Contents

Part I

Preface IX

Introduction

List of Contributors XIII

1	Supply Chain and Supply Chain Management 3	
	Mario Stobbe	
1.1	Introduction 3	
1.2	Terms and Definitions 3	
1.3	Network Dynamics and Management of the Supply Chain	6
1.4	Design Criteria/Integration Concepts 8	
1.5	SCOR: Modeling the Supply Chain 9	
1.6	Summary 17	
	References 18	

v

Part II Simulation

2	Logistics Simulation in the Chemical Industry 21		
	Markus Schulz and Sven Spieckermann		
2.1	Introduction 21		
2.2	Areas of Application for Logistics Simulation in the		
	Process Industry 21		
2.3	The Simulation Process in Manufacturing and Logistics		
2.4	Case Studies 26		
2.5	Benefits and Expenses of Simulation Projects 33		
2.6	How a Simulator Works 34		
2.7	Developments in the Field of Logistics Simulation 35		
	References 36		

23

Logistic Optimization of Chemical Production Processes. Edited by Sebastian Engell Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-30830-9

VI	Contents		
3		Logistic	Sin

- 3 Logistic Simulation of Pipeless Plants 37 Andreas Liefeldt
- 3.1 Pipeless Batch Plants 37
- 3.2 PPSiM–Pipeless Plant Simulation 39
- 3.3 Industrial Case Study 44
- 3.4 Conclusions 54 References 55

Part III Industrial Solutions

- 4 Planning Large Supply Chain Scenarios with "Quant-based Combinatorial Optimization" 59
 - Christoph Plapp, Dirk Surholt, and Dietmar Syring
- 4.1 Introduction 59
- 4.2 The Limits of Traditional LP 59
- 4.3 Quant-based Combinatorial Optimization 61
- 4.4 Typical Planning Scenarios in the Process Industry 63
- 4.5 Constraints 64
- 4.6 Additional Modeling Elements of the Quant-based Combinatorial Optimization 65
- 4.7 The Solution Approach 66
- 4.8 Special Requirements and Advanced Modeling Features for the Chemical Industry 68
- 4.9 Summary 89 References 89

5 Scheduling and Optimization of a Copper Production Process 93

- Iiro Harjunkoski, Marco Fahl, and Hans Werner Borchers
- 5.1 Introduction 93
- 5.2 Copper Production Process 94
- 5.3 Scheduling Problem 96
- 5.4 Solution Approach 99
- 5.5 Results 106
- 5.6 Conclusions 107
 - References 109

6 Stochastic Tools in Supply Chain Management 111

- Rudolf Metz
- 6.1 Introduction 111
- 6.2 Random Demand 112
- 6.3 Random Service (and Shortage) 120
- 6.4 Optimization of Service 124
- 6.5 Solution Technique 127
- 6.6 Implementation in BayAPS PP 130 References 133

Contents VII

Part IV	Optimization Methods
7	Engineered Mixed-Integer Programming in Chemical Batch Scheduling 137 Guido Sand
7.1	Introduction 137
7.2	The Case Study 138
7.3	An Engineered Approach to Optimal Scheduling 142
7.4	Nonlinear Short-Term Scheduling Model 144
7.5	Linearized Short-Term Model 153
7.6	Comparative Numerical Studies 154
7.7	Conclusions 159
	References 160
8	MILP Optimization Models for Short-term Scheduling of
	Batch Processes 163
	Carlos A. Méndez, Ignacio E. Grossmann, Iiro Harjunkoski,
	and Marco Fahl
8.1	Introduction 163
8.2	Classification of Batch Scheduling Problems 164
8.3	Classification of Optimization Models for Batch Scheduling 166
8.4	Review of Scheduling Models 172
8.5	Computational Comparison Discrete vs Continuous
0.6	Approaches 177
8.6 8.7	Concluding Remarks and Future Directions 181
0./	Acknowledgements 182 References 182
	References 162
9	Uncertainty Conscious Scheduling by Two-Stage Stochastic
	Optimization 185
	Jochen Till, Guido Sand, and Sebastian Engell
9.1	Introduction 185
9.2	Scheduling under Uncertainty using a Moving Horizon Approach
	with Two-Stage Stochastic Optimization 187
9.3	Two-Stage Stochastic Integer Programming 195
9.4	A Stage Decomposition Based Evolutionary Algorithm 201
9.5	Numerical Studies 205
9.6	Conclusions 212
	References 213
10	Scheduling Based on Reachability Analysis of Timed Automata 215
	Sebastian Panek, Olaf Stursberg, and Sebastian Engell
10.1	Introduction 215
10.2	Scheduling with Timed Automata 219
10.3	Reachability Analysis 224

VIII Contents

- 10.4 Benchmark Example 229
- 10.5 Summary 233 References 234

Part V Interaction with ERP Systems

- Integrated Short and Midterm Scheduling of Chemical Production

 Processes A Case Study
 239
 - Mathias Göbelt, Thomas Kasper, and Christopher Sürie
- 11.1 Introduction 239
- 11.2Advanced Planning in Chemical Industries239
- 11.3 Case Study 244
- 11.4 Modeling the Case Study Scenario in mySAP SCM 246
- 11.5 Solving the Case Study Scenario in mySAP SCM 254
 11.6 Conclusion 260 References 260
- **12** Integration of Scheduling with ERP Systems 263
 - Winfried Jaenicke and Robert Seeger
- 12.1 Introduction 263
- 12.2 Production Scenarios 266
- 12.3 The Planning Problem and a Solution Approach 268
- 12.4 Data Model 270
- 12.5 Planning Software 272
- 12.6 Remarks on Planning Philosophy 275
- 12.7 Remarks on Technical Issues 276 References 277

Index 279