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Chapter 1

Creation and Development
of Thermoplastic Elastomers, and Their

Position Among Organic Materials

E. Maréchal

The thermoplastic elastomers (TPEs) concern large industrial and commercial
fields, as well as academic and applied research. Often the TPEs are considered
as being only an important part of the block copolymers, but they are present in
many other polymeric materials, as clearly shown by Holden et al. [1,2] and
Rader [3–5]. They are characterized by a set of properties inherent to block and
graft copolymers, different blends, and some vulcanized materials. More than
7000 Chemical Abstracts entries directly concern TPEs and in about 12500 other
publications they are closely associated to other issues (SciFinderScholar) [6].
Most of these references describe materials, which associate elastomeric recovery
and thermoplastic properties; however some products exhibit characteristics
and properties, which completely differ from those of conventional TPEs.

Historic, scientific, technical and commercial considerations [2–5] should be
taken into account when outlining the TPE domain. This introductory chapter
begins with historical considerations, followed by a critical evaluation of the main
preparations and modern analytical techniques used in chemical, structural, and
morphological studies. The TPE properties and processability, their position
among organic materials, and their applications are analyzed. Finally, the
most probable trends of their future development are discussed in a short
conclusion.

1. Birth and development of TPEs: a brief survey

The real era of TPEs began with the advent of block and grafted copolymers.
However, some blends are tacitly accepted as TPEs, even though their structure
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does not exhibit some of their essential characteristics, such as the separation of
soft and hard phases; for instance, PVC plasticized by high-boiling liquids is
often considered as one of the precursors of the TPEs [7]. The reactions between
diols and diisocyanates resulting in polymeric products [8–12] were an important
step in the TPE development, since these elastomers exhibit a very rapid elastic
recovery and good processability. It is important to stress that these syntheses
are two-step processes and their introduction on the market was the result of
a new strategy. The latter was rapidly applied to polyesters when Snyder [13]
polycondensed a mixture of terephthalic acid, octanedioic acid and propane-
1,3-diol and, separately, terephthalic acid with ethane-1,2-diol; these two
polycondensates were mixed, then reacted and the ultimate product exhibited
elastomeric and plastic properties, was extrudable in the melt and spinnable
from solution. In the 1950s, some other elastomers were patented, particularly
polyurethanes [14] and, as Snyder’s product, they behaved as vulcanized rubber
even though they were not chemically crosslinked, as revealed by their complete
solubility. All these elastomers exhibited properties which were not observed in
natural rubber or in the first synthetic rubbers, but it is important to emphasize
that they were prepared by reactions which were already classical at that time.
Nevertheless, the advent of these materials generated new researches in
chemistry and, perhaps more important, in structure and morphology.

When Szwarc et al. discovered [15,16], or rediscovered [17,18], the anionic
living polymerization, a completely different preparation of these elastomers was
proposed; the study of TPEs passed from infancy to maturity. These authors
used sodium metal naphthalene diinitiators to prepare poly(styrene-b-isoprene-
b-styrene), which was probably the first TPE with a perfectly defined structure.
However, this copolymer could not be commercialized, as most of the poly-
isoprene units were -3,4-, with poor elastomeric properties. It is only when the
polymerization was initiated by alkyllithium that poly(styrene-b-isoprene-b-
styrene) and poly(styrene-b-butadiene-b-styrene) were obtained with the
classical TPE properties: very high tensile strength and elongation at
break, very rapid elastic recovery, and no chemical crosslinking. Bailey et al.
[19] announced the existence of these materials in 1966 and Holden et al. [20]
published the corresponding theory in 1967 and extended it to other block
copolymers.

In addition to their commercial success, the TPEs were the result of logical
considerations and scientific effort, giving birth to a new field of science and
technology. These multiphase materials stimulated many theoretical and
experimental studies dealing not only with their chemistry, but also with their
structure and morphology.

Later, the preparation and the characterization of new TPEs followed; once
again, it is important to stress that the arrival of these materials resulted from
logical considerations, as it was brilliantly confirmed by the theoretical and
experimental studies by Tobolsky, predicting the existence of EPDM [21]. Based
on these fundamental studies, many other TPEs were prepared by very different
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syntheses, commercialized or not, but with many common structural character-
istics. In 1962, this new strategy was applied to prepare copolymers containing
random poly(ethylene-co-propylene) as amorphous blocks and linear poly-
ethylene or isotactic polypropylene as hard blocks [22]; once more, Tobolsky
had predicted that such a copolymer would exhibit TPE properties.

The first polyurethane samples resulted from the pioneering work of Otto
Bayer [7] and Christ [12] aiming at the preparation of new textile fibers. Coffey
[23] described their elastomeric properties. However, the really scientific
approach to thermoplastic polyurethane (TPU) elastomers began with the
publications of Müller et al. [24] and Petersen et al. [25]. The TPU behavior
was analyzed by Otto Bayer and his school [26] in a theoretical study where, for
the first time, a truly linear polyurethane was prepared through a sequence of
steps, announcing the classical route used to obtain thermoplastic polyurethanes:
preparation of an α,β-diisocyanate prepolymer, resulting from the reaction of
an α,β-dihydroxy-polyester (or polyether) with an excess of diisocyanate, then
extended by water with formation of urea linkages, and then reacted with
additional diisocyanate. After the importance of the addition of a short-length
diol was recognized, the modern chemistry of polyurethanes was definitely born.
It was the first case when polyaddition was systematically used and a new
strategy was defined, opening the door to many other TPEs. The understanding
of the non-chemical crosslinking was perhaps more important than the chemis-
try; this peculiar observation was first called “virtually crosslinked elastomer”
[27]. Soon it became clear that the TPE chains were formed by a succession of
long flexible blocks responsible for the elasticity and hard ones interconnecting
the macromolecules. It appeared that the blocks were incompatible and localized
in separate microdomains. This microphase separation was called “segregation”.

The above fundamental studies were followed by the logical application of
the respective strategy to polycondensation, which resulted in the preparation of
some very important TPEs: poly(amide-b-ester) [28–30], poly(amide-b-ether)
[31–33], and poly(ether-b-ester) [34–36].

Nowadays, the development of TPEs concern many branches of macromol-
ecular chemistry: cationic and radical polymerizations, chemical modification,
enzymatic catalysis or the use of microorganisms. Their respective contributions
are analyzed in Section 2. The elastomers based on halogen-containing
polyolefins [37] and those prepared by dynamic vulcanization [38] are also
included in the TPE family. More information on these materials and techniques
is given in Section 2.

2. Main routes to thermoplastic elastomer preparation

The chemistry of TPEs continuously changed with time and in this chapter
the present-day situation is analyzed with emphasis on polycondensation,
polyaddition, and chemical modification, which is often associated with the
other processes.
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An essential part of this section concerns block copolymers, but the
contribution of some other processes, such as grafting or dynamic vulcanization
is, by far, not negligible and their current state is discussed.

The synthesis of block copolymers follows two essential pathways: (i) a
difunctional oligomer initiates the formation of two or more other blocks
(Scheme 1) and (ii) two or several different difunctional oligomers react together
or with a coupling agent (see Chapter 2); sometimes, the second block can be
prepared in the presence of the first one.

A A
M1

A A*M1(M1)p (M1)qM1*
M1 A A*(M2)r(M1)p +1 (M1)q+1(M2)t*

A A is an initiator
(1)

Pathway (1) is mainly encountered in chain polymerization (anionic,
cationic, and controlled radical polymerizations); the second one refers essential-
ly to polycondensation and polyaddition. There is no strict distinction between
these two sets of techniques, e.g., the difunctional oligoethers used in poly(ether-
b-ester)s or poly(ether-b-amide)s can be prepared by ring-opening poly-
merization and then polycondensed with the other oligomer (Scheme 2) [39].

X–(Block 1)–X + Y–(Block 2)–Y  –[–(Block 1)–X′Y′–(Block 2)–]–n (2)

2.1.Living anionic polymerization

Living anionic polymerization remains an important technique for the prepara-
tion of well defined triblock copolymers, such as: poly(styrene-b-butadiene-b-
styrene) and poly(styrene-b-isoprene-b-styrene) [40], and it was extended to
copolymers containing polysiloxane blocks or to poly(α-methylstyrene-b-
propylene sulfide-b-α-methylstyrene) [41]. In many applications, anionic
polymerization no longer requires a high vacuum line and often an inert
atmosphere is sufficient [42]. The ester block-containing copolymers, such as
poly(styrene-b-butadiene-b-methyl methacrylate), were prepared by sequential
anionic polymerization and their morphology and mechanical properties differ
substantially from those of the triblock poly(styrene-b-butadiene-b-styrene).
Poly(styrene-b-butadiene-b-styrene) was end-capped by alkyl methacrylate
blocks, which leads to a pentablock copolymer [43]. TPEs can also be obtained
by anionic ring-opening polymerization (ROP): Sipos et al. [44] prepared the
biodegradable copolymer poly(L-lactide)-b-polyisobutylene-b-poly(L-lactide),
characterized by two separated glassy phases.

2.2.Living cationic polymerization

The use of living cationic polymerization in the preparation of TPEs was
reviewed by Kennedy [45] in relation to graft and block copolymers, but the
application of cationic polymerization to TPEs began before the arrival of the
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living techniques. Kennedy and Maréchal [46] reviewed a large part of these
elastomers in 1992. Living cationic polymerization was an essential break-
through, as it was also the case of living anionic polymerization. The approach
to this technique was vividly described by Kennedy [47], showing that it follows
a three-step progression: (i) controlled initiation, (ii) reversible termination
(quasiliving systems), and (iii) controlled transfer. It allows the preparation
of block copolymers according to Schemes 1 or 2. The number of articles
pertaining to the preparation of TPEs by living cationic polymerization is
continuously increasing [48–50]. Many of them deal with styrenic TPEs, but
more sophisticated architectures were also synthesized. Kwon et al. [49]
prepared arborescent polyisobutylene-polystyrene block copolymers where the
arborescent polyisobutylene was obtained by living cationic polymerization.

Anionic and cationic polymerizations are often associated. Feldthusen et
al. [51] prepared copolymers containing linear and star-shaped blocks: a living
polyisobutylene chain was prepared by cationic polymerization, its ends were
converted into 2,2-diphenylvinyl groups, then metallated and used as initiators
of the tert-butyl methacrylate anionic polymerization.

2.3.Controlled radical polymerization

The discovery of the controlled radical polymerization (CRP) offered additional
possibilities in the chemistry of TPEs [52–54]. CRP was used in both graft
and block copolymer preparation and extensively reviewed by Matyjaszewski [55]
and Mayes et al. [56]. It allows the easy preparation of novel environmentally
friendly materials, such as polar TPEs; it can be carried out in the bulk or in
water and requires only a modest deoxygenation of the reaction mixture. Atom
transfer polymerization (ATRP) is one of the most important aspects of CRP;
it was developed by Matyjaszewski and rests on an equilibrium between active
and dormant species [57]. Moineau et al. [58] applied ARTP to the preparation
of poly(methyl methacrylate-b-n-butyl acrylate-b-methyl methacrylate).

2.4.Polycondensation and polyaddition

Strange enough, so far there are no books entirely devoted to condensation
TPEs and the latter are considered only in chapters of more general works.
The most important TPEs prepared by polycondensation are the subject of
several chapters of this book: polyester-based TPEs, poly(amide-b-ethers),
polyurethanes, etc. However, some less known condensation TPEs are described
in Chapter 2: metal-containing macrocycles as monomers, liquid crystalline side
chains, metallo-supramolecular block copolymers, as well as the use of enzymatic
catalysis or of microorganisms.

Block copolymers can be prepared either by polycondensing a difunctional
oligomer, which is often the soft block, with the precursors of the hard block, or
by polycondensing or coupling two, or more, difunctional oligomers; this aspect
is discussed in Chapter 2.
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Many difunctional oligomers are prepared by ionic polymerization and then
polycondensed with other functional species. Schmalz et al. [59] used a sequen-
tial preparation of a TPE with a non-polar soft segment: (i) preparation of
α,ω-dihydroxy-[polyoxyethylene-b-(hydrogenated polybutadiene)-b-polyoxy-
ethylene] (A) by anionic polymerization and (ii) polycondensation of A with
dimethyl terephthalate and 1,4-butanediol. Shim et al. [60] associated cationic
polymerization, chemical modification, and polyaddition to prepare a multiple-
arm TPE: (i) preparation of a poly(styrene-b-isobutylene) sample (C) by living
cationic polymerization, (ii) end-capping of the polyisobutylene blocks by allylic
groups (D), and (iii) polyhydrosililation of D with SiH-containing cyclosiloxanes
as a core. Sometimes the sequence is reversed: polycondensation, end-capping,
and then anionic polymerization [61]. These examples show the importance
of the association of chain polymerization with polycondensation.

Some difunctional oligomers are prepared by polycondensation and then
used in chain polymerization. However, most of them are applied in block poly-
condensation or polyaddition: Pan et al. [62] prepared difunctional oligosiloxanes
by polycondensation of dimethyldichlorosilane with different oligomeric diols,
and the polycondensates were then reacted with diisocyanates. Yokozawa et
al. [63] prepared a well defined poly(p-benzamide), with a low dispersity index,
using a new polycondensation process, which is discussed in Section 6.

The contribution of the difunctional oligomers to the preparation of TPEs
should enjoy an important development; their use is not limited to classical
chain polymerization and polycondensation since they can be also applied to less
common processes, such as the metathesis. A functional diene, for instance
an α,ω-divinyl aliphatic or aromatic ester, is polyadditioned with an α,ω-divinyl-
(soft-oligomer) in the presence of a metathesis catalyst, e.g., a ruthenium
derivative [64,65].

2.5.Chemical modification and grafting

Chemical modification is an important tool in the production of TPEs and the
improvement of their properties [66]. It plays an important role in difunctional
oligomer chemistry, particularly the modification of end-groups, which is often
necessary in polycondensation or in chain polymerization where difunctional
oligomers can be used as macroinitiators. Madec and Maréchal [67] prepared
an α,ω-dibenzaldehyde-oligosiloxane by reacting an α,ω-dihydrogensilane-
oligosiloxane with 4-allylbenzaldehyde and polycondensed it with α,ω-diamino-
oligoamides.

Some functional oligomers were prepared by the degradation of a polymer;
for instance, Ebdon and Flint [68] obtained α,ω-dialdehyde-[methyl oligo(metha-
crylate)] by oxidative cleavage of statistical methyl methacrylate-buta-1,3-diene
copolymers.

The chemical modification of a block copolymer can be the essential step
in TPE preparation; in this connection, the hydrogenation of unsaturated block
copolymers is often an important step [69,70]. Numerous modifications aim
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to improve the TPE properties or to adapt TPEs to other applications, or to
make them reactive to a specific compound.

The development of graft copolymers is by far less important than that of
block copolymers; however, they are found in interesting patents [71–73].
Grafting is mainly used to modify the properties of a block copolymer, but it
can be applied to a rubber in order to generate rigid side chains. Grafting
proceeds through two different pathways: direct reaction of the backbone with
a monofunctional oligomer (grafting onto) or polymerization of a monomer
initiated by an active group of the polymer (grafting from). Ikeda et al. [74]
condensed chlorinated butyl rubber with the potassium salt of an α-methyl-
ω-hydroxy-polyoxyethylene, which is a “grafting onto” reaction. The resulting
TPE is amphiphilic and the grafts form separate crystalline microdomains. In
principle, these two techniques are applicable to any polymer, but often the
first step is the modification of the chains in order to make them reactive.

Controlled chain polymerization plays an important role in “grafting from”,
involving cationic [47,75], anionic [76,77], and particularly radical processes
[55,78] where ATRP is a powerful tool. Gaynor et al. [79] prepared monomers
A=B–C* where A=B is a copolymerizable double bond and C* is an activated
halogen, such as p-chloromethylstyrene or 2-(2-bromopropionyl)-ethyl acrylate;
they are copolymerized with conventional vinyl monomers, leading to the
formation of pendant activated groups used as macroinitiators to prepare graft
copolymers. Baumert et al. [80] copolymerized an alkoxyamine-functionalized
1-alkene with ethylene and the resulting highly branched polyethylene initiated
the controlled radical polymerization of styrene or styrene/acrylonitrile.

2.6.Preparation by blending

The chemistry and the structure of the elastomers prepared by blending or
dynamic vulcanization greatly differ from those discussed in Sections 2.1 to 2.5,
even though they have many common characteristics and properties. The
elastomers based on halogen-containing polyolefins are included in very
important blends, such as PVC-nitrile rubber, PVC-copolyester elastomers,
and PVC-polyurethane elastomers. Their characteristics and properties were
comprehensively reviewed by Hofmann [37]. As the other TPEs, these blends
combine a good elastic recovery with the properties of vulcanized thermoset
rubbers. They can be melt-reprocessed numerous times and exhibit good
resistance to heat, oils, and many chemicals. They are single-phase polymers,
in contrast to most TPEs, which are two-phase systems, and for this reason
they are often defined as “processable rubbers”.

2.7.Preparation by dynamic vulcanization

Dynamic vulcanization (DV) simultaneously performs the mixing and the cross-
linking of a rubber and a thermoplastic polymer. The resulting products are
called “thermoplastic vulcanizates” (TPV) and are the subject of various
reviews and books [3,38,81]. TPV exhibit the two main characteristics of the
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TPEs: a good elastomeric recovery and the properties of thermoplastic
polymers. Their preparation, structure, and properties were carefully analyzed
by Coran and Patel [38]. Their morphology has many common characteristics
with the thermoplastic elastomeric polyolefins and involves a highly vulcanized
elastomeric phase uniformly distributed in a melt-processable matrix; Rader
[5] compares it to a “raisin pie”. The vulcanization of the elastomer takes place
when in a molten plastic. The crosslinking improves several TPE properties:
behavior with respect to temperature, resistance to swelling in fluids, compres-
sion and tension set, creep and stress relaxation.

DV was applied to different systems, e.g., a diene rubber (EPDM, butyl
rubber or natural rubber) is associated with a polyolefin (polyethylene or
polypropylene) or an acrylonitrile-butadiene rubber (NBR) sample is associated
with a polyamide. The high incompatibility between the elastomer and the
plastic may be an important obstacle in the preparation of a dynamically
vulcanized material, since the properties of the latter depend on the quality
of the dispersion. The dispersity of NBR in polyolefins is very low and a
polymeric compatibilizer must be added, which often requires grafting and
coupling processes.

3. Techniques used in the characterization of TPEs

The preparation of TPEs is closely related to the control of their structure and
morphology, all the more that they are structurally complex systems, requiring
accurate, efficient, and rapid analytical techniques. The characterization
techniques are applied to the TPEs and their precursors. During the last thirty
years, they enjoyed a fantastic development; some of them appeared during the
last decade. In the following, they are grouped into analytical branches, but
it is essential to keep in mind that most of them are associated with some others.

3.1.Chromatography

For a long time, the use of chromatography was mainly limited to the determi-
nation of molecular masses and to the qualitative estimation of the hetero-
geneity of the samples. At present, it is a highly efficient technique giving very
accurate values [82–89]. Copolymers are complex macromolecular systems,
characterized by two distributions in molecular mass and chemical composition;
liquid chromatography used at the critical point of adsorption allows the
determination of the molecular heterogeneities (chemical and molecular mass
distributions) [83].

The association of chromatography with other techniques is successfully
developing and allows, for instance, the determination of the molecular mass
distribution of each block, in one run, as well as the respective chemical distribu-
tion. Kilz et al. [86,87] applied two-dimensional liquid chromatography to
complex mixtures containing block copolymers, cycles, and functional oligomers;
this technique combines the advantages of high perfoprmance liquid chromato-
graphy (HPLC) and size exclusion chromatography (SEC), and provides valu-
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able information on the composition, the functionality, and the molecular mass
distribution. Gores and Kilz [88] associated several techniques, such as multiple
detection SEC, multi-angle laser light scattering, and viscometry; multiple detec-
tion allowed the determination of the chemical composition and distribution.
The use of chromatography is certainly not limited to research and has become
a method for routine check-up and quality control of industrial TPEs [89].

3.2.Spectrometric techniques

They are essential to the study of TPEs, particularly when associated with
other techniques.

3.2.1. FT-IR spectroscopy

Although by far less used than nuclear magnetic resonance (NMR), the Fourier
transform infrared (FT-IR) spectroscopy remains an efficient tool in TPE
analysis, e.g., in the investigations of cluster formation in thermoreversible
networks [90] or in side-chain liquid crystalline TPEs [91]. FT-IR is often
associated with other techniques: NMR [92,93] or X-ray diffraction [94].

Infrared dichroism is a powerful technique to study the evolution of the
chain orientation in films, particularly when coupled with photoelastic
modulation [95]. FT-IR is a rapid technique that is very efficient in industrial
applications, such as weathering [96] or analysis of blends [97].

3.2.2. NMR spectroscopy

NMR is essential in TPE characterization and present in most studies; it is
often associated with other techniques. This technique allows one to have a
deep insight in the structure of the block copolymer chains; for instance,
Boularès et al. [98] used 1H NMR to determine the ester junctions in
poly(amide-b-copolyether) chains, which were prepared by polycondensation
of α,ω-dicarboxylic-oligoamides and α,ω-dihydroxy-copolyether.

NMR is often used as a routine technique because it is efficient in the control
of the TPE purity. Frick et al. [99] prepared poly(lactide-b-isoprene-b-lactide)s
and showed that they were not contaminated by free homopolymer and diblock
copolymers using 1H NMR coupled with SEC.

Some more specific aspects of NMR are necessary when more detailed
studies are required. Cross polarized magic-angle 13C NMR in the solid state
was applied to the analysis of the microphases and their scales in TPEs [100].
Impulse NMR provided knowledge of the synergic and antagonistic deviations
of the mechanical properties of TPE blends [101].

The determination of accurate molecular mass values of the copolymers
and their distribution, as well as of the functionality of difunctional oligomers
remains a difficult problem. It is necessary to compare the results of, at least,
two different techniques, for instance SEC and titration of the end-groups but,
unfortunately, the latter is inapplicable when the chain length is high. NMR is
probably one of the most efficient tools in the determination of the end-group
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concentration, particularly when they are modified. For instance, 19F NMR is
used after an α,ω-dihydroxy-polymer is reacted with trifluoroacetic anhydride.
In some cases, the end-units are converted into groups, which are fluorescent
or adsorbing in the visible or UV light; sometimes they are converted into
chemically titratable groups.

3.3.Scattering techniques

Lodge [102] and Norman [103] reviewed the use of scattering techniques in the
characterization of polymers, particularly block copolymers. Static and dynamic
light scattering, small-angle neutron and X-ray reflectivity were analyzed and
emphasis was placed on their similarities and differences.

3.3.1. Static and dynamic light scatterings

These two techniques are coupled in many studies on block copolymers. The
use of dynamic light scattering was reviewed by Stepanek and Lodge [104]; it
is an efficient tool to analyze the order–disorder transition in block copolymer
melts [105,106]. The static version is often used in studies dealing with
aggregation and micellization in solvents [107] and is often associated with the
dynamic scattering and other techniques, such as cryoscopy.

3.3.2. Small-angle (SAXS) and wide-angle (WAXS) X-ray scattering

SAXS and WAXS are particularly efficient in the study of amorphous polymers
including microstructured materials, hence their use in block copolymers (see
also Chapters 6 and 7). The advent of synchotron sources for X-ray scattering
provided new information, particularly on the evolution of block copolymer
microstructures with time resolution below one second. In particular, the
morphology of TPEs is most often studied with these techniques; Guo et al.
[108] applied SAXS to the analysis of the phase behavior, morphology, and inter-
facial structure in thermoset/thermoplastic elastomer blends. WAXS is often
associated with SAXS and some other methods, such as electron microscopy,
and various thermal and mechanical analyses. It is mainly used in studies of the
microphase separation [109,110], deformation behavior [111], and blends [112].

3.3.3. Small-angle neutron scattering (SANS)

SANS is an excellent and non-destructive technique, particularly efficient in
the study of order–order and disorder–order transitions. It is very useful in
the characterization of the morphology of block copolymers in the ordered state
and, in this case, it is complementary to electron microscopy.

Several reviews are devoted to SANS applications to TPEs and block
copolymers [113,114] and almost 300 reports describe SANS studies of block
copolymers. As far as TPEs are concerned, it is a very valuable technique,
particularly efficient in the analysis of disorder in the melt [115] or of macro-
scopic phase separation [116]; it is also used in blends [117,118] and in processing
operations, such as dynamic vulcanization [119] or co-molding [120].
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Neutron reflection provides the atom composition of a thin film at different
depths. It gives the composition profiles of block copolymers deposited as films
on silicon wafers [121]. X-ray reflection is used in the same fields as neutron
reflection; these are complementary techniques and often associated with some
others.

3.3.4. X-ray diffraction

X-ray diffraction remains an important tool in morphological studies, for
instance in the investigation of the semicrystalline [122] or liquid-crystalline
blocks [123] and of the stretching behavior of TPEs [124,125].

3.4.Microscopies

Atomic force microscopy (AFM) has an important development in the struc-
tural analysis of TPEs. It was applied to different problems: thermooxidative
stability and morphology [126], copolymers with arborescent blocks [127],
thermoplastic vulcanizates [128], blends [129], and morphology and orientation
during deformation studied both by AFM and SAXS [130].

Transmission electron microscopy (TEM) is most useful to characterize the
structure and morphology of TPEs. It is almost always associated with other
techniques, particularly SAXS, WAXS, SANS, and AFM. TEM is used in
studies of interpenetrating networks [131], morphology and crystallinity of hard
blocks [132], structural evolution of segmented copolymers under strain [111],
and blends [133].

3.5.Controlled degradation

The control of some specific parts of a TPE may provide interesting information
on its structure. Sundararajan et al. [134] used WCl6-catalyzed metathesis to
prepare poly(HB-b-butadiene-b-HB) where HB is a rigid block, such as poly-
phenylacetylene, and the blocks are linked by W atoms; their structure was
analyzed by 1H NMR, elemental analysis of tungsten and, more original, by the
complete separation of the blocks when the TPE is reacted with benzaldehyde.
Valiente et al. [135] studied the enzyme-catalyzed hydrolysis of phthalic unit-
containing copolyesters, which resulted in an efficient analytical tool for the
analysis of the chain structure, particularly for the determination of the block
length and their distribution in the chains. Luo et al. [136] used pyrolysis-gas
chromatography/spectrometry to analyze the microstructure of a polyester-
polyether copolymer (TPE).

3.6.Thermal techniques

Differential scanning calorimetry (DSC) and other thermal analyses are frequent-
ly used in TPE characterization, often as routine methods. DSC is a powerful
technique to improve the knowledge of the microphase structure (see also
Chapter 18). For instance, Ukielski et al. [137] investigated the reversible
endothermic processes in thermoplastic multiblock elastomers. DSC and
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thermo-mechanical analysis (TMA) are often used as complementary to other
techniques (particularly spectroscopic analyses) or for providing additional
information. Anandhan [119] studied the effect of the mixing sequence of
dynamic vulcanization on the mechanical properties and DSC showed that
nitrile rubber and the copolymer poly(styrene-co-acrylonitrile) are thermo-
dynamically incompatible in blends.

4. Properties and processing of TPEs

The determination of the TPE properties calls for the same techniques as those
used for other organic materials, though some modifications may be required;
they are listed and discussed in [3]. The information they provide, whatever
they are, has a sound meaning only when determined in close correlation with
structural analyses. The morphology evolution, when TPEs are subjected to
processing, must be carefully followed, and it is particularly important to take
into account the specificity of TPE rheology in the melt. Most of the methods
listed in Section 3 are essential in the understanding of the TPE properties
and their changes [129,138,139].

Many of the processing techniques applied to thermoplastic polymers or
elastomers hold for TPEs; a few of them are more specific to these materials.
Rader [3] clearly underlined the specificity of their rheology in the melt,
particularly that they are highly non-Newtonian, hence more sensitive to shear
than to temperature. Nishizawa [140] discussed the recent trends in the TPE
molding technology.

4.1. Injection molding

Injection molding is by far the most used technique in TPE processing due to
its high productivity and because it is a clean process with no waste formation.
It is used in a great variety of applications ranging from tubes or foams to
finished articles; it can be applied to the co- or insert-injection. The use of
hot runner methods in injection molding was reviewed by Lachmann [141] and
this is an interesting diversification of the conventional technique; it maintains
the flowability of the melt during its transportation to the individual cavities
or to the individual gates. During injection molding, TPEs behave as the other
thermoplastics in hot runner without major problems.

4.2.Compression molding

Compression molding is by far less used than injection molding. Akiba [142]
reviewed this processing method concurrently to other techniques: injection
molding, extrusion, transfer molding, etc.

4.3.Extrusion

The extrusion of TPEs was reviewed by Knieps [143]. This processing technique
is essential in the shaping of many different profiles; the use of single-screw
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extruders is predominant, but some other extruders are used, such as those
equipped with three-section or barrier screws. Extrusion is also applied to other
shapes: foams, tubes, sheets, etc.

4.4.Blow processings

Extrusion and injection blow molding of TPEs are particularly important
whatever the shape: bottles, boots, etc. They were reviewed by Nagaoka [144],
who showed that the parameters controlling the processing are similar to those
which control extrusion and injection molding. Blow processes are also used
to prepare TPE foams; Brzoskowski [145] prepared low-density foamed thermo-
plastic vulcanizates, using a single screw.

4.5.Thermoforming

The number of references relative to the thermoforming of TPEs drastically
increases, particularly in the last three years; most of them are patents and
apparently this TPE processing technique does not enjoy so far a general
appreciation.

4.6.Reactive processings

The corresponding literature was reviewed by Prut and Zelenetskii [146] and
an important part is related to dynamic vulcanization; some of the references
provide a deep insight in the chemical evolution, particularly in side reactions
[147,148]. The morphology of thermoplastic vulcanizates during processing
drastically depends on temperature and shear and, to a lesser extent, on the
screw rate [149].

4.7.Degradation in processing

Endres et al. [150] carried out a fundamental study of the thermal decom-
position of TPEs under thermoplastic processing conditions, more particularly
of the respective kinetics, and an equation was given describing the thermal
degradation of polyurethanes upon extrusion. The knowledge of these side
phenomena during TPE processings is continuously improving and, for instance,
Lee and White [151] observed that no by-products, more particularly carbon
dioxide and water, are formed in the preparation of a polyetheramide triblock
copolymer by reactive extrusion.

5. Position of TPEs among organic materials and their applications

TPEs take an intermediate position between rubbers which are soft, flexible and
with elastic properties, and thermoplastics which are rigid; in fact they overlap
both domains [152,153]. The respective positions of TPEs, thermoset rubbers,
and plastics in terms of Shore A and D hardness are given in Figure 1 [5].

In organic and macromolecular chemistry, their preparation is attractive,
regardless of the additional difficulties, compared to the synthesis of classical
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polymers, due to the incompatibility of the blocks or to the drastic control of
the functionality of the precursors. On the other hand, they are processed by
the same techniques and apparatuses as the thermoplastic polymers. Several
authors analyzed the advantages and the drawbacks of the use of TPEs in
specific fields of application. Baumann [154,155] reviewed the innovative
applications of thermoplastic elastomers, showing their versatility and their
advantages in design and economy.

The number of references directly related to TPE is around 7000; most of
them are patents (above 95%) and many of them use the term “thermoplastic
elastomer”, even though the TPE structure is far from any accepted nomencla-
ture. This is confirmed by the very limited number of publications devoted to
the control of the structure. Numerous reports describe the processing of TPEs
in relation to a specific application, even though some of them treat the
fundamental aspect of a specific technique. Several patents describe a processing
apparatus specially designed for a definite TPE [156] or the preparation of an
elastomer specifically tailored to meet some processing requirements [157]. Some
very few reviews analyzed the dependences of the properties and the applica-
tions on the processing conditions [142,158].

The blends of TPE with other organic materials enjoy an important develop-
ment, particularly in organized morphologies, such as multilayer laminates [159].
Their final shape is obtained by different processing techniques, such as dynamic
vulcanization [160]. The preparation of the blends generates interesting studies
on polymer compatibility, which calls for chemical modification in the bulk or
at interfaces, as well as for thermodynamic studies and careful control [161]. The
preparation of a copolymer requires a long succession of steps going from the
macromers to the final product; blending is the initial operation, which requires
very careful structural analyses of the mixture, before and after the copoly-
merization [162]. The processing of blends requires coextrusion-molding,
calendering, vacuum forming, etc.

TPE are used for the preparation of some important synthetic fibers and
elastomers, and are described in many books, reviews, and articles. The
thermoplastic elastomers prepared by polycondensation and polyaddition are

Figure 1. Respective positions of thermoset rubbers, plastics, and thermoplastic elastomers
in Shore A and D hardness scales [5]
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the subjects of several chapters of this book. However, TPE are used in
numerous other applications, some of them being widely commercialized. They
are briefly listed below, but numerous applications cannot be classified as
belonging to a specific technical field.

Many references concern layered and sandwich structures; the different
layers may cooperate to provide a desired function, particularly in mechanical
properties, or each layer may be responsible for a specific function such as ad-
hesion, electric conductivity [163], specific density, [164] or noise reduction [165].

A non-negligible number of TPEs are involved in the production of foams
where they provide low density, good mechanical properties and, often, advan-
tages in processing; some of them are vulcanized [166]. The use of supercritical
fluid CO2 in the saturation/depressurization method allowed the control of TPE
foaming and the material exhibited very little hysteresis [167].

The use of TPEs in films and tapes is discussed in numerous reports. How-
ever, the latter provide essentially “recipes” of mixtures. They concern many
technical fields: pressure-sensitive adhesives, medical applications, barrier
properties, porous films, etc., and some of them describe well defined electic
properties, such as an electrostrictive system formed of a conductive polymer
(polypyrrole, polyaniline, polythiophene) deposited onto opposing surfaces of
a TPE film, e.g., a polyurethane [168]. The same comments hold for coating
and painting where TPE are mainly used in the protection of metal or alloy
substrates, such as electric wires; some others impart additional functions to
the protection, as is the case of optical fibers or textile fibers and different
fabrics. Some few patents claim that a new TPE can be used as textile fiber with
interesting properties, however these patents are almost never industrialized;
on the other hand, new TPE fiber processing techniques are proposed [169].

TPEs are used as gas or liquid barriers in many applications: caps, bottles,
films, separators, etc., where they can be responsible for the barrier effect or
for the separation. Often they represent only substrates coated with an active
component but imparting, for instance, the mechanical properties; the active
layer can be plasma-deposited [170]. Some very few studies analyze the influence
of the TPE structure on the behavior of the membranes; Ziegel [171] showed
that the rigid and flexible domains of a thermoplastic polyurethane elastomer
behave in different ways in gas transport.

TPE are often associated with inorganic materials, particularly metals,
glass, and fillers [172] (see also Chapter 16). The adhesion of TPE films to
the mineral part often requires a coupling agent or, in the case of a metal, the
surface can be modified by a physical or chemical treatment. TPE found
interesting applications in the pressable TPE-based explosives for metal
accelerating applications [173]. A large number of references (mostly patents)
are devoted to fillers. Mark [174] reviewed and analyzed the behavior of poly-
siloxane elastomeric composites, including TPEs, and proposed very interest-
ing fundamental concepts. The nanocomposites are discussed in Section 6.

The applications of TPEs in the medical, surgical, and pharmaceutical
activities are rapidly developing. Many references are patents, interesting
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reviews were also published, but apparently the most recent reviews in this field
date back to 2000 [175,176]. The TPE applications are related to very different
materials, such as antibacterial materials [177,178] or the emulsions used in
dermatology and cosmetology [179]. There are many applications of TPEs found
in pharmacology, and in cosmetology and agriculture; some references describe
both fundamental and applied scientific approaches, such as the preparation
and the study of the lactide block-containing copolymers [180] or poly(3-
hydroxybutyric) [181].

It would be impossible to analyze all the different commercial applications
of TPEs; however it is impossible not to mention their very important role in
automotive industry. Many authors reviewed this field of application [154,182].
Some particular parts of the car call for specific materials, e.g., poly(ether-b-
polyesters) are particularly appraised in air bag doors and dashboards [183]
(see also Chapter 17).

6. Future trends

Several reviews speculate on the future and trends of TPEs [e.g., 184,185]; a
considerable part of them are published in Japanese [186,187] or Chinese [188].

This book fills an important gap, since for the first time it is entirely devoted
to condensation TPEs. The following considerations place landmarks of the
new chemistry in this field, rather than browsing the recent improvements of
the well established TPEs. Several new techniques appeared quite recently;
they are already patented, if not applied, and are very promising. This is the
case of the metallo-supramolecular block copolymers [189], which result from
the chelation of complexing group end-capped oligomers with different metal
derivatives and the homopolymers and copolymers prepared from metal-
containing macrocycles [190,191].

Yokozawa and Yokoyama [192] published important reviews and articles
concerning new polycondensations, which are particularly useful in condensation
TPEs; they argued that the nature of these polycondensations may be regarded
as living. The process mechanism is clearly described in Figure 2 and different
monomers listed in [192] were polycondensed, e.g., the polycondensation of
phenyl p-amino benzoate was initiated by the system 4-nitro-benzoate/base,
leading to a polymer with a polydispersity index ranging from 1.07 to 1.34.
Several block copolymers were prepared according to this technique [63].

The TPEs prepared by these new chemical methods will generate novel
materials, but probably on limited production scales and with high added value.
Their markets will be essentially related to medical applications, cosmetology,
some specific surface treatments, etc.

In the more distant future, some other synthetic processes will be applied
to TPEs, such as the carbon-carbon polycondensations catalyzed by metal
derivatives [193,194] or the use of enzymatic catalysis in organic media [195].
The bacterial polymers are of great interest as organic materials, such as the
poly(3-hydroxyalkanoates), which are potential thermoplastic elastomers. The
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respective biochemistry was reviewed by Kim and Lenz [196] and Poirier et al.
[197–199].

The sequential reactions are rapidly developing and their contribution to
the preparation of TPEs, particularly of block copolymers, will drastically
increase; they were analyzed by Maréchal [39]. The sequences must not be
limited to chain polymerization and polycondensation, and chemical
modification will play an important role not only in grafting.

A large number of TPE syntheses depend on the existence and quality of
specific functional oligomers. Their preparation and the control of their struc-
ture were reviewed by Maréchal [39] and also in Chapter 2 of this book. The
oligomer chemical and structural purity, as well as functionality are responsible
for the structure and morphology, hence the properties of the TPEs.

The liquid crystalline unit-containing polymers begin a timid entry in the
TPE field. The liquid crystalline sequences can be part of the backbone or may
be present as side chains. Nair et al. [200,201] carried out an abundant and
very valuable work with both fundamental and applied aspects. These polymers
are prepared by chain polymerization or by polycondensation and are discussed
in Chapter 2. Some of them are blends and the morphology and properties of
Rodrun LC3000® were the subject of two articles [202,203]. The first applica-
tions and patented products are very promising and their development should
enjoy a rapid increase. This holds also for the introduction of hyperbranched
and dendritic segments in block copolymers [204].

All the improvements observed in the syntheses and the advent of new
products on the market result not only from the progress in organic and
macromolecular chemistry, but also from the fantastic progress in structural
analysis. Unfortunately, many articles and patents claim results without a deep
insight in the contribution of side phenomena, whatever their nature, such as
the side reactions taking place in the synthesis or the possible degradations
observed during processing.

Figure 2. Effect of the substituent on the polycondensation of an A-B monomer where B
becomes reactive after A has reacted with the chain [192]
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The characterization techniques will become more and more inseparable
from synthesis. They were reviewed in Section 3, and the high number of tech-
niques allow the obtaining of accurate values of the molecular masses, as well
as reliable information on the nature of the blocks and that of the end-groups.
Their importance will increase with the creation of new sophisticated structures
and those resulting from natural products, particularly when prepared by degra-
dation. Since the characterization of the chains remains the subject of many
articles, the knowledge of their interaction and self-organization will require
an increase in efficient analytical investigations; this trend is already observed
in phase organization. In the same way, the morphology of the TPEs should
draw increasing attention. Most of these investigations will combine theoretical
and experimental studies.

Many of the improvements in TPEs and the creation of new materials result
from a progressive introduction of the new achievements in chemistry, physics,
and processing. However, sometimes a new technique or a new structure trigger
the outburst of fundamental and applied studies and results. This is the case of
the nano-technologies. Their association with TPEs is rapidly developing and
several interesting reviews were published [205,206], covering an increasing
number of materials: blends [207], multilayer structures [208], microemulsions
[209], composites [128], stimuli-responsive polymers [210], stabilization of
nanocolloidal metals [211].

The environmental protection and the recycling of TPEs are important
parts of the concept and production of TPEs. Chapter 19 of this book treats
these problems.
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