extend the highlighting use the Pg-Down key. 

 

• 

hift+↓. This extends the 

highlighting to all of the data. Select XY(Scatter) from the Chart Wizard. 

 

We now need to work with a graph. Go to cell A1 of the table (Ctrl+Home). Highlight the column 

titles and the visible data in columns A-D. Press SHIFT+END, then S

 

 

• 

the end of the reaction. In this case, either use more 

iteration or a larger value for the time interval. 

 

 

Try out different simulations. Set the values of k to be small (1e5) and large (1e12).When the k 

value is very large, it can happen that the flux in a time interval can be larger than the amount of A 

and B available; that leads to negative concentrations and error messages. This problem can be 

avoided by using smaller values of ∆t. When the k value is too small, the simulation is very slow, 

and 250 iteration steps are not enough to reach 
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Exercise 18: Analysis of association kinetics. 

Use numerical integration to analyse the kinetics of an association reaction. 

Objective of the exercise: analysis of association kinetics. 

Exercise 18 is linked to Exercise 17 

 

Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Association kinetics (Sect. 9.2.9) 

 

Instructions 

• We use the spreadsheets created in Exercise 17. 

• First, we have to take account of the baseline and effect factors, and to do this we need space in the 

spreadsheet. Right-click on the “2” in row headings and select Insert. Repeat; there are now two 

new rows 2 and 3. 

• Enter “BL” in A2 and “f“ in A3. As initial values, chose “1” and “100” in B2 and B3. 

• The theoretical signal is entered in column F (column title: “signal,theo”, and in cell E7 for example 

enter “=D7*$B$3+$B$2“). 

• Now, by fixing the size of ∆t, select a time scale that covers all of the available data (final value 

>200, so ∆t ≈ 1). 

• In column F (column title: “signal,exp”), enter the data in the correct rows. It is an uncomfortable 

consequence of this way of programming that the ∆t cannot be changed without re-entering the 

data. 

• The error squared values are entered in column G. We are practising with intelligent programming, 

which will allow us to use this spreadsheet with other data. This involves using the Excel function: 

“if”. 

• Go to H7. Click with the mouse on the “=” next to the Formula Bar. A new pulldown menu appears 

which we open. 
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click here 

 

• Select: “More Functions”, “Logical” and “if”. 

 
 

• Enter G7=0 in “Logical_test”. This can be done by clicking on G7 with the mouse, then entering 

“=0”, and finish by pressing ENTER. When the condition is true, no data are in G, and thus no 

calculation of error squared can be made. 

• For this reason, enter “0” in “Value_if_true” (the unavailable “error squared” is 0). 

• In “Value_if_false“ is the error squared, i.e. “=(F7-G7)^2”. 

• Press OK. This formula will calculate the error² whenever there are data in column G; if there are 

no data it will return zero. 

• We now copy the formula in H7 in the column H, and enter the sum into H5 (“=Sum(H7..H252)”). 

• We generate a new figure. Go to A1, and highlight all the visible rows in columns A, F and G (use 

Ctrl). Select an XY(Scatter) from the Chart Wizard XY(Scatter). 

• Highlight the graph. Select “Chart, and then “Source Data”. 

• In the following window, select “Series”, and for both rows enter 7-252 for the X and Y values. In 

the example shown below, both 34 are altered to 252. Click on Signal,exp to select the other curve, 

and change the 34 into 252. Select OK. 
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• For the experimental points, turn the line off, and the points on. For the fitted data, the other way 

round: switch off points. 

• The sum of errors squared is now minimised with respect to variation of k1, BL and f. 

• Sometime there are problems in obtaining association rate constants if the initial values are set too 

high. Chose a value for k1 of 1×107 and try the fitting again. 
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Result 

The best fit of the data is to an association rate constant of 1.1×108 M-1 s-1 . 

 

Using modern computers such simulations involving 2000 rows are no problem. It is recommended, 

therefore, to program the sheet with more rows than in this example, because fast association rates 

require a small ∆t, and in general the errors inherent in numerical integration are smaller with smaller 

steps. 

 

Exercise 19: Simulation of approach to equilibrium 

Programme the simulation of an approach to equilibrium following Eqn. 9.23. Use initial 

concentrations of 0.2 µM and 0.1 µM for A and B respectively, rate constants k1 = 1×107 M-1 s-1 and  

k-1 = 1.0 s-1, with a time interval ∆t= 0.01 s. 

Objective of the exercise: programming numerical integrations. 

Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Association kinetics (Sect. 9.2.9) 
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• Programming numerical integrations and fitting experimental data to these are covered in 

Exercises 17 and 18. 

 

Instructions 

• The rate constants k1 and k-1 and the time increment ∆t are in rows 1-3 

• Use columns A-F for the following: t, cA, cB, cAB, F1, F-1 

• F1 was defined in Exercise 18: Analysis of association kinetics. Remember that there was a 

correction factor of 1×106 to allow for the difference in the units (concentrations are given in µM 

but the units of the bimolecular rate constant k1 should be s-1 M-1), i.e. F1 = ∆t × k1 × cE × cS /1e6. 

• F-1 is defined by the equation F-1 = dt × k-1 × cES. No correction factor is needed for F-1. 

• After entering the initial values we prepare a graph for cA, cB and cAB . 

• To recognise more clearly when equilibrium is reached, we alter ∆t to 0.05. 

 

 
 

Result 

With the initial values of the concentrations used and with k1=1×107 M-1 s-1 and k-1=1 s-1 equilibrium 

is established after ca. 3-4 s. 
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Exercise 20: Simulation of a complex enzyme-catalysed reaction. 

Programme the simulation of an enzyme reaction involving a bimolecular association of enzyme and 

substrate to form an ES complex which undergoes a conformational change preceding turnover. Use 

initial concentrations of 5 µM for both enzyme and substrate, rate constants as follows: k1=1×107 M-1 

s-1, k-1=0.1 s-1, k2, k-2 and k3 =1 s-1 and a time interval ∆t= 0.01 s. Find the combinations of rate 

constants that lead to: 1) marked accumulation of ES; 2) marked accumulation of ES#; and 3) 

accumulation of neither enzyme-substrate complex. 

Objective of the exercise: programming of numerical integrations 

We assume that the enzyme reaction follows Eqn. 9.24: 

E + S ES
k1

k-1

k2

k-2

ES#
k3

E + P
 

In this model there are 5 different fluxes: 

• F1: E+S → ES with F1 = k1 × cE × cS × ∆t 

• F-1: ES → E+S with F-1 = k-1 × cES × ∆t 

• F2: ES → ES# with F2 = k2 × cES × ∆t 

• F-2: ES# → ES with F-2 = k-2 × cES# × ∆t 

• F3: ES# → E+P with F-3 = k3 × cES# × ∆t 

 

The concentration changes are given by the following relationships: 

• ∆cE = - F1 + F-1 + F3 

• ∆cS = - F1 + F-1 

• ∆cES = - F-1 – F2 + F1 + F-2 

• ∆cES# = - F3 – F-2 + F2 

• ∆cP = + F3 

 

Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Pre-steady state kinetics (Sect. 9.2.10) 

• Programming numerical integrations and fitting experimental data to these are covered in 

Exercises 17 and 18. 
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Instructions 

• The spreadsheet is programmed as in Exercise 19. 

• The quantities k1, k-1, k2, k-2, k3 and ∆t are placed in the first six rows. 

• Use columns A-K for the following: t, cS, cE, cES, cES#, cP, F1, F-1, F2, F-2, F3 

• Concentrations are given in molarity (M), and therefore no correction factor is needed as in 

Exercise 19. 

 
 

Result 

It is observed that ES accumulate if k-1 and k2 << k1×cav and k-2. ES# accumulates if k-2, k3 << k3. 

Neither intermediate accumulates if k3 and k2>> k1×cav (in which: cav=(cE,tot+cS,tot)/2). 

 

Exercise 21: Analysis of the kinetics of a complex enzyme-catalysed reaction. 

Analyse the data from model programmed in Exercise 20. Assume that the signal depends only on the 

product concentration, and that we know from preliminary experiments that k1=1×107 s-1 M-1, k-2 = 0.1 

s-1 and k-1 = 1 s-1. 

Objectives of the exercise: analysis of complex reactions. 

Exercise 21 is linked to Exercise 20 
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Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Pre-steady state kinetics (Sect. 9.2.10) 

• Programming numerical integrations and fitting experimental data to these are covered in 

Exercises 17 and 18. 

 

Instructions 

• Convert cP,theo into Signal,theo. To do this, introduce rows for BL and F. 

• Define the error² and the sum of errors squared. 

• Minimise the sum of errors squared with respect to variation in k2, k3, BL and F. 

• Important note: for a rigorous analysis, it is necessary to obtain data spanning a range of different 

enzyme and substrate concentrations. In these circumstances, it may be possible, using global data 

analysis, to fit all of the rate constants in the kinetic scheme. 

 
 

Result 

The data set can be fitted satisfactorily to the scheme in Eqn.9.24 with the following rate constants: 

k1=1×107 M-1 s-1, k-1=1 s-1, k2=0.46 s-1, k-2=0.1 s-1, k3=2.6 s-1. 
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Exercise 22: Analysis of Michaelis-Menten kinetics III. 

Use numerical integration of Eqn. 9.7 to evaluate kinetic data according to the Michaelis-Menten 

model. 

Objective of the exercise: analysis of Michaelis-Menten kinetics. 

The rate of an enzyme reaction following the Michaelis-Menten model is given by Eqn. 9.7: 

 

mS

S
catS Kc

ck)k(c
+

×=  

At a given substrate concentration, the rate is given by the expression: 
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and in a finite time interval ∆t the following amount of product ∆cP is formed: 
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Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Michaelis-Menten kinetics (Sect. 9.2.2) 

• Programming numerical integrations and fitting experimental data to these are covered in 

Exercises 17 and 18. 

 

Instructions 

• The two parameters Km [nM] and kcat [min-1], are entered in rows 1 and 2. We take initial values to 

be 100 nM and 20 min-1. 

• The constant terms cS,tot, cE,tot and ∆t are entered in rows 4-6. We take a time increment ∆t= 0.05, 

and the enzyme and substrate concentrations are given in the data. 

• Row 8 contains the column headings: “t [min]”, “cS [nM]”, “cP,theo [nM]”, “F”, “cP,exp [nM]” and 

“error²”. 

• Columns A-C of row 9 contain the initial values of the concentrations and the time: 0 (t), “=B5” 

(cS) and 0 (cP). 
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• Column D contains the flux of E to P. This flux is given by the above equation. In this case for D9: 

“=B9/(B9+$B$1)*$B$2*$B$4*$B$6”. 

• The experimentally determined product concentrations are entered into column E. 

• The errors squared are entered in column F. We again must use the conditional programming with 

the IF-function, so for F9: “=IF(E9=0;0;(C9-E9)^2)”. 

• The integration begins in row 10: 

• The time is given by the old time + ∆t. So enter in A10: “=A9+$B$6”. 

• cS is given by the old value minus F. So enter in B10: “=B9-D9“. 

• cP is the old concentration plus F. So enter in C10: “=C9+D9”. 

• Row 10 is highlighted and copied to all rows up to no. 409. Use the Pg-down key to enlarge the 

highlighting. 

• The sum of errors squared is entered in cell D2. 

• Make a graph of cP,theo and cP,exp vs. t. Use a line for cP,theo without data points, and only data points 

for cP,exp. 

 

The spreadsheet should look like the following: 

 
 

• We create a spreadsheet for each concentration. 

• The global analysis is carried out as before using an analysis spreadsheet. Km, kcat and cE,tot are 

entered in the analysis spreadsheet in cells B1, B2 and B4. 

• Substrate concentrations are entered in B5 to D5. 
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• Km, kcat, cE,tot and cS,tot are transferred from the analysis spreadsheet to subsidiary sheets. To do this, 

enter in place of the Km value in the subsidiary sheet: “=analysis!$B$1”. We proceed analogously 

with kcat, cE,tot and cS,tot . 

• The sum of errors squared are transferred from the subsidiary sheets to the analysis sheet. They are 

located in B6 to D6. So, for example in B6 write: “='1000'!$D$2“. 

• Enter the sum of errors squared in E6. 

• Copy the graph from the subsidiary sheet to the analysis sheet. 

• Minimise E6 (sum of errors squared) with respect to variation of Km and kcat. 

 

The result should look something like the following: 

 
 

Result 

The data can be fitted to the Michaelis-Menten model with a Km value of 490 nM and a kcat  value of 

19.7 min-1. 

 

Exercise 23: Analysis of competitive binding equilibria. 

Analyse the data according to the binding model in Eqn. 9.28. We assume that the signal arises solely 

from the species AB. K1 is taken to be 1×108 M-1. 

Objective of the exercise: analysis of competitive binding processes. 
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Since analytical solutions of processes even as simple as that shown above (Eqn. 9.28) are intractable, 

we will employ numerical methods. From an arbitrary initial state (e.g. only free A, B and C present) 

we calculate for both isolated equilibria the final equilibrium concentrations, and the concentration 

changes needed to establish equilibrium. We then use these fluxes. Since, in every step, there are 

several fluxes, whose coupling is not taken into account, this approximate procedure takes us towards 

the equilibrium, but not directly to it. So the equilibrium has to be located iteratively. 

 

We may write: 

K1 = cAB,Equil./(cA,Equil. × cB,Equil.) 

or: 

cAB,Equil. = K1 × cA,Equil. × cB,Equil. 

in which: ci,Equil is the equilibrium concentration of i. 

 

We are looking for the flux F, necessary to take us from the present concentrations to the equilibrium 

concentrations: 

cAB,Equil. = cAB + F 

cA,Equil. = cA - F 

cB,Equil. = cB - F 

 

Thus, we have: 

(cAB + F) = K1 × (cA – F) × (cB – F) 

and: 

 

F² - (cA + cB + 1/K1) × F + cA × cB – cAB/K1 = 0 

 

F = -p/2 - [(p/2)²-q]½ 

(Only the negative root is physically meaningful). 

 

We calculate these fluxes for the two equilibria, and use these. We reach a new concentration state, 

which is not the true equilibrium state, since we have not taken the coupling of the equilibria into 
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account. So the operation is repeated with newly calculated fluxes, and after ca. 50 iterations, we reach 

a stable equilibrium. The concentrations correspond to the joint equilibrium specified by the two 

thermodynamic association constants K1 and K2. 

 

For practical applications it is important that the calculated fluxes are not too large so that calculation 

does not overshoot the target. So, for example, if K1 and K2 are very large, and cA>cB and cC>cB, our 

initial analysis of the first equilibrium will show that almost all of the B must flow to AB. At the same 

time, analysis of the second equilibrium will show that all of the B should flow to BC. When we take 

account of the two fluxes, we obtain negative concentrations in the first iteration. Since in this 

example, there are at most two fluxes for a single species (free B), this complication can be avoided by 

reducing every flux by 50%. 

Background information about this exercise can be found as follows: 

• Introduction to numerical integration (Sect. 9.1.11)  

• Analysis of competition experiments (Sect. 9.2.12) 

• Programming numerical integrations and fitting experimental data to these are covered in 

Exercises 17 and 18. 

 

Instructions 

• We need an analysis spreadsheet for each cC,total, in which the dependence of the concentrations cA, 

cB, cC, cAB, and cBC on the constants K1 und K2 are evaluated for given values of cA,total, cB,total and 

cC,total . 

• Rows 1 and 2 contain the variables K1 and K2. We use 1e9 for K1 and 1e6 for K2. 

• In row 4 we enter the analysis parameter “F-reduction”, which is not going to be fitted; we use a 

value of 0.5. 

• In row 7 we enter the column headings: “cA [nM], “cB [nM]”, “cC [nM]”, “cAB [nM]”, “cAC [nM]”. 

• The fluxes are then entered; for flux 1: in F6 we write “F1“, in F7 “p“, in G7 “q“ and in H7 “F1“. 

• Flux 2 is entered similarly in columns I-K. 

• In row 8 we enter the initial concentrations. We use 10, 10, 1000, 0 and 0 nM for A, B, C, AB and 

AC. 

• The fluxes are given by the equation shown above, so in row 8 p: “=-(A8+B8+1000000000/$B$1)” 

(the factor of 109 is needed because concentrations are given in nM whereas binding constants are 

M-1), q: “=A8*B8-1000000000*D8/$B$1” and F1 “=$B$4*(-F8/2-SQRT((F8/2)^2-G8))“, where 

multiplication with B4 introduces the flux reduction. The entries for flux 2 are entered 

analogously. This block (ro• w 8, columns F-K) is highlighted and copied to row 9. 
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• The concentrations in row 9 are given by the simple expressions: cA “=A8-H8-K8”, cB “=B8-H8”, 

• 

 to E. On this occasion we use a simple line (not XY) because 

• uch C present. Highlight the graph, click once 

• 

 

1 and C2 the equilibrium 

 

he result so far should look something like the following: 

cC “=C8-K8”, cAB “=D8+H8” and cAC “=E8+K8”. 

Columns F and G, and I and J are now hidden. 

• Highlight row 9 down to row 500. 

• We create a graph of the columns A

there are no X-values. Do not apply data symbols. 

The graph is of limited value because there is too m

on the legend, then once on the line for C in the legend. The line is now highlighted. Press DEL 

and C disappears from the plot. We can now see that equilibrium has in fact been achieved. 

In E1 we enter the value of cAB at the end of the simulation: “=D200“ 

• To make the graph more attractive, click on the X-axis and press DEL.

• To check whether everything has been done correctly, we enter in C

concentrations that were reached at the end of the iterations: K1 (in C1) “=D200/A200/B200” and 

K2 (in C2) “=E200/A200/C200”. We should now have the same numbers in B1 and C1 and in B2 

and C2 . 

T
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• Now set a flux reduction value of 0.1. It takes significantly longer to reach equilibrium. With a 

value of 1.0, we observe oscillations, but the system does become stable and converges on the 

“correct” solution. A flux reduction value of 0.5 seems to be optimal. 

• The rest is straightforward: a spreadsheet is created for every cC,total. In an analysis spreadsheet, K2 

is defined and transferred to the subsidiary spreadsheets. The analysis spreadsheet also contains the 

background BL and the effect factor f. The concentrations of AB for each value of cc,total are taken 

from cell E1 of the relevant subsidiary spreadsheet. The theoretical signal is calculated from the cAB 

values using the values of BL and F. Then errors squared are defined, and minimised with respect 

to variation in K2, BL and f. 

 
 

Result 

The binding constant for C to A is about 1.18×106 M-1. 
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