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1.1

Introduction

The observation that some properties attributed to atoms and functional groups

are transferable from one molecule to another has played a key role in the devel-

opment of chemistry. This observation provides a basis for group additivity

schemes and is exemplified by the constancy of group contributions to thermody-

namic and spectroscopic properties. But what is the electronic basis of this empir-

ical transferability? The quantum theory of atoms in molecules (QTAIM) [1], de-

veloped by Professor Richard F. W. Bader and his coworkers, relies on quantum

observables such as the electron density rðrÞ and energy densities to answer such

a question. Other important (related) questions addressed by QTAIM include:
� What is an atom in a molecule or a crystal?
� How can an atom or a group of atoms be transferable

sometimes in very different external potentials?
� Can one define bonding in molecules unambiguously

especially in borderline cases?

This chapter contains a summary of some of the main concepts of QTAIM. A

more comprehensive and mathematically elegant treatment can be found in

Bader’s book [1].

(Often in this chapter, the word ‘‘molecule’’ includes extended systems such as

polymers, weakly bonded molecular complexes, and molecular and ionic crystals,

in addition to its more traditional meaning of a single, finite, isolated chemically

bonded group of atoms. It will be clear from the context when this term is used

in its traditional or in its larger sense.)

1.2

The Topology of the Electron Density

The topology of the electron density is dominated by the attractive forces of the

nuclei imparting it with its principal topological feature – a substantial local max-
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imum at the position of each nucleus. A consequence of the dominance of nu-

clear maxima in the electron density distribution is the association of an atom

with a region of space the boundaries of which are determined by the balance in

the forces the neighboring nuclei exert on the electrons. Figure 1.1b is a relief

map of the electron density of the phenolic region of the morphine molecule, in

the plane of the aromatic ring, showing the maxima at the C, O, and H nuclei.

A ‘‘critical point’’ (CP) in the electron density is a point in space at which the

first derivatives of the density vanish, i.e.:

‘r ¼ i
dr

dx
þ j

dr

dy
þ k

dr

dz
!

¼~00 ðAt critical points and
at yÞ

Generally0~00 ðAt all other pointsÞ

8><
>: ð1Þ

where the zero vector signifies that each individual derivative in the gradient op-

erator, ‘, is zero and not just their sum. The gradient of a scalar function such as

rðrÞ (Eq. 1) at a point in space is a vector pointing in the direction in which rðrÞ
undergoes the greatest rate of increase and having a magnitude equal to the rate

of increase in that direction. The maximum at the position of a nucleus consti-

tutes one type of CP, namely, a nuclear critical point (NCP). (The neglect of the

finite size of atomic nuclei in quantum chemical calculations, an exceptionally good

approximation, results in cusps in the potential and in the electron density rðrÞ at
the position of the nuclei. Because of this cusp, the derivatives of the electron

Fig. 1.1 (a) The molecular structure of the morphine molecule with an

indication of the region shown in the relief map in (b). (b) A relief map

representation of the electron density in the plane of the aromatic ring

showing marked maxima at the positions of the carbon and oxygen

nuclei (truncated at rðrÞ ¼ 1:0 au) and much smaller peaks at the

position of the hydrogen nuclei.
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density at the position of a nucleus are not defined and so, in a formal mathemat-

ical sense, this position is not a true critical point. The nuclear maxima behave

topologically as critical points, however.)
One can discriminate between a local minimum, a local maximum, or a saddle

point by considering the second derivatives, the elements of the tensor ‘‘r.

There are nine second derivatives of rðrÞ that can be arranged in the so-called

‘‘Hessian matrix’’, which when evaluated at a CP located at rc is written:

AðrcÞ ¼

q2r

qx2

q2r

qxqy

q2r

qxqz

q2r

qyqx

q2r

qy2
q2r

qyqz

q2r

qzqx

q2r

qzqy

q2r

qz2

0
BBBBBBBB@

1
CCCCCCCCA
r¼rc

: ð2Þ

The Hessian matrix can be diagonalized because it is real and symmetric. The

diagonalization of AðrcÞ is equivalent to a rotation of the coordinate system

rðx; y; zÞ ! rðx 0; y 0; z 0Þ superimposing the new axes x 0, y 0, z 0 with the principal

curvature axes of the critical point. The rotation of the coordinate system is

accomplished via a unitary transformation, r 0 ¼ rU, where U is a unitary matrix

constructed from a set of three eigenvalue equations Aui ¼ liui ði ¼ 1; 2; 3Þ in
which ui is the ith column vector (eigenvector) in U. A similarity transformation

U�1AU ¼ L transforms the Hessian into its diagonal form, which is written ex-

plicitly as:

L ¼

q2r

qx 02
0 0

0
q2r

qy 02
0

0 0
q2r

qz 02

0
BBBBBBBB@

1
CCCCCCCCA
r 0 ¼rc

¼
l1 0 0

0 l2 0

0 0 l3

0
BB@

1
CCA; ð3Þ

in which l1, l2, and l3 are the curvatures of the density with respect to the three

principal axes x 0, y 0, z 0.
An important property of the Hessian is that its trace is invariant to rotations of

the coordinate system. The trace of the Hessian of the density is known as the

Laplacian of the density ½‘2rðrÞ� and, when x ¼ x 0, y ¼ y 0, and z ¼ z 0, is given

by:

‘2rðrÞ ¼ ‘ � ‘rðrÞ ¼ q2rðrÞ
qx2|fflffl{zfflffl}
l1

þ q2rðrÞ
qy2|fflffl{zfflffl}
l2

þ q2rðrÞ
qz2|fflffl{zfflffl}
l3

ð4Þ

where we have dropped the primes of the principal axes.
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Critical points are classified according to their rank ðoÞ and signature ðsÞ and
are symbolized by ðo; sÞ. The rank is the number of non-zero curvatures of r at

the critical point. A critical point that has o < 3 is mathematically unstable and

will vanish or bifurcate under small perturbations of the density caused by nu-

clear motion. The presence of such a CP (with a rank less than three) indicates a

change in the topology of the density and, hence, a change in the molecular struc-

ture. For this reason, critical points with o < 3 are generally not found in equilib-

rium charge distributions and one nearly always finds o ¼ 3. The signature is the

algebraic sum of the signs of the curvatures, i.e. each of the three curvatures con-

tributes e1 depending on whether it is a positive or negative curvature.

There are four types of stable critical points having three non-zero eigenvalues:
� ð3;�3Þ Three negative curvatures: r is a local maximum.
� ð3;�1Þ Two negative curvatures: r is a maximum in the

plane defined by the corresponding eigenvectors but is a

minimum along the third axis which is perpendicular to this

plane.
� ð3;þ1Þ Two positive curvatures: r is a minimum in the plane

defined by the corresponding eigenvectors and a maximum

along the third axis which is perpendicular to this plane.
� ð3;þ3Þ Three curvatures are positive: r is a local minimum.

Each type of critical point described above is identified with an element of

chemical structure: ð3;�3Þ nuclear critical point (NCP); ð3;�1Þ bond critical point
(BCP); ð3;þ1Þ ring critical point (RCP); and ð3;þ3Þ cage critical point (CCP).
The number and type of critical points that can coexist in a molecule or crystal

follow a strict topological relationship which states that:

nNCP � nBCP þ nRCP � nCCP ¼
1 (Isolated molecules)

0 (Infinite crystals)

�
ð5Þ

where n denotes the number of the subscripted type of CP. The first equality

is known as the Poincaré–Hopf relationship (PH) [1] and applies for isolated

finite systems such as a molecule, the second equality is known as the Morse

equation and applies in cases of infinite periodic lattices [2]. The set

fnNCP; nBCP; nRCP; nCCPg for a given system is known as the ‘‘characteristic set’’.

Violation of Eq. (5) implies an inconsistent characteristic set, that a critical

point has been missed, and that a further search for the missing critical point(s)

is necessary. On the other hand, the satisfaction of this equation does not prove its
completeness. For example, if we miss both a BCP and an RCP for a molecule,

Eq. (5) becomes nNCP � ðnBCP � 1Þ þ ðnRCP � 1Þ � nCCP ¼ 1 which is clearly still

valid [3]. The likelihood of missing both a BCP and a RCP is small, however,

and, in practice, satisfaction of Eq. (5) is taken as a proof of the consistency and
completeness of the characteristic set.

A ring critical point will always be found in the interior of a ring of chemically

bonded atoms. When several rings are connected in a manner which encloses an
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interstitial space, a cage critical point arises in the enclosed space. Figure 1.2

shows the molecular graph (the set of bond paths and critical points) of two

molecules: (a) cubane, and (b) 4-methyl-1,12-difluoro[4]helicene. The bond path

is a single line of maximum electron density linking the nuclei of two chemi-

cally-bonded atoms. (The bond path is discussed in more detail later in this chap-

ter.) In cubane, the bond paths are arranged between the vertices of a cube form-

ing six rings with the consequent appearance of one-ring critical point at the

centre of each face of the cube. These six ring surfaces completely enclose the vol-

ume of the cube and, as a result, a cage critical point forms in the center of the

cube. In Fig. 1.2a, the reader may also note the marked curvature of the bond

paths in cubane, indicative of a significant ring strain in this unstable molecule.

All cage critical points reported in the literature until 2005 were found to be

enclosed by at least three ring surfaces, as stated by Bader in 1990 [1]: ‘‘While it
is mathematically possible for a cage to be bounded by only two ring surfaces, the min-
imum number found in an actual molecule so far is three, as in bicyclo [1.1.1] pentane,
for example’’, a statement reiterated in 2000 [3]. In Fig. 1.2b there is nothing un-

usual about the aromatic system, but the nuclei of the two fluorine atoms in the

‘‘Fjord region’’ are linked by a bond path [4] closing a seven-membered ring

which has quite an unusual topology – it gives rise to two ring critical points and
a cage critical point [5]. We have, thus, recently reported the first example of an

actual molecular system in which a cage is bounded by only two ring surfaces

[5]. Such a CCP (enclosed by two ring surfaces) arises in all the studied deriva-

tives of 1,12-difluoro[4]helicenes [5]. In these molecules, the seven-membered

ring in the Fjord region is so distorted out of planarity that its ring surface splits

into two, giving rise to this CCP [5]. In all cases, the Poincaré–Hopf relationship

is satisfied [5].

1.3

The Topology of the Electron Density Dictates the Form of Atoms in Molecules

The pronounced maxima in the electron density at the positions of the nuclei give

rise to a rich topology. This topology embodies a natural partitioning of the mo-

lecular space into separate mononuclear regions, W, identified as atoms in mole-

cules. The surface bounding an atom in a molecule is one of zero flux in the gra-

dient vector field of the electron density, i.e. it is not crossed by any of the

gradient vectors ½‘rðrÞ� at any point, a statement which is equivalent to satisfying

the condition:

‘rðrÞ � nðrÞ ¼ 0; for all r belonging to the surface SðWÞ ð6Þ

where r is the position vector and nðrÞ the unit vector normal to the surface SðWÞ.
The plot in Fig. 1.3a represents the electron density and its gradient vector field

in the molecular plane of BF3. The figure contrasts the zero-flux surfaces which

partition the molecular space into separate mononuclear ‘‘atomic basins’’ and an

arbitrary surface cutting though the density. The left side of Fig. 1.3a is a contour
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plot of rðrÞ, the contours decreasing in value from the nuclei outward. Instead of

plotting rðrÞ in the right half of Fig. 1.3a (which is a mirror image of the left side

by virtue of the molecular symmetry), we have depicted, instead, the correspond-

ing gradient vector field ‘rðrÞ. The gradient vector field lines partition the molec-

ular space naturally into three fluorine basins and a central boron basin (Fig.

1.3a).

Gradient vector field lines belonging to an atomic basin all converge to one nu-
cleus which acts as an attractor to these gradient vector field lines. In doing so,

these gradient vector field lines sweep a portion of physical space associated with

one nucleus and which is identified as the basin of an atom in a molecule (AIM).

Three-dimensional volume renderings of the atoms and groups of atoms within

the BF3 molecule are shown in Fig. 1.3b. An atom in a molecule is defined as the

union of a nucleus and its associated basin. Each basin is bounded by one (or by

the union of a number of ) zero-flux surface(s) one of which may occur at infinity.

An atom in a molecule may be defined, alternatively and equivalently, as a region

of space bounded by one or more zero-flux surface(s).

Occasionally, local maxima in the electron density can occur at positions other

than those of atomic nuclei, especially in metals [6, 7] and semiconductors [8, 9],

but also in systems such as the solvated electron [10] and at the positions of de-

fects in crystals and color F-centers [11]. The non-nuclear maxima, also known as

non-nuclear attractors (NNA), are topologically indistinguishable from the nu-

clear maxima. Just like a nucleus, an NNA is associated with a basin swept by gra-

dient vector field lines and is bounded by a zero-flux surface. Consequently, NNA

Fig. 1.2 The molecular graph of (a) cubane and (b) 4-methyl-1,12-

difluoro[4]helicene showing the bond paths (lines) and the different

critical points: nuclear (color-coded by element: C ¼ black, H ¼ grey,

F ¼ golden), bond (small red dots), ring (yellow dots), and cage (green

dots) critical points.
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basins constitute proper open quantum systems and are therefore termed ‘‘pseudo-

atoms’’. Pseudo-atoms can be bonded (i.e. share a common interatomic zero-flux

surface, a bond critical point, and a bond path) to atoms and other pseudo-atoms

in a molecule. Non-nuclear attractors and their basins are of great importance in

characterizing metallic bonding and are of substantial theoretical interest. A de-

tailed discussion of NNA can be found in Chapter 7 of this book.

There is a unique set of gradient vectors lines which originate at infinity and

terminate at a point between two bonded atoms, the lines of this set fall by defini-

tion on the zero-flux surface because they satisfy Eq. (6) locally. It should be

noted that the three zero-flux surfaces depicted in Fig. 1.3 are between the boron

and fluorine atoms, the boron atom being bounded three zero-flux surfaces which

merge in pairs at infinity between fluorine basins. There are no zero-flux surfaces

Fig. 1.3 (a) The electron density (left) and

the gradient vector field (right) of the density

in the molecular plane of BF3. The blue

arrows connecting the nuclei trace the bond

paths. The magenta arrows delimiting atomic

basins trace the intersections of the zero-flux

surfaces with the plane. The contours

increase from the outermost 0.001 au

contour followed by 2� 10n, 4� 10n, and

8� 10n au with n starting at �3 and

increasing in steps of unity. The small circles

drawn on the three bond paths are the B–F

bond critical points (BCP). The intersection

of an arbitrary surface with the plane of the

figure, the straight line on the lower right part

of (a), is shown to be crossed by gradient

vectors and is contrasted with a zero-flux

surface. (b) Four three-dimensional

renderings of the density of atoms and

groupings of atoms in BF3. The outer surface

is the 0.002 au isodensity envelope. The zero-

flux surfaces are denoted by the vertical bars

between the atomic symbols. Large spheres

represent the nuclei of the fluorine atoms

(golden) and of the boron atom (blue–gray).

The lines linking the nuclei represent the

bond paths. The BCPs are denoted by the

small red dots. A BCP always lies on the

zero-flux surface shared by the two bonded

atoms.
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between any pair of fluorine atoms in BF3, these surfaces only exist between

bonded atoms and are characteristic of bonding interactions.

The topological definition of an atom follows from the boundary condition ex-

pressed in Eq. (6) and which applies to every point on the surface. This real space

partitioning of the electron density has been shown to be rooted in quantum me-

chanics bringing into coincidence the topological definition of an atom in a mol-

ecule with that of a proper open quantum system (see Chapter 2 and also the de-

tailed derivation of the quantum mechanics of proper open systems [12] from

Schwinger’s principle of stationary action [13]).

1.4

The Bond and Virial Paths, and the Molecular and Virial Graphs

The presence of an interatomic zero-flux surface between any two bonded atoms

in a molecule is always accompanied by another key topological feature – there is,

in real space, a single line of locally maximum density, termed the ‘‘bond path’’

(BP), linking their nuclei. The bond path is a universal indicator of chemical

bonding of all kinds; weak, strong, closed-shell, and open-shell interactions [14].

The point on the bond path with the lowest value of the electron density (mini-

mum along the path) is the bond critical point (BCP) and it is at that point where

the bond path intersects the zero-flux surface separating the two bonded atoms.

The collection of bond paths linking the nuclei of bonded atoms in an equilib-

rium geometry, with the associated critical points, is known as the molecular
graph. (In a non-equilibrium geometry, lines of maximum electron density link-

ing the nuclei are known as ‘‘atomic interaction lines’’, because these may or

may not persist when the geometry is energy-minimized, i.e. optimized.) The

molecular graph provides an unambiguous definition of the ‘‘molecular struc-

ture’’ and can thus be used to locate changes in structure along a reaction path.

Mirroring every molecular graph is a ‘‘shadow’’ graph, again in real space, but

this time the graph is defined by a set of lines of maximally negative potential en-
ergy density. In other words, there is a single line of maximally negative potential

energy density linking the same attractors which share a bond path [15]. This line

of ‘‘maximum stability’’ in real space is termed a ‘‘virial path’’. The collection of

virial paths and the associated critical points constitute the virial graph. The virial

graph defines the same molecular structure as the molecular graph, the virial

field and the electron density being homeomorphic [15].

Figure 1.4 shows the chemical structure and the molecular and virial graphs

of the phenanthrene molecule. This polycyclic aromatic hydrocarbon molecule

has a bond path between the two hydrogen atoms in the bay region, a mode of

closed-shell bonding which has been recently characterized in detail and termed

hydrogen–hydrogen bonding (to be contrasted with dihydrogen bonding) [16, 17].

The virial graph is shown to faithfully map each bond path with a corresponding

virial path including the bond path of a weak closed-shell bonding interaction

such as the hydrogen–hydrogen bonding interaction (Fig. 1.4).
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We conclude this section by stating that atoms that are chemically bonded have
their nuclei linked by a (single) bond path and by an accompanying virial path and
they share a bond critical point and a common interatomic zero-flux surface.

1.5

The Atomic Partitioning of Molecular Properties

The quantum theory of atoms in molecules is a generalization of quantum

mechanics to open quantum systems. Bader has shown that the topological parti-

tioning of the molecules into atomic basins is essential for development of the

quantum mechanics of open systems [12]. The zero-flux condition, Eq. (6), is the

necessary constraint for the application of Schwinger’s principle of stationary

action [13] to part of a quantum system [12].

The partitioning of the molecular space into atomic basins enables the parti-

tioning of electronic properties into atomic contributions in one consistent theo-

retical framework. Among the properties often discussed are the atomic charges

and higher multipolar electric polarizations, atomic volumes, atomic total ener-

gies (and the different contributions to the atomic energies), and the electron lo-

calization within one basin or delocalization between two basins [1, 18].

The expectation value of an operator averaged over all space is given by the sum

of the expectation values of this operator averaged over all the atoms in the mole-

cule or the crystal, in atomic units:

hÔOimolecule ¼
X

all atoms
in the

molecule

i

N

ð
Wi

ð
1

2
½C�ÔOCþ ðÔOCÞ�C� dt 0

� �
dr

� �
ð7aÞ

¼
X

all atoms
in the

molecule

i

ð
Wi

rO dr

� �
¼

X
all atoms
in the

molecule

i

OðWiÞ ð7bÞ

Fig. 1.4 (a) The chemical structure of phenanthrene. (b) The molecular

graph of phenathrene showing the collection of bond paths and

associated critical points. (c) The corresponding virial graph.
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where hÔOimolecule is the molecular expectation value of the operator ÔO, OðWiÞ is
the average of this operator over an atom Wi, and where the sum runs over all

the atoms in the molecule or crystal. Integration over the coordinates of all elec-

trons but one and summation over all spins is symbolized by
Ð
dt 0. Equation (7b)

implies that any molecular property O which can be expressed in terms of a cor-

responding property density in space rOðrÞ can be written as a sum of atomic

contributions obtained by averaging the appropriate operator over the volume of

the atom, i.e. it exhibits atomic additivity.

1.6

The Nodal Surface in the Laplacian as the Reactive Surface of a Molecule

Because the Laplacian is essentially a second derivative, its sign indicates regions

of local electronic charge concentration or depletion with respect to the immedi-

ate neighborhood. Thus, where ‘2rðrÞ > 0 the density is locally depleted and ex-

panded relative to its average distribution; where ‘2rðrÞ < 0 the density is locally

concentrated, tightly bound, and compressed relative to its average distribution. A

local charge concentration behaves as a Lewis base (electron donor) whereas a lo-

cal charge depletion acts as a Lewis acid (electron acceptor).

The Laplacian reproduces the spherical shell structure of isolated atoms in

terms of alternating shells of charge concentration followed by shells of charge

depletion [19, 20]. The spherical nodes in the Laplacian are envelopes bounding

regions of density depletion or concentration. The outer shell of charge concen-

tration, which is followed by a shell of charge depletion extending to infinity, is

called the valence shell charge concentration (VSCC). When an atom is involved

in bonding the spherical symmetry of the VSCC is broken. A chemical reaction

corresponds to the combination of a ‘‘lump’’ in the VSCC of the base with a

‘‘hole’’ in the VSCC of the acid.

Covalently bonded atoms have bonding charge concentrated in the region be-

tween their nuclei. In addition to bonding charge concentrations, lone pairs are

associated with non-bonding charge concentrations. These observations reflect

an underlying mapping between the Laplacian of the electron density and the

Laplacian of the conditional pair density when electrons tend to be localized [21].

The Laplacian of the density is characterized by a rich topology which provides

a basis for the VSEPR model [22–24] of molecular geometry [1, 25–27]. More de-

tails on this topic are available elsewhere [1, 3, 25–29] and Chapter 19 explores

the use of the reactive surface in drug design and drug–receptor molecular

complementarity.

1.7

Bond Properties

A zero-flux surface is defined by a particular set of ‘rðrÞ trajectories all the mem-

bers of which terminate at a single point, the bond critical point, where
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‘rðrÞ ¼ 0. There is one BCP between each pair of atoms that are bonded, i.e., two

atoms linked by a bond path and sharing a common interatomic zero-flux sur-

face. In addition to the set of trajectories which terminate at the BCP and define

an interatomic surface, a pair of trajectories originates at the BCP with each

member of the pair terminating at one of the nuclei of the chemically bonded

atoms. This latter pair of trajectories defines the bond path [14]. Chemical bond-

ing interactions are characterized and classified according to the properties of the

electron and energy densities at the BCP, collectively know as ‘‘bond properties’’.

1.7.1

The Electron Density at the BCP (rb)

The strength of a chemical bond, its bond order (BO), is reflected in the electron

density at the BCP ðrbÞ [1]:

BO ¼ exp½Aðrb � BÞ� ð8Þ

where A and B are constants which depend on the nature of the bonded atoms.

In general, rb is greater than 0.20 au in shared (covalent) bonding and less than

0.10 au in a closed-shell interaction (for example ionic, van der Waals, hydrogen,

dihydrogen, HaH bonding, etc.). rb has been shown to be strongly correlated

with the binding energy for several types of bonding interaction [30–36] and

with the bond length of SaS bonding interactions [37]. Proposals to generalize

Eq. (8) by including more than two elements in the same fitting have recently ap-

peared in the literature [38, 39].

1.7.2

The Bonded Radius of an Atom (rb), and the Bond Path Length

The distance of a BCP from nucleus A determines the ‘‘bonded radius’’ of atom A

relative to the interaction defined by the BCP, and is denoted rbðAÞ. If the bond

path is coincident with the internuclear axis, then the sum of the two associated

bond radii, termed the bond path length, equals the bond length. If, however, the

bond path is curved, or strained chemically, the bond path length will exceed

the bond length. Examples of this latter behavior are found for hydrogen-bonded

interactions and for bonding within strained cyclic molecules (e.g. the curved

CaC bond paths in the cubane molecule, Fig. 1.2a).

1.7.3

The Laplacian of the Electron Density at the BCP (‘2rb)

The Laplacian at the BCP is the sum of the three curvatures of the density at the

critical point (Eq. 4), the two perpendicular to the bond path, l1 and l2, being

negative (by convention, jl1j > jl2jÞ whereas the third, l3, lying along the bond
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path, is positive. The negative curvatures measure the extent to which the density

is concentrated along the bond path and the positive curvature measures the ex-

tent to which it is depleted in the region of the interatomic surface and concen-

trated in the individual atomic basins.

In covalent bonding the two negative curvatures are dominant and ‘2rb < 0,

for example, ‘2rb ¼ �1:1 au for a typical CaH bond. In contrast, in closed-shell

bonding, for example ionic, hydrogen-bonding or van der Walls interactions, the

interaction is characterized by a depletion of density in the region of contact of

the two atoms and ‘2rb > 0. An Na(H���O)bC hydrogen bond, for instance, is

characterized by ‘2rb ¼ þ0:03 au. In strongly polar bonding, (e.g. CaX, where

X ¼ O;N;F), there is a significant accumulation of electron density between the

nuclei, as in all shared interactions, but the Laplacian in this type of bonding can

be of either sign.

1.7.4

The Bond Ellipticity (e)

The ellipticity measures the extent to which density is preferentially accumulated

in a given plane containing the bond path. The ellipticity is defined as:

e ¼ l1

l2
� 1 ðwhere jl1jb jl2jÞ ð9Þ

If l1 ¼ l2, then e ¼ 0, and the bond is cylindrically symmetrical; examples are

the CaC single bond in ethane or the triple bond in acetylene. Thus, e is a mea-

sure of the p-character of the bonding up to the limit of the ‘‘double bond’’ for

which the ellipticity reaches a maximum. On going from a double to a triple

bond, the trend is reversed and the ellipticity decreases with increasing bond or-

der, because at the limit of BO ¼ 3 the bonding regains its cylindrical symmetry

(two p-bonding interactions in two orthogonal planes in addition to a cylindrically

symmetric s-bonding interaction). The ellipticity of an aromatic bond is ca. 0.23

in benzene and that of a formal double bond is ca. 0.45 in ethylene.

1.7.5

Energy Densities at the BCP

Energy densities require information contained in the one-electron density matrix

(and not just the density, its diagonal elements). The energy densities (potential,

kinetic, and total) are used to summarize the mechanics of a bonding interaction.

The potential energy density, VðrÞ, also known as the virial field, is the average

effective potential field experienced by a single electron at point r in a many-

particle system. The virial field evaluated at any point in space is always negative

and its integral over all space yields the total potential energy of the molecule.

The local statement of the virial theorem expresses the relationship between the

12 1 An Introduction to the Quantum Theory of Atoms in Molecules



virial field, the kinetic energy density, and the Laplacian, which when written for

a stationary state is [1, 12, 40]:

�h2

4m

� �
‘2rðrÞ ¼ 2GðrÞ þVðrÞ ð10Þ

where

GðrÞ ¼ �h2

2m
N

ð
dt 0‘C� � ‘C ð11Þ

and where GðrÞ is the gradient kinetic energy density and C is an antisymmetric

many-electron wavefunction.

Because we always have GðrÞ > 0 and VðrÞ < 0, the local virial theorem

when applied at a BCP implies that interactions for which ‘2rb < 0 are domi-

nated by a local reduction of the potential energy. Conversely, interactions for

which ‘2rb > 0 are dominated by a local excess in the kinetic energy.

To compare the kinetic and potential energy densities on an equal footing (in-

stead of the 2:1 virial ratio) Cremer and Kraka [41] proposed evaluating the total

electronic energy density ½HðrÞ ¼ GðrÞ þVðrÞ� at the BCP:

Hb ¼ Gb þVb ð12Þ

The total energy density yields the total electronic energy when integrated over

all space. Hb is negative for interactions with significant sharing of electrons, its

magnitude reflecting the ‘‘covalence’’ of the interaction [41].

1.7.6

Electron Delocalization between Bonded Atoms: A Direct Measure of Bond Order

The number of electron pairs shared between two bonded atoms is often called

the bond order. QTAIM provides a bookkeeping of the number of pairs shared be-

tween two atoms by integrating the exchange density once over each of the two

atomic basins. This property may as well be classified under ‘‘atomic properties’’

because it involves the double integration of the exchange density over the basins

of two atoms, but, because it ‘‘counts’’ the number of electron pairs shared be-

tween two atoms, when reported for bonded atoms, it can be regarded as a bond

property.

The magnitude of the exchange of the electrons in the basin of atom A with

those in the basin of atom B is termed the delocalization index between them,

dðA;BÞ, and is defined for a closed-shell system as [42]:

dðA;BÞ ¼ 2jF aðA;BÞj þ 2jF bðA;BÞj ð13Þ
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where the Fermi correlation is defined as:

F sðA;BÞ ¼ �
X
i

X
j

ð
A
dr1

ð
B
dr2ff�i ðr1Þfjðr1Þf�j ðr2Þfiðr2Þg

¼ �
X
i

X
j

SijðAÞSjiðBÞ ð14Þ

where SijðWÞ ¼ SjiðWÞ is the overlap integral of two spin orbitals over a region W

and s represents spin (a or b).

The second-order density matrix obtained from a configuration interaction (CI)

calculation can also be expressed in terms of products of basis functions multi-

plied by the appropriate coefficients enabling one to express the integrated pair

density in terms of overlap contributions. Thus, terms similar to those in Eq.

(14) multiplied by the appropriate coefficients appear in the CI expression for

F sðA;BÞ and electron delocalization is still described in terms of the exchange of

electrons between molecular orbitals, but this time in a wavefunction incorporat-

ing Coulomb in addition to Fermi correlation [42].

If the double integration in Eq. (14) is performed over only one atomic basin,

say atom A, this would yield the total Fermi correlation for the electrons in region

A [43]:

F sðA;AÞ ¼
ð
A
dr1

ð
A
dr2r

sðr1Þhsðr1; r2Þ ð15Þ

where its limiting value is �N sðAÞ, the negative of the s-spin population of atom

A, i.e. the number of s electrons in A being totally localized within this atom be-

cause all remaining s-spin density would then be excluded from A. In other

words, if this limiting value is reached, it implies that the electrons in A do not

exchange with electrons outside A. Thus a localization index ½lðAÞ� is defined as:

lðA;AÞ ¼ jF aðA;AÞj þ jF bðA;AÞj ð16Þ

The limit of total localization, while approached quite closely (b95%) in ionic

systems, cannot usually be achieved and one finds that jF sðA;AÞj < N sðAÞ, indi-
cating that the electrons in region A always exchange, to some extent, with elec-

trons outside the boundaries of A, i.e., they are delocalized.

Because the Fermi correlation counts all electrons, the sum of the localization

indices and half of all the delocalization indices is N, the total number of elec-

trons in the molecule. This, in turn, provides a measure of how these electrons

are localized within the individual atomic basins and delocalized between them,

in effect resulting in bookkeeping of electrons in the molecule:

NðAÞ ¼ lðAÞ þ 1

2

X
B0A

dðA;BÞ ð17Þ
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How closely the sum of the localization and the delocalization indices (Eq. 17)

recovers the total molecular electron population is a global measure of the quality

of the atomic integrations.

The localization and delocalization indices can be calculated from the atomic

overlap matrices using readily available software such as AIMDELOC [44] or LI-

DICALC [45, 46].

It is important to realize that a delocalization index can be calculated between

any pair of atoms whether bonded or not. When dðA;BÞ is calculated between

bonded atoms it yields a measure of the bond order between them if the electron

pairs are equally shared (i.e. there is no appreciable charge transfer) [42, 47].

Because rb and the bond order are strongly correlated (Eq. 8), Matta and

Hernández-Trujillo [48] suggested calibrating this correlation using the delocali-

zation index rather than arbitrarily assigned bond orders:

dðA;BÞ ¼ exp½Aðrb � BÞ� ð18Þ

Equation (18) enables calibration of experimental rb with delocalization indices

obtained by calculation. The fitted equation can then be used to obtain experi-

mental estimates for information on electron sharing contained in a full density

matrix, information which is not accessible in a conventional X-ray diffraction

experiment, from experimentally determined rb [48]. Data for the 21 carbon–

carbon bonds in the estrone hormone could be fitted to the following equation

[49]:

dðC;C 0Þ ¼ expf4:7427� ½rbðin a:u:Þ � 0:2538�g ð19Þ

with r2 ¼ 0:939, a variance of 0.002, and a root mean square deviation of

0.010, and in which dðC;C 0Þ were calculated at the B3LYP/6-311þþGðd; pÞ level
and rb are the experimentally determined electron density values at the CaC

BCPs.

1.8

Atomic Properties

The average of a property O over an atomic basin W, OðWÞ, is calculated from:

OðWÞ ¼ hÔOiW ¼
N

2

ð
W

dr

ð
dt 0½C�ÔOCþ ðÔOCÞ�C� ð20Þ

where ÔO is a one-electron operator or a sum of one-electron operators. Some ex-

amples of commonly computed atomic properties are discussed in the subsec-

tions below.
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1.8.1

Atomic Electron Population [N(W)] and Charge [q(W)]

The total electron population of an atom in a molecule is obtained by setting

ÔO ¼ 1̂1 in Eq. (20). This yields:

NðWÞ ¼
ð
W

rðrÞ dr ð21Þ

which can also be expressed explicitly in terms of the separate spin populations as

the expectation value of the number operator, an integral operator, averaged over

a proper open quantum subsystem:

NðWÞ ¼
X
i

½hciðrÞjciðrÞiaW þ hciðrÞjciðrÞib
W� ð22Þ

in which the separate spin populations are given by:

hciðrÞjciðrÞisW ¼
ð
W

cs�
i ðrÞcs

i ðrÞ dr1Ss
iiðWÞ ð23Þ

where s refers to either a-spin or b-spin, and Ss
iiðWÞ is the ith diagonal element of

the atomic overlap matrix.

The atomic charge is obtained by subtracting NðWÞ from the nuclear charge ZW:

qðWÞ ¼ ZW � NðWÞ ð24Þ

Because of the manner by which atomic populations are defined, Eqs (22) and

(23), QTAIM populations and charges are true quantum expectation values. That

is, they are ‘‘observables’’ in the quantum mechanical sense [18, 50]. Observables

are not necessarily measurable in practice, but any measurable quantity is an ob-

servable or can be expressed in terms of one or more observables. Indirect exper-

imental evidence lends strong support to the physical nature of QTAIM atomic

populations and charges [51] (see also Section 1.9.2).

The deviation of the sum of the atomic populations (or charges) from the cor-

responding molecular value is an indicator of the quality of the numerical inte-

grations. Deviations of less than ca. 0.001–0.002 electrons are regarded as accept-

able for molecules of medium size (up to@100 first to third row atoms).

1.8.2

Atomic Volume [Vol.(W)]

The atomic volume is defined as the space bounded by the intersection of the

zero-flux surface(s) bounding the atom from the molecular interior and a chosen
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outer isodensity envelope (if a side of this atom’s basin extends to infinity). While

a molecule extends in principle to infinity, an outer isodensity of rðrÞ ¼ 0:001 au

is usually chosen as its outer bounding surface for two reasons:

1. this isosurface closely recovers the experimental van der

Waals volumes in the gas phase, and

2. it usually encloses more than 99% of the electron population

of the molecule [1].

The van der Waals surface in condensed phases is closer to the 0.002 au isoden-

sity envelope [1].

1.8.3

Kinetic Energy [T(W)]

There are at least two forms of the kinetic energy operator [52] with two corre-

sponding expressions for the atomic average of the kinetic energy, the Schrö-

dinger kinetic energy:

KðWÞ ¼ � �h2

4m
N

ð
W

dr

ð
dt 0½C‘2C� þC�‘2C� ð25Þ

and the gradient kinetic energy:

GðWÞ ¼ �h2

2m
N

ð
W

dr

ð
dt 0‘iC

� � ‘iC ð26Þ

For the total system and for a proper open quantum system, Eqs (25) and (26)

must yield an identical value for the kinetic energy, of course, i.e. KðWÞ ¼
GðWÞ ¼ TðWÞ. Because the difference between KðWÞ and GðWÞ should vanish for

an atom in a molecule, the (small) departure from zero of this difference as

gauged by the Laplacian (Section 1.8.4) is a measure of the numerical accuracy

of the atomic integrations.

1.8.4

Laplacian [L(W)]

The Laplacian function has the dimensions of electrons� (length)�5. Because of

the zero-flux boundary condition, Eq. (6), the Laplacian of the electron density,

vanishes when integrated over an atomic basin, as can be seen from:

LðWÞ ¼ KðWÞ �GðWÞ

¼ � �h2

4m

ð
W

dr½‘2rðrÞ�

¼ � �h2

4m

ð
dSðW; rÞ‘rðrÞ � nðrÞ ¼ 0 ð27Þ
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the last equality is valid only for the total system or if the integration is performed

over a proper open quantum system bounded by zero-flux surfaces.

How close the integrated Laplacian approaches zero is often used as an indica-

tor of the numerical accuracy of atomic integrations. Deviations from zero are a

measure of integration error. LðWÞa ca: 1:0� 10�3 au for second and third-row

atoms and LðWÞa ca: 1:0� 10�4 au for hydrogen atoms are regarded as accept-

able and are usually paralleled by atomic energies which add up to within a kcal

mol�1 of the directly calculated molecular total energy for a medium size mole-

cule (@100 atoms or fewer). The smaller LðWÞ the better the quality of an atomic

integration.

1.8.5

Total Atomic Energy [Ee(W)]

The partitioning of the total molecular energy into a set of additive atomic ener-

gies is a non-trivial problem that was solved by Bader [1]. To see the difficulties

in partitioning the total energy, one may ask, for instance, how can the nuclear–

nuclear repulsion contribution to the total molecular energy be partitioned on an

atom-by-atom basis?

The kinetic energy density can be expressed:

KðrÞ ¼ � �h2

4m
N

ð
dt 0½C‘2C� þC�‘2C� ð28Þ

which when compared with Eq. (11) yields:

KðrÞ ¼ GðrÞ � �h2

4m
‘2rðrÞ ð29Þ

It is clear from Eq. (29) that the integral of the kinetic energy densities KðrÞ
and GðrÞ over a volume o would usually yield different values because the inte-

gral of the Laplacian does not usually vanish when integrated over an arbitrary

volume, in which case the kinetic energy is not well defined. The kinetic energy

is well defined if, and only if, the integral of the Laplacian term vanishes, i.e.

when this integral is performed over the total system or over an atomic basin

bounded by a zero-flux surface. Integrating Eq. (29) over o, one obtains:

KðoÞ ¼ GðoÞ � �h2

4m
N

ð
o

dr ‘ � ‘r ð30Þ

Using Gauss’s theorem, the volume integral in Eq. (30) can be transformed into

a surface integral:

KðoÞ ¼ GðoÞ � �h2

4m
N

ð
dSðo; rÞ‘r � nðrÞ ð31Þ
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Now it is clear that the second term in the R.H.S. will vanish only for systems

bounded by a zero-flux surface satisfying Eq. (6) (or for the whole system, because

the Laplacian integrated over the entire space also vanishes). Thus only the total

system and proper open sub-systems will have a definite kinetic energy. A proper

open system (one bounded by a zero-flux surface and/or infinity) will be referred

to as W to distinguish it from an arbitrary bounded region of space o. For such a

proper open system one has:

KðWÞ ¼ GðWÞ ¼ TðWÞ ð32Þ

and, because the integral of the Laplacian vanishes over W, the integral of the lo-

cal statement of the virial theorem (Eq. 10) over W yields the atomic virial theorem:

�2TðWÞ ¼VðWÞ ð33Þ

where the VðWÞ is the total atomic virial.

The atomic electronic energy EeðWÞ is given by:

EeðWÞ ¼ TðWÞ þVðWÞ ð34Þ

For systems in equilibrium there are no Hellmann–Feynman forces acting on

the nuclei and the virial equals the average potential energy of the molecule, i.e.

V ¼ V . Under this condition Eq. (33) becomes:

�2TðWÞ ¼ VðWÞ ð35Þ

where VðWÞ is the potential energy of atom W, and Eq. (34) becomes:

EðWÞ ¼ EeðWÞ ¼ TðWÞ þ VðWÞ ¼ �TðWÞ ¼ 1

2
VðWÞ ð36Þ

where EðWÞ is the total energy of atom W.

Thus, the energy of an atom in a molecule at its equilibrium geometry is ob-

tained from the atomic statement of the virial theorem, and EðWÞ ¼ �TðWÞ.
The sum of atomic energies yields, naturally, the total energy of the molecule (ob-

tained directly from the electronic structure calculation) to within a small numer-

ical integration error. This additivity of the atomic energies is expressed as:

Etotal ¼
X
W

EðWÞ ð37Þ

The result shown in Eq. (37) is remarkable. The equation expresses the parti-

tioning of the total molecular energy into atomic contributions, a partitioning

which includes, for example, the nuclear–nuclear repulsion contribution to the
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molecular energy. Such partitioning of the total energy is indispensable if one is

to understand the atomic origins of the energy difference between two isomers

[4, 16, 53], for example, or the atomic origins of potential energy barriers [17, 54].

The deviation of the sum of the atomic energies from the directly calculated to-

tal molecular energy is another global measure of the quality of atomic integra-

tions. A deviation of no more than ca. 1 kcal mol�1 is usually regarded as an in-

dicator of accurate integrations.

The discussion above is based upon the assumption that the calculated molec-

ular wavefunction satisfies the virial theorem exactly, i.e. the molecular virial ratio

�V/T ¼ 2 to infinite accuracy. In practice, the calculated virial ratio deviates

slightly from this ideal value of 2 because of the truncation of the basis set, resid-

ual forces on the nuclei, and the finite nature of the convergence thresholds in a

typical calculation. The manner by which AIMPAC corrects for this deviation is

described in the Appendix.

1.8.6

Atomic Dipolar Polarization [m(W)]

Also known as the first atomic electrostatic moment, atomic dipolar polarization

is the atomic space average of the electronic position vector. It is a three-

dimensional vector with components and magnitude defined in Eqs (38) and

(39), respectively:

mðWÞ ¼
mx

my

mz

0
BB@

1
CCA¼

�e
ð
W

xrðrÞ dr

�e
ð
W

yrðrÞ dr

�e
ð
W

zrðrÞ dr

0
BBBBBBBB@

1
CCCCCCCCA
1�e

ð
W

rWrðrÞ dr ð38Þ

jmðWÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx

2 þ my
2 þ mz

2
q

ð39Þ

with the origin for the vector rW at the nucleus of atom W, i.e. rW ¼ r � RW, r

being the electronic coordinates and RW the nuclear coordinates of atom W. The

first moment measures the polarization of the charge density, that is to say the

departure from sphericity of the electron density.

The dipolar polarization can be used to understand the origins of permanent

and induced molecular dipole moments and dielectric polarization in materials

[55, 56]. Carbon monoxide is an instructive example [57]. The dipole moment of

the CO molecule has the (unexpected) polarity d�CbOdþ, opposite to intuition

based on the relative electronegativities of carbon and oxygen. This observation

is readily explained when one considers both atomic charges and atomic dipoles.

Calculated atomic charges are indeed in accordance with the expected relative

electronegativities of these two atoms (an electronegativity of 2.5 for carbon and
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3.5 for oxygen) [58] with the carbon bearing a positive charge [qðCÞ ¼ þ1:17 au]

and the oxygen a negative charge, resulting in a charge-transfer dipole with the di-

rection þ1:17CbO
��!�1:17. The electron density of each of the two atomic basins re-

sponds to this charge-transfer dipole with an opposing dipolar polarization C
 
bO
 

with a magnitude which is not only sufficient to cancel the charge-transfer dipole

but to slightly exceed it. The net result is a small dipole in complete accordance

with the unexpected experimental result (Fig. 1.5). Thus, it is necessary to take the

vectorial sum of both the charge transfer and the atomic polarization dipoles in

defining atomic or group contributions to the molecular dipole moment [55, 56].

A program, FRAGDIP [59], is available for calculation of additive atomic and

group contributions to the molecular dipole moment. As an illustration, Table 1.1

lists the group contributions to the dipole moments of several naturally occurring

amino acids with their vector sum and compares this sum with the dipole mo-

ments calculated directly from an SCF calculation (second line). Each amino

acid in its neutral form, with general formula RaCH(NH2)COOH, was regarded

as consisting of two groups – the side-chain (Ra) and the ‘‘main chain’’

(aCH(NH2)COOH). The reader can see how closely the group contributions sum

to the molecular dipole.

Fig. 1.5 Contour plot of the electron density

of CO, showing the magnitudes and

directions of atomic and charge-transfer

dipoles (arrow lengths are proportional to the

dipoles magnitudes). The head of an arrow

points to the negative end of a dipole. The

molecular dipole moment is given by the

vector sum of the charge-transfer terms (mCT)

and the atomic polarizations (mAP). The

directly calculated SCF molecular dipole is

0.096 debyes (D) at the B3LYP/6-311þG(3df )
and the corresponding dipole obtained

from group contributions is 0.096 D,

(experimental: 0.110 D). (Reproduced from

Ref. [57] with the permission from the

American Chemical Society).
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Further, the listings in Table 1.1 have been sorted in terms of the magnitude of

the side-chain dipole magnitude, a sorting that reveals a striking regularity in the

genetic code. Most amino acids listed in the upper part of the table with side-

chain dipole magnitude less than 0.81 au (i.e. with non-polar side-chains) are en-

coded by a genetic triplet code having a pyrimidine base as the middle letter in

the mRNA codon (except glycine, which lacks a side-chain, and tyrosine). On the

other hand, most polar amino acids (having side-chain dipole magnitudes greater

than 0.81 au) are encoded by a purine base, serine being the only ‘‘degenerate’’

amino acid, having codons of both types [56, 60]. Whereas this regularity in the

genetic code has been well known for a long time, it is given a quantitative basis

derived directly from the electron density distributions of the amino acids for the

first time [60].

1.8.7

Atomic Quadrupolar Polarization [Q(W)]

The atomic quadrupolar polarization tensor is also known as the second atomic
electrostatic moment. It is a symmetric traceless tensor defined as:

QðWÞ ¼
Qxx Qxy Qxz

Qyx Qyy Qyz

Q zx Q zy Q zz

0
B@

1
CA

1� e

2

ð
W

ð3x2
W � rWÞrðrÞ dr 3

ð
W

xWyWrðrÞ dr 3

ð
W

xWzWrðrÞ dr

3

ð
W

yWxWrðrÞ dr
ð
W

ð3y2W � rWÞrðrÞ dr
ð
W

yWzWrðrÞ dr

3

ð
W

zWxWrðrÞ dr
ð
W

zWyWrðrÞ dr
ð
W

ð3z2W � rWÞrðrÞ dr

0
BBBBBBBB@

1
CCCCCCCCA
ð40Þ

where, as for the first moment, the origin is placed at the nucleus. If the atomic

electron density has spherical symmetry, then
Ð
W
x2
WrðrÞ dr ¼

Ð
W
y2WrðrÞ dr ¼Ð

W
z2WrðrÞ dr ¼ 1

3

Ð
W
r2WrðrÞ dr, and Qxx ¼ Qyy ¼ Q zz ¼ 0. Thus, the quadrupole

moment is another measure of the deviation of the atomic electron density from

spherical symmetry. For example, if a diagonal component of QðWÞ is <0, the

electron density is concentrated along that axis, and vice versa. It is always possi-

ble to find a coordinate system such that the original tensor in Eq. (40) ½QðWÞ� is
diagonalized ½QðWÞ�. The diagonalization of QðWÞ corresponds to a rotation of the

original coordinate system. The diagonalized quadrupole tensor corresponding to

Eq. (40) is written:

QðWÞ ¼
Qx 0x 0 0 0

0 Qy 0y 0 0

0 0 Qz 0z 0

0
BB@

1
CCA ð41Þ
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where Qx 0x 0 , Q y 0y 0 , and Q z 0z 0 are the principal values of the quadrupole moment

with regard to the principal (rotated) axes, the x 0, y 0, and z 0 axes, which corre-

spond to axes of symmetry if they exist in the electron density distribution (the

primes will be dropped for simplicity).

The traceless property of the tensor defined in Eq. (40) (or in its diagonalized

form, Eq. 41) is a consequence of the equality:

r2W ¼ x2
W þ y2W þ z2W ð42Þ

which is always true in any coordinate system. Therefore:

ðQxx þQyy þQ zzÞ ¼ ðQxx þ Qyy þ QzzÞ ¼ 0 ð43Þ

and only five independent components completely specify QðWÞ in the original

coordinate system and only two are sufficient to specify its diagonalized form

QðWÞ.
Finally, the magnitude of the quadrupolar polarization moment is defined as

[62]:

jQj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ðQ 2

xx þQ 2
yy þQ 2

zzÞ
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ðQ2

xx þ Q2
yy þ Q2

zzÞ
r

ð44Þ

1.9

‘‘Practical’’ Uses and Utility of QTAIM Bond and Atomic Properties

1.9.1

The Use of QTAIM Bond Critical Point Properties

Several QTAIM bond properties have been shown to be correlated with experi-

mental molecular properties. For example, the electron density at the BCP, rb,

has been shown on several occasions to be strongly correlated with the bond

energies, and hence provide a measure of bond order (Eq. 8) [1, 30]; the potential

energy density at the BCP has been shown to be highly correlated with hydrogen

bond energies [32]; full interaction potentials in hydrogen bonds were recovered

from the potential energy density at the BCP [63]; p–p stacking interactions in

benzene dimers and in stacked DNA bases and base-pairs have been found to be

highly correlated to BCP and cage critical point data between p-stacked mono-

mers [64–66].

The use of BCP properties in drug design is a field pioneered by Popelier and

coworkers. These authors proposed the construction of a vector space from bond

properties evaluated at the bond critical points, i.e. a point in this space is speci-

fied by a set of bond properties [67–70]. This space was used as a basis for com-

paring related molecules, the smaller the distance between two molecules in this
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space the more they are similar. Quantification of molecular similarity in this

manner has several advantages over other similarity measures (for example

Carbo’s similarity index [71]):

1. it is much faster because it involves no spatial integration

(the density of each molecule is only sampled at the positions

of the BCPs);

2. it is not dominated by nuclear maxima but rather

emphasizes the more interesting chemical bonding regions

of the molecule; and

3. it is not plagued with the alignment problem, in which one

must often choose how to align the molecules to be

compared before the integration.

The new method has been successful in accurately predicting a number of

properties of several series of molecules [67–70].

1.9.2

The Use of QTAIM Atomic Properties

The review in this section follows closely Table 1 of Ref. [51].

Atomic properties have been used to recover and directly predict several ex-

perimentally additive atomic and group contributions to molecular properties, in-

cluding, for example, heats of formation [72], magnetic susceptibility (Refs [73–

77] and Chapter 3 in this book), molecular volumes [78], electric moments (Chap-

ter 3) and polarizability [79–81], Raman intensities [79, 81–84] (see also Chapter

4), IR intensities [85–88] (see also Chapter 4), spectroscopic transition probabil-

ities [89], dielectric polarization in crystals and molecular dipole and quadrupole

moments [55, 90, 91], Wigner–Seitz cells in crystals [92], group additivity in

silanes [93], and Pascal’s aromatic exaltations [1]. They have also been used to

provide an atomic basis for electron localization and delocalization [42, 43, 47,

94, 95].

Atomic properties have also been used empirically to predict several experimen-

tal properties including for example, the pKa of weak acids from the atomic en-

ergy of the acidic hydrogen [96], a wide array of biological and physicochemical

properties of the amino acids, including the genetic code itself, and the effects of

mutation on protein stability [60], protein retention times [97], HPLC column ca-

pacity factors of high-energy materials [98], NMR spin–spin coupling constants

from the electron delocalization indices [99, 100], simultaneous consistent predic-

tion of five bulk properties of liquid HF in MD simulation [101], classification of

atom types in proteins with future potential applications in force-field design

[60, 102–104], reconstructing large molecules from transferable fragments or

atoms in molecules [60, 105–119] (see also Chapters 11 and 12), atomic partition-

ing of the molecular electrostatic potential [120–122], prediction of hydrogen-

bond donor capacity [123] and basicity [124], and to provide an atomic basis for

curvature-induced polarization in carbon nanotubes and nanoshells [125].
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1.10

Steps of a Typical QTAIM Calculation

It should be clear from the outset that QTAIM applies equally well to experimen-

tal [2, 126] and calculated electron densities [1, 3]; in this tutorial, however, we

will discuss calculated densities.

The starting point for the application of the QTAIM theory is the electron den-

sity. The density can be calculated from the many-electron single-determinant or

many-determinant wavefunction (or Slater-like determinants built from Kohn–

Sham orbitals in density functional theory [127]) obtained by a variety of methods

and software. The electron density necessary for meaningful analysis by means of

QTAIM must be obtained with a basis set flexible enough for an accurate repre-

sentation of the bonding regions, in other words it must include polarization

functions. In the case of anions, excited states, and weak bonding interactions be-

tween atoms separated by relatively large distances one must augment the basis

set with diffuse functions. When heavy atoms are present in the molecule, which

usually necessitates the use of effective core potentials (ECP), it is necessary to

treat the valence shell and at least one sub-valence shell explicitly to obtain mean-

ingful results from the integrations. It is important to note that bond paths can-

not be traced to the nuclei of atoms described by ECPs. Alternatively, often the

geometry is optimized with a basis set including the ECP on the heavy atoms fol-

lowed by a single point calculation at the optimized geometry using a full basis

set on all atoms.

The first step in a molecular QTAIM calculation is, thus, the generation of a

wavefunction (or wavefunction-like single determinant in a DFT calculation

[127]) from an electronic structure calculation with software such as Gaussian

[61] or GAMESS [128].

The electron density derived from the wavefunction is then subjected to a

point-by-point topological analysis to locate the bond critical points and the bond

paths, by use of software such as EXTREME [129–131]. The space of the mole-

cule is then partitioned by the zero-flux surfaces and atomic integrations are per-

formed to obtain the atomic contributions to the molecular properties using soft-

ware such as PROAIM and its variants [129–131]. EXTREME and PROAIM are

both part of the AIMPAC suite of programs developed in Professor Bader’s labo-

ratory (McMaster University) [129–131].
Several other software packages derived from AIMPAC are available for analy-

sis of the electron density according to QTAIM. Among the widely used programs

are MORPHY [132], developed by Dr Paul Popelier’s group (University of Man-
chester), and AIM2000 [133–135], developed by Professor Friederich Biegler–

König (University of Bielfeld), both of which apply to molecular calculations. The

program TOPOND [136] (described in Chapter 7) was developed by Dr Carlo

Gatti (National Research Council of Italy) for the analysis of periodic densities ob-

tained from CRYSTAL [137].

After all atomic integrations have been performed to the desired accuracy (as

measured by the value of the integrated Laplacian) one typically uses shell scripts
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and/or simple UNIX/Linux commands such as ‘‘grep’’ to extract the relevant in-

formation from the electronic integration files. In this manner the summarized

results can be further imported to a spreadsheet or a plotting program. Integra-

tion files – which contain the atomic overlap matrices – can be subsequently ana-

lyzed by software such as AIMDELOC [44] or LI-DICALC [45, 46] to obtain the

localization and delocalization indices.

Further, the wavefunction files can be used as input to plotting routines.

GRDVEC can be used to generate two-dimensional plots of the gradient vector

field and/or the interatomic surfaces and bond paths projected on a plane se-

lected by the user (right half of Fig. 1.3a). Contour diagrams of the density (such

as those in the left half of Fig. 1.3a, and Fig. 1.5), the Laplacian, or energy

densities can be generated by first calculating the corresponding grid by the use

of GRIDV software followed by the generation of the graphics file from the grid

Fig. 1.6 The main steps in a simple QTAIM calculation. The software

cited in the figure is part of the AIMPAC suite of programs [129–131].

Other programs are available that can perform most or all of these

steps, including, for example, AIM2000 [133–135], MORPHY [132], and

AIMALL97 [139].
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by using a program such as CONTOR. (GRDVEC, GRIDV, and CONTOR are

components of AIMPAC [129–131]).

The grid generated by GRIDV can be manipulated by utility programs such as

GridV_REFORMATTER (available from the authors) to generate inputs for pro-

grams such as Surfer [138] which produce three-dimensional relief maps of the

field represented by the calculated grid (Fig. 1.1b is an example).

The main steps of a typical QTAIM calculation are summarized in Fig. 1.6.

Appendix: The Inexact Satisfaction of the Molecular Virial Theorem in Electronic

Structure Calculations

For a molecule in an equilibrium geometry (with vanishing forces on the nuclei),

the molecular virial theorem is expressed as:

g ¼ �V

T
¼ 2 ð45Þ

Because of the propagation of numerical errors, small (but non-vanishing)

thresholds of convergence of both the SCF and the geometry optimization steps,

and the use of incomplete basis sets, electronic structure calculations do not usu-

ally satisfy the virial theorem exactly and the virial ratio ðgÞ can deviate by perhaps

as much as 0.01 from the ideal value of 2. As a result of this deviation, atomic

energies will not sum to yield the molecular energy with acceptable accuracy.

Atomic integration software such as PROAIM [129–131] correct for this error

numerically. Thus, instead of simply multiplying each atomic kinetic energy

TðWÞ by ð�1Þ to obtain the total atomic energy EðWÞ, the latter is obtained by

multiplying TðWÞ by ð1� gÞ. These corrected atomic energies do satisfy Eq. (37),

and their sum equals the total molecular energy to within a small numerical inte-
gration error. The virial corrections usually scale linearly with regard to TðWÞ
which, fortunately, leaves the relative stabilities of the atoms unchanged.

The integration software obtains the virial ratio from the wavefunction files

generated by Gaussian [61] or GAMESS [128]. The virial is printed in the last

line in the wavefunction file. For Hartree–Fock or density functional calculations,

Gaussian prints the correct virial in the wavefunction file and the integrations

proceed without problems. For wavefunction files calculated at a post Hartree–

Fock level, for example those obtained using Møller–Plesset perturbation theory

(MPn) or configuration interaction methods (CI), the virial printed in the wave-

function file generated using the Gaussian 98 or 03 [61] programs (which are avail-

able at the time of writing) is the Hartree–Fock virial and not that of the current post-
Hartree–Fock method [even if the key word ‘‘DENSITY ¼ CURRENT’’ is invoked

and despite the fact that the correct (current) wavefunction is printed]. If such a

wavefunction file is fed directly to an integration program, the calculated atomic

energies will be rectified using the Hartree–Fock g (instead of the post Hartree–

Fock g), resulting in atomic energies which do not add up to the molecular value.
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In these circumstances the user must calculate the virial of the current method

‘‘by hand’’ from information contained in the Gaussian ‘‘log’’ or ‘‘out’’ output

file [140], by dividing, for example, the MP2 (or other correlated total energy) by

the kinetic energy listed just after the final electrical multipoles in the Gaussian

output. The wavefunction files must then be edited to reflect this new ‘‘correct’’

virial before submitting it to the integration software [140].

In highly accurate calculations it is sometimes necessary to perform atomic in-

tegrations of energy densities obtained from systems which satisfy the molecular

virial theorem exactly [16, 141]. The author of Chapter 3 of this book, Dr Todd A.

Keith, has written a link [142] for Gaussian [61] implementing Löwdin’s self-

consistent virial scaling (SCVS) [143, 144] which produces final wavefunctions

satisfying the virial theorem to a very high accuracy.
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102 H. J. Bohórquez, M. Obregón, C.

Cárdenas, E. Llanos, C. Suárez, J. L.
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