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1
Elementary Principles of Diffusion

The tendency of matter to migrate in such a way as to eliminate spatial variations in
composition, thereby approaching a uniform equilibrium state, is well known. Such
behavior, which is a universal property of matter at all temperatures above absolute
zero, is called diffusion and is simply a manifestation of the tendency towards
maximum entropy or maximum randomness. The rate at which diffusion occurs
varies widely, from a time scale of seconds for gases tomillennia for crystalline solids
at ordinary temperatures. The practical significance therefore depends on the time
scale of interest in any particular situation.

Diffusion in gases, liquids, and solids has been widely studied for more than a
century [1–3]. In this book we are concerned with the specific problem of diffusion
in porous solids. Such materials find widespread application as catalysts or
adsorbents, which is a subject of considerable practical importance in the
petroleum and chemical process industries and have recently attracted even more
attention due to their potential as functional materials with a broad range of
applications ranging from optical sensing to drug delivery [4]. To achieve the
necessary surface area required for high capacity and activity, such materials
generally have very fine pores. Transport through these pores occurs mainly by
diffusion and often affects or even controls the overall rate of the process. A
detailed understanding of the complexities of diffusional behavior in porous
media is therefore essential for the development, design, and optimization of
catalytic and adsorption processes and for technological exploitation of porous
materials in general. Moreover, systematic diffusion studies in such systems lead
to a better understanding of such fundamental questions as the interaction
between molecules and solid surfaces [5] and the behavior of molecular systems
of reduced dimensionality [6–8].

One class of microporous materials that is of special interest from both practical
and theoretical points of view is the zeolites, where this term is used in its broad
sense to include both microporous crystalline aluminosilicates and their structural
analogs such as the titanosilicates and aluminophosphates. These materials form
the basis of many practical adsorbents and catalysts. They combine the advantages
of high specific area and uniform micropore size and, as a result, they offer unique
properties such as size selective adsorption that can be exploited to achieve
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practically useful separations and to improve the efficiency of catalytic processes.
The regularity of the pore structure, which is determined by the crystal structure
rather than by the mode of preparation or pretreatment, offers the important
advantage that it is possible, in such systems, to investigate the effect of pore size on
the transport properties. In more conventional adsorbents, which have a very much
wider distribution of pore size, such effects are more difficult to isolate. In the
earlier chapters of this book diffusion in nanoporous solids is treated from a general
perspective, but the later chapters focus on zeolitic adsorbents; because of their
practical importance, these materials have been studied in much greater detail than
amorphous materials.

Since the first edition of this book was published [9], an important new class of
nanoporous materials based on metal–organic frameworks (MOFs) has been dis-
covered and studied in considerable detail. Although their composition is quite
different, MOFs are structurally similar to the zeolites and showmany similarities in
their diffusional behavior. Some of the recent studies of thesematerials are reviewed
in Chapter 19.

1.1
Fundamental Definitions

1.1.1
Transfer of Matter by Diffusion

Thequantitative study of diffusiondates from the earlywork of twopioneers, Thomas
Graham and Adolf Fick (for a detailed historical review, see, for example, Refer-
ence [10]), during the period 1850–1855. Graham�s initial experiments, which led to
Graham�s law of diffusion, involvedmeasuring the rate of interdiffusion of two gases,
at constant pressure, through a porous plug [11, 12]. He concluded that:

The diffusion or spontaneous inter-mixture of two gases in contact is, in the case of
each gas, inversely proportional to the density of the gas.

In later experiments with salt solutions he, in effect, verified the proportionality
between the diffusive flux and the concentration gradient, although the results were
not reported in precisely those terms. He also established the very large difference in
the orders of magnitude of gas and liquid diffusion rates.

Fick�s contribution was to recognize that Graham�s observations could be under-
stood if the diffusion of matter obeys a law of the same general form as Fourier�s law
of heat conduction, an analogy that remains useful to this day. On this basis he
formulated what is now generally known as Fick�s first law of diffusion, which is in
fact no more than a definition of the �diffusivity� (D):

J ¼ �D
¶c
¶z

ð1:1Þ
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or, more generally:

J ¼ �D grad c

Heshowed that for diffusion in a parallel-sided ductwith a constant diffusivity, this
leads to the conservation equation:

¶c
¶t

¼ D
¶2c
¶z2

ð1:2Þ

or:

¶c
¶t

¼ D divðgrad cÞ

which is commonly known as Fick�s second law of diffusion. He then proceeded to
verify these conclusions by a series of ingenious experiments involving the mea-
surement of concentration profiles, under quasi-steady state conditions, in conical
and cylindrical vessels in which uniform concentrations were maintained at the
ends [10, 13, 14].

These experiments were carried out with dilute solutions in which the diffu-
sivity is substantially independent of composition. The definition of Eq. (1.1)
makes no such assumption and is equally valid when the diffusivity varies with
concentration. The additional assumption that the diffusivity does not depend on
concentration is, however, introduced in the derivation of Eq. (1.2). The more
general form of the conservation equation, allowing for concentration dependence
of the diffusivity, is:

¶c
¶t

¼ ¶
¶z

DðcÞ ¶c
¶z

� �
ð1:3Þ

or:

¶c
¶t

¼ div DðcÞ grad c½ �

which reverts to Eq. (1.2) when D is constant.
In an isothermal binary system, Eq. (1.1)may also bewritten, equivalently, in terms

of the gradient of mole fraction or (for gases) the partial pressure:

J ¼ �D
¶c
¶z

¼ �cD
¶yA
¶z

¼ � D
RT

¶PA

¶z
ð1:4Þ

but these formulations are no longer equivalent in a non-isothermal system.
Momentum transfer arguments lead to the conclusion that for diffusion in a gas
mixture the gradient of partial pressure should be regarded as the fundamental
�driving force,� since that formulation remains valid even under non-isothermal
conditions. A more detailed discussion of this point has been given by Haynes [15].
However, in this book problems of diffusion under non-isothermal conditions are
not addressed in any substantial way and so the equivalence of Eq. (1.4) can generally
be assumed.
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The mathematical theory of diffusion, which has been elaborated in detail by
Crank [16], depends on obtaining solutions to Eq. (1.1) [or Eqs. (1.2) and (1.3)] for
the appropriate initial and boundary conditions. A number of such solutions are
summarized in Chapter 6 for some of the situations commonly encountered in
themeasurement of diffusivities. In this chapter we present only the solution for one
simple case that is useful for elaboration of the analogy between diffusion and a
�random walk.�

1.1.2
Random Walk

In the late 1820s, that is, about 20 years before the experiments of Graham and Fick,
the Scottish botanist Robert Brown gave a detailed description of another phenom-
enon that turned out to be closely related to diffusion [10, 17]. On observing a
suspension of pollen grains with the aid of the then new achromatic microscope he
noticed that the individual particles undergo a sequence of rapid and apparently
random movements. Today we know this behavior results from the continuously
changing interaction between small particles and the molecules of the surrounding
fluid. Although this microdynamic explanation was only suggested much later [18]
this phenomenon is generally referred to as Brownianmotion. The close relationship
between Brownian motion and diffusion was first elaborated by Einstein [19] and,
eventually, turned out to be nothing less than the ultimate proof of nature�s atomic
structure [10]. An experimentally accessible quantity that describes Brownianmotion
is the time dependence of the concentration distribution of the Brownian particles
(diffusants) that were initially located within a given element of space. To apply Fick�s
equations [Eqs. (1.1) and (1.2)] to this process the particles initially within this space
element must be considered to be distinguishable from the other particles, that is,
they must be regarded as �labeled.� The concentration distribution of these labeled
particles will obey Eq. (1.2), which, in this situation, holds exactly since the total
concentration of particles (and therefore their mobility or diffusivity) remains
constant throughout the region under consideration.

It is easy to show by differentiation that for a constant diffusivity system:

c ¼ Affiffi
t

p e�z2=4Dt ð1:5Þ

(in which A is an arbitrary constant) is a general solution of Eq. (1.2). The total
quantity of diffusing substance (M), assuming a parallel-sided container of unit cross-
sectional area and infinite length in the z direction, is given by:

M ¼
ð þ1

�1
c dz ð1:6Þ

and, on writing j2¼ z2/4Dt, we see that:

M ¼ 2A
ffiffiffiffi
D

p ð þ1

�1
e�j2 dj ¼ 2A

ffiffiffiffiffiffiffi
pD

p
ð1:7Þ
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Substitution in Eq. (1.5) shows that if this quantity of solute is initially confined to
the plane at z¼ 0, the distribution of solute at all later times will be given by:

c
M

¼ e�z2=4Dtffiffiffiffiffiffiffiffiffiffiffi
4pDt

p ð1:8Þ

The corresponding solution for isotropic diffusion from a point source in three-
dimensional space may be derived in a similar way:

c
M

¼ e�r2=4Dt

ð4pDtÞ3=2
ð1:9Þ

where r represents the position vector from the origin. Equations (1.8) and (1.9)
thus give the probability of finding, at position r, a particle (or molecule) that was
located at the origin at time zero. This quantity is termed the �propagator� and, as it
is a Gaussian function, it is completely defined by themean square half-width or the
�mean square displacement� of the diffusants, which may be found directly from
Eqs. (1.8) or (1.9) by integration:

z2ðtÞh i ¼
ð þ1

�1
z2

e�z2=4Dtffiffiffiffiffiffiffiffiffiffiffi
4pDt

p dz ¼ 2Dt

r2ðtÞh i ¼
ð
r2

e�r2=4Dt

ð4pDtÞ3=2
dz ¼ 6Dt

ð1:10Þ

These equations are generally known as Einstein�s relations [19] and provide a
direct correlation between the diffusivity, as defined by Fick�s first equation, and the
time dependence of the mean square displacement, which is the most easily
observable quantitative feature of Brownian motion.

Chapter 2 explores the equivalence between a �random walk� and diffusion in
greater detail. Starting from the assumption that the random walkers may step with
equal probability in any direction, it is shown that the distribution and mean
square displacement for a large number of randomwalkers, released from the origin
at time zero, are givenbyEqs. (1.8–1.10). From theperspective of the randomwalk one
may therefore elect to consider Eq. (1.10) as defining the diffusivity and, provided the
diffusivity is independent of concentration, this definition is exactly equivalent to the
Fickian definition based on Eq. (1.1).

1.1.3
Transport Diffusion and Self-Diffusion

Two different diffusion phenomena may be distinguished: mass transfer (or trans-
port diffusion) resulting from a concentration gradient (Figure 1.1a) and Brownian
molecular motion (self-diffusion), which may be followed either by tagging a certain
fraction of the diffusants (Figure 1.1b) or by following the trajectories of a large
number of individual diffusants and determining their mean square displacement
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(Figure 1.1c). Because of the difference in the microphysical situations
represented by Figures 1.1a–c the diffusivities in these two situations are not
necessarily the same.

Following general convention we call the diffusivity corresponding to the situation
represented by Figure 1.1a (in which there is a concentration gradient rather than
merely a gradient in the fraction of marked molecules) the transport diffusivity (D),
since this coefficient is related directly to the macroscopic transport of matter.
Completely synonymously, the terms collective or chemical diffusion are sometimes
also used [3].

The quantity describing the rate of Brownian migration under conditions of
macroscopic equilibrium (Figure 1.1b and c) is referred to as the tracer or self-
diffusivity (D). A formal definition of the self-diffusivity may be given in two ways
based on either Eqs. (1.1) or (1.10):

J� ¼ �D¶c�

¶z

�����
c¼const

ð1:11Þ

or:

r2ðtÞ� � ¼ 6Dt ð1:12Þ
but, as noted above, these definitions are in fact equivalent. Note that the self-
diffusivity may vary with the total concentration, but it does not vary with the fraction
of marked molecules.

Although both diffusion and self-diffusion occur by essentially the same micro-
dynamic mechanism, namely, the irregular (thermal) motion of the molecules, the
coefficients of transport diffusion and self-diffusion are generally not the same. Their
relationship is discussed briefly in Section 1.2.3 and in greater detail in Section 3.3.3
as well as in Chapters 2 and 4 on the basis of various model assumptions for
molecular propagation.

Mass transfer phenomena followingEqs. (1.11) and (1.12) are referred to as normal
diffusion. It is shown in Section 2.1.2 that this describes the common situation in
porous materials. Anomalous diffusion [7, 8, 20] leads to a deviation from the linear
interdependence between themean square displacement and the observation time as

Figure 1.1 Microscopic situation during the measurement of transport diffusion (a) and self-
diffusion by following the flux of labeled molecules (*) counterbalanced by that of the unlabeled
molecules (., b) or by recording the displacement of the individual molecules (c).
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predicted by Eq. (1.12), which may formally be taken account of by considering the
self-diffusivity as aparameter that dependsoneither theobservation time inEq. (1.12)
or on the system size in Eq. (1.11) [21]. Such deviations, however, necessitate a highly
correlated motion with a long �memory� of the diffusants, which occurs under only
very exceptional conditions such as in single-file systems (Chapter 5). Anomalous
diffusion is generally therefore of no technological relevance for mass transfer in
nanoporous materials.

1.1.4
Frames of Reference

The situation shown in Figure 1.1a is only physically reasonable in a microporous
solid where the framework of the solid permits the existence of an overall gradient of
concentration under isothermal and isobaric conditions. Furthermore, in such
systems the solid framework provides a convenient and unambiguous frame of
reference with respect to which the diffusive flux may be measured. In the more
general case of diffusion in a fluid phase the frame of reference must be specified to
complete the definition of the diffusivity according to Eq. (1.1). For the interdiffusion
of two components A and B we may write:

JA ¼ �DA
¶cA
¶z

; JB ¼ �DB
¶cB
¶z

ð1:13Þ

If the partialmolar volumes ofA andB are different (VA 6¼VB), the interdiffusion of
the two species will lead to a net (convective)flow relative to afixed coordinate system.
The total volumetric flux is given by:

JV ¼ VADA
¶cA
¶z

þVBDB
¶cB
¶z

ð1:14Þ

and the plane across which there is no net transfer of volume is given by JV¼ 0. If
there is no volume change on mixing:

VAcA þVBcB ¼ constant ð1:15Þ

VA
¶cA
¶z

þVB
¶cB
¶z

¼ 0 ð1:16Þ

For both Eqs. (1.14) and (1.16) to be satisfied with JV¼ 0 and VA and VB finite, it
follows that DA¼DB. The interdiffusion process is therefore described by a single
diffusivity provided that the fluxes, and therefore the diffusivity, are defined relative
to the plane of no net volumetric flow. The same result can be shown to hold even
when there is a volume change on mixing, provided that the fluxes are defined
relative to the plane of no net mass flow. In general the interdiffusion of two
components can always be described by a single diffusivity but the frame of
reference required to achieve this simplification depends on the nature of the
system.
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To understand the definition of the diffusivity for an adsorbed phase we must
first consider the more general case of diffusion in a convective flow. The diffusive
flux (relative to the plane of no net molal flow) is conventionally denoted by J and
the total flux, relative to a fixed frame of reference, by N. For a binary system (A, B)
we have:

NA ¼ JA þ yAN ¼ JA þ yAðNA þNBÞ ð1:17Þ

If component B is stationary (NB¼ 0) then:

JA ¼ NAð1�yAÞ ð1:18Þ
which thus defines the relationship between the fluxes NA and JA. Diffusion of a
mobile species within a porous solid may be regarded as a special case of binary
diffusion inwhich one component (the solid) is immobile. Theflux, and therefore the
diffusivity, is normally definedwith respect to the fixed coordinates of the solid rather
than with respect to the plane of no net molal flux. There is no convective flow, so:

NA ¼ J0A ¼ JA
1�yA

¼ �D0
A
¶cA
¶z

; D0
A ¼ DA

ð1�yAÞ ð1:19Þ

but J0A and D0
A are now defined in the fixed frame of reference. In discussing

diffusion in an adsorbed phase the distinction between J0 and J and betweenD0 andD
is generally not explicit. The symbols J andD are commonly applied to fluxes in both
fluid and adsorbed phases but it is important to understand that their meanings are
not identical. This is especially important when applying results derived for diffusion
in a homogeneous fluid to diffusion in a porous adsorbent.

1.1.5
Diffusion in Anisotropic Media

Extension of the unidimensional diffusion equations to diffusion in two or three
dimensions [e.g., Eqs. (1.2), (1.3) or (1.8) and (1.9)] follows in a straightforward
manner for an isotropic system in which the diffusivity in any direction is the same.
Inmostmacroporous adsorbents, randomness of the pore structure ensures that the
diffusional properties should be at least approximately isotropic. For intracrystalline
diffusion the situation is more complicated. When the crystal structure is cubic,
intracrystalline diffusion should be isotropic since the micropore structure must
then be identical in all three principal directions. However, when the crystal
symmetry is anything other than cubic, the pore geometry will generally be different
in the different principal directions, so anisotropic diffusion is to be expected.
Perhaps themost important practical example is diffusion in ZSM-5/silicalite, which
is discussed in Chapter 18.

In an isotropic medium the direction of the diffusive flux at any point is always
perpendicular to the surface of constant concentration through that point, but this is
not true in a nonisotropic system. This means that, for a nonisotropic system,
Eq. (1.1) must be replaced by:
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�Jx ¼ Dxx
¶c
¶x

þDxy
¶c
¶y

þDxz
¶c
¶z

�Jy ¼ Dyx
¶c
¶x

þDyy
¶c
¶y

þDyz
¶c
¶z

�Jz ¼ Dzx
¶c
¶x

þDzy
¶c
¶y

þDzz
¶c
¶z

ð1:20Þ

In this notation the coefficients Dij (with i, j¼ x, y, z) represent the contribution
to the flux in the i direction from a concentration gradient in the j direction.
The set:

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

2
64

3
75

is commonly called the diffusion tensor.
The equivalent of Eq. (1.2) for a (constant diffusivity) non-isotropic system is:

¶c
¶t

¼ Dxx
¶2c
¶x2

þDyy
¶2c
¶y2

þDzz
¶2c
¶z2

þðDyz þDzyÞ ¶2c
¶y ¶z

þðDzx þDxzÞ ¶2c
¶z ¶x

þðDxy þDyxÞ ¶2c
¶x ¶y

¼ 0

ð1:21Þ

but it may be shown that a transformation to the rectangular coordinates j, g, z can
always be found, which reduces this to the form:

¶c
¶t

¼ D1
¶2c
¶j2

þD2
¶2c
¶g2

þD3
¶2c
¶z2

ð1:22Þ

If we make the further substitutions:

j1 ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffi
D=D1

p
; g1 ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffi
D=D2

p
; z1 ¼ zs

ffiffiffiffiffiffiffiffiffiffiffiffi
D=D3

p
in which D may be arbitrarily chosen, Eq. (1.22) reduces to:

¶c
¶t

¼ D
¶2c
¶j21

þ ¶2c
¶g21

þ ¶2c
¶z21

 !
ð1:23Þ

which is formally identical with the diffusion equation for an isotropic system. In this
waymany of the problems of diffusion in nonisotropic systems can be reduced to the
corresponding isotropic diffusion problems. Whether this is possible in any given
situation depends on the boundary conditions, but where these are simple (e.g., step
change in concentration at t¼ 0) this reduction is usually possible. The practical
consequence of this is that in such cases onemay expect the diffusional behavior to be
similar to an isotropic system so that measurable features such as the transient
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uptake curves will be of the same form. However, the apparent diffusivity derived by
matching such curves to the isotropic solution will be a complex average of D1, D2,
andD3, the diffusivities in the three principal directions j,g, and z. It is in general not
possible to extract the individual values of D1, D2, and D3 with satisfactory accuracy,
although given the values of the principal coefficients (e.g., from an a priori
prediction) it would be possible to proceed in the reverse direction and calculate
the value of the apparent diffusivity.

1.2
Driving Force for Diffusion

1.2.1
Gradient of Chemical Potential

Fick�s first law [Eq. (1.1)] and the equivalent definition of the diffusivity according to
Eq. (1.10) both carry the implication that the driving force for diffusion is the gradient
of concentration. However, since diffusion is simply the macroscopic manifestation
of the tendency to approach equilibrium, it is clear that the true driving forcemust be
the gradient of chemical potential (m). This seems to have been explicitly recognized
first by Einstein [22]. If the diffusive flux is considered as a flow driven by the gradient
of chemical potential and opposed by frictional forces, the steady-state energy balance
for a differential element is simply:

fuA ¼ � dmA
dz

ð1:24Þ

whereuA is theflow velocity of componentA and f is a friction coefficient. Theflux (JA)
is givenbyuAcA. To relate the chemical potential to the concentrationwemay consider
the equilibrium vapor phase in which, neglecting deviations from the ideal gas law,
the activity may be identified with the partial pressure:

mA ¼ m0A þRT lnpA ð1:25Þ
The expression for the flux may then be written:

JA ¼ uAcA ¼ �RT
f

d lnpA
d ln cA

dcA
dz

ð1:26Þ

Comparison with Eq. (1.1) shows that the transport diffusivity is given by:

DA ¼ RT
f

d ln pA
d ln cA

¼ D0
d ln pA
d ln cA

ð1:27Þ

where d ln pA/d ln cA represents simply the gradient of the equilibrium isotherm in
logarithmic coordinates. This term [the �thermodynamic (correction) factor�] may
vary substantially with concentration and, in general, approaches a constant value of 1
only at low concentrations within the Henry�s law region.
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The principle of the chemical potential driving force is also implicit in the Stefan–
Maxwell formulation [23, 24] (presented in Section 3.3) which, for a binary system,
may be written in the form:

� ¶
¶z

mA
RT

� 	
¼ yB

�DAB
uA�uBð Þ ð1:28Þ

where yB denotes the mole fraction of component B, �DAB is the Stefan–Maxwell
diffusivity, and uA, uB are the diffusive velocities. For an isothermal system with no
net flux, Eq. (1.28) reduces to:

JA ¼ ��DAB
d ln pA
d ln cA

:
dcA
dz

ð1:29Þ

which is equivalent to Eq. (1.26).
An alternative and equivalent form may be obtained by introducing the activity

coefficient cA (defined by fA�pA¼cAcA where fA is the fugacity):

JA ¼ ��DAB
¶ lncA
¶ ln cA

þ 1


 �
dcA
dz

ð1:30Þ

This form of expression was applied by Darken [25] in his study of interdif-
fusion in binary metal alloys. The use of �thermodynamically corrected� diffusion
coefficients is therefore sometimes attributed to Darken. However, it is apparent
from the preceding discussion that the idea actually predates Darken�s work by
many years and is probably more correctly attributed to Maxwell and Stefan or
Einstein.

The same formulation can obviously be used to represent diffusion of a single
component (A) in a porous adsorbent (B). In this situation uB¼ 0 and �DAB is the
diffusivity for component A relative to the fixed coordinates of the pore system.
Furthermore, in a microporous adsorbent there is no clear distinction between
molecules on the surface andmolecules in the �gas� phase in the central region of the
pore. It is therefore convenient to consider only the total �intracrystalline� concen-
tration (q). Assuming an ideal vapor phase, the transport equation is then written in
the form:

J ¼ �D
dq
dz

; D ¼ D0
d ln p
d ln q

ð1:31Þ

D0, defined in this way, is generally referred to as the �corrected diffusivity� and
d ln p/d ln q (� C) as the �thermodynamic factor.� Comparison with Eq. (1.29)
shows that, under the specified conditions, D0 is identical to the Stefan–Maxwell
diffusivity �DAB.

If the system is thermodynamically ideal (p/ q) d ln p/d ln q ! 1.0 and the Fickian
and corrected diffusivities become identical. However, in the more general case of a
thermodynamically nonideal system, the Fickian transport diffusivity is seen to be
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the product of a mobility coefficient (D0) and the thermodynamic correction factor
d ln p/d ln q, which arises from nonlinearity of the relationship between activity and
concentration. Thermodynamic ideality is generally approached only in dilute
systems (gases, dilute liquid or solid solutions) and, under these conditions, one
may also expect negligible interaction between the diffusing molecules, leading to a
diffusivity that is independent of concentration. Since diffusion is commonly first
encountered under these near ideal conditions, the idea that the diffusivity should be
constant and that departures from such behavior are in some sense abnormal, has
become widely accepted. In fact, except in dilute systems, the Fickian diffusivity is
generally found to be concentration dependent. Equation (1.31) shows that this
concentration dependencemay arise from the concentration dependence of eitherD0

or d ln p/d ln q.
In liquid-phase systems both these effects are often of comparable magnitude [26]

and one may therefore argue that there is little practical advantage to be gained from
using the corrected diffusivity (D0) rather than the Fickian transport diffusivity (D).
The situation is different in adsorption systems. In the saturation region the
equilibrium isotherm becomes almost horizontal so that d ln p/d ln q ! 1 whereas
in the low-concentration (Henry�s law) region d ln p/d ln q ! 1.0. The concentration
dependence of this factor and, as a result, the concentration dependence of the
Fickian diffusivity is therefore generally much more pronounced than the concen-
tration dependence of the corrected diffusivity. Indeed, for many systems the
corrected diffusivity has been found experimentally to be almost independent of
concentration. Correlation of transport data for adsorption systems in terms of the
corrected diffusivity is therefore to be preferred for practical reasons since it generally
provides a simpler description.

In addition to these practical considerations there is a strong theoretical argument
in favor of using corrected diffusivities. According to Eq. (1.31), and as will become
clearer from the statistical mechanical considerations presented in Section 8.1.3, the
transport diffusivity is seen to be a hybrid quantity, being the product of a mobility
coefficient and a factor related to the driving force. In attempting to understand
transport behavior at the molecular level it is clearly desirable to separate these two
effects. Two systems with the same transport diffusivity may, as a result of large
differences in the correction factor, have very different molecular mobilities. In any
fundamental analysis the �corrected� diffusivity is therefore clearly the more useful
quantity.

Beyond the Henry�s law region the simple Langmuir model is often used to
represent the behavior of adsorption systems in an approximate way. For a single
adsorbed component:

� ¼ q
qs

¼ bp
1þ bp

;
d ln p
d ln q

¼ 1
1�q=qs

¼ 1
1��

ð1:32Þ

where � is referred to as the fractional loading and b is the adsorption equilibrium
constant (per site). This expression has the correct asymptotic behavior (p ! 0,
q ! Kp where K¼ bqs and p ! 1, q ! qs) and, although it provides an accurate
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representationof the isotherms for only a few systems, it provides a useful approximate
representation for many systems. The extension to a binary system is:

�A ¼ qA
qAs

¼ bApA
1þ bApA þ bBpB

ð1:33Þ

The partial derivatives required for the analysis of diffusion in a binary system
(Section 3.3.2) follow directly:

¶ ln pA
¶ ln qA

¼ 1��B
1��A��B

;
¶ ln pA
¶ ln qB

¼ �A
1��A��B

ð1:34Þ

1.2.2
Experimental Evidence

Direct experimental proof that the driving force for diffusive transport is the gradient
of chemical potential, rather than the gradient of concentration, is provided by the
experiments of Haase and Siry [27, 28] who studied diffusion in binary liquid
mixtures near the consolute point. At the consolute point the chemical potential,
and therefore the partial pressures, are independent of composition so that, accord-
ing to Eq. (1.29), the transport diffusivity should be zero. The consolute point for the
system n-hexane–nitrobenzene occurs at 20 �C at a mole fraction 0.422 of nitroben-
zene. The system shows complete miscibility above this temperature but splits into
two separate phases at lower temperatures. The opposite behavior is shown by the
systemwater–triethylamine, for which the consolute temperature occurs at 18 �Cat a
mole fraction of triethylamine of 0.087. The mixture is completely miscible at lower
temperatures but separates into two phases at higher temperature. Figure 1.2 shows
the results of diffusion measurements. In both systems the Fickian diffusivity
approaches zero as the consolute temperature is approached, as required by
Eq. (1.29). The behavior of the water–triethylamine system is especially noteworthy
since the diffusivity actually decreases with increasing temperature as the upper
consolute point (18 �C) is approached. Such behavior, which follows naturally from
the assumption that chemical potential is the driving force, cannot be easily
accounted for in terms of a strictly Fickian model.

Despite the compelling evidence provided by Haase and Siry�s experiments, the
contrary view has been expressed that diffusive transport is a stochastic process for
which the true driving force must be the gradient of concentration [29]. This
argument is based on the random walk model with the implicit assumption that
molecular propagation is a purely random process that occurs with equal a-priori
probability in any direction. In fact when the relationship between activity and
concentration is nonlinear, the propagation probabilities in the presence of a
chemical potential gradient are not the same in all directions. To reconcile the
random walk argument with the implications of Eq. (1.31) requires only
the additional assumption that the a-priori jump probability varies in proportion
to the local gradient of chemical potential.
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1.2.3
Relationship between Transport and Self-diffusivities

A first approximation to the relationship between the self- and transport diffusivities
may be obtained by considering Eq. (1.26). In a mixture of two identical species,
distinguishable only by their labeling (Figure 1.1b), the relation between pA and cA is
clearly linear, and so the self-diffusivity is given simply byD ¼ RT=f . The expression
for transport diffusivity [Eq. (1.27)] may therefore be written in the form:

D ¼ D
d ln p
d ln q

ð1:35Þ

implying the self-diffusivity can be equated with the corrected transport diffusivity
(D ¼ D0). In conformitywith this equation it has been shownexperimentally that in a
dilute binary liquid solution the mutual or transport diffusivity approaches the self-
diffusivity of the solute [30, 31]. It has therefore been generally assumed that in an
adsorption system the transport and self-diffusivities should coincide in the low
concentration limit where the nonlinearity correction vanishes and encounters
between diffusing molecules occur only infrequently. Satisfactory agreement
between transport and self-diffusivities has indeed been demonstrated experimen-
tally for several adsorption systems. However, the argument leading to Eq. (1.35)
contains the hidden assumption that the �friction coefficient� is the same for both
self-diffusion (where there is no concentration gradient) and for transport diffusion
(where there is a concentration gradient). Such an assumption is only valid if the
adsorbent can be regarded as an inert framework that is not affected in any significant
way by the presence of the sorbate.

Figure 1.2 Variation of Fickian diffusivity with
temperature for liquid mixtures of the critical
composition, close to the consolute point:
(a) n-hexane–nitrobenzene, mole fraction of
nitrobenzene¼ 0.422, consolute

temperature¼ 20 �C; (b) water–triethylamine,
mole fraction triethylamine¼ 0.087, consolute
temperature¼ 18 �C. Reprinted from
Turner [28], with permission.

16j 1 Elementary Principles of Diffusion



A series of informative examples of systems following Eq. (1.35) are given in
Section 19.3.1. They include cases where the thermodynamic factor yields values
both larger and smaller than 1, thus giving rise to self-diffusivities both smaller (the
usual case for nanoporous host–guest systems) and larger than the transport
diffusivities. Note in particular Figure 19.12, which illustrates the correlation of the
thermodynamic factor with the shape of the adsorption isotherm.

1.3
Diffusional Resistances in Nanoporous Media

Nowadays materials with pore diameters in the range 1–100 nm (10–1000A
�
) are

commonly referred to as �nanoporous� but, according to the IUPAC classifica-
tion [32], pores are classified in three different categories based on their diameter:

micropores d < 20 A
�
; mesopores 20 A

�
< d < 500 A

�
; macropores 500 A

�
< d

This division, although somewhat arbitrary, is based on the difference in the types
of forces that control adsorption behavior in the different size ranges. In the
micropore range, surface forces are dominant and an adsorbed molecule never
escapes from the force field of the surface even when at the center of the pore. In
mesopores, capillary forces become important, while the macropores actually
contribute very little to the adsorption capacity, although of course they play an
important role in the transport properties. This classification is appropriate where
small gaseous sorbates are considered, but for larger molecules the micropore
regime may be shifted to substantially large pore sizes.

1.3.1
Internal Diffusional Resistances

Differentmechanismsofdiffusioncontrol the transport indifferent regionsofporosity.
Diffusion inmicropores is dominated by interactions between the diffusing molecule
and the pore wall. Steric effects are important and diffusion is an activated process,
proceeding by a sequence of jumps between regions of relatively low potential energy
(sites).Sincethediffusingmoleculesneverescapefromtheforcefieldof theporewalls it
is logical to consider the fluid within the pore as a single �adsorbed� phase. Diffusion
within this regime is knownvariously as �configurational� diffusion, �intra-crystalline�
diffusion, orsimply �micropore�diffusionbut these termsareessentially synonymous.

Within the macropore range the role of the surface is relatively minor. Diffusion
occurs mainly by the bulk or molecular diffusion mechanism, since collisions
between diffusing molecules occur more frequently than collisions between a
diffusing molecule and the pore wall, although of course this depends on the
pressure.Within themesopore rangeKnudsendiffusion is generallymore important
but there may also be significant contributions from surface diffusion and capillarity
effects. Chapter 4 gives a more detailed discussion.
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Uptake rate measurements with sufficiently large zeolite crystals can generally be
interpreted according to a simple single (micropore) diffusion resistance model but
with small commercial crystals the situation is not so straightforward. The assem-
blage of crystals in the measuring device can act like a macroporous adsorbent since
the diffusion ratemay be significantly affected, indeed controlled, by transport within
the intercrystalline space. To interpret kinetic data in these circumstances it may be
necessary to use a more complicated model including both �micropore� and
�macropore� diffusional resistances.

The situation is even more complicated in commercial pelleted adsorbents. Two
common types are shown schematically in Figure 1.3. In materials such as silica or
alumina (Figure 1.3a) there is generally a wide distribution of pore size with no clear
distinction between micropores and meso/macropores. In such adsorbents it is
experimentally possible to measure only an average diffusivity and the relative
contribution from pores of different size is difficult to assess. The situation is
somewhat simpler in many zeolite and carbon molecular sieve adsorbents since
these materials generally consist of small microporous particles (of zeolite or carbon
sieve) aggregated together, oftenwith the aid of a binder, to formamacroporous pellet
of convenient size (Figure 1.3b). In such adsorbents there is a well-defined bimodal
distribution of pore size so that the distinction between the micropores and the
meso/macropores is clear.

Depending on the particular system and the conditions, either macropore or
micropore diffusion resistances may control the transport behavior or both
resistances may be significant. In the former case a simple single-resistance
diffusion model is generally adequate to interpret the kinetic behavior but in the
latter case a more complex dual resistance model that takes account of both
micropore and macropore diffusion may be needed. Some of these more complex
situations are discussed in Chapter 6. In any particular case the nature of the
controlling regime may generally be established by varying experimental condi-
tions such as the particle size.

Figure 1.3 Two common types of microporous adsorbent: (a) homogeneous particle with a wide
range of pore size distribution and (b) composite pellet formed from microporous microparticles
giving rise to a well-defined bimodal distribution of pore size.
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1.3.2
Surface Resistance

Mass transfer through the surface of a zeolite crystal (or other nanoporous adsorbent
particle) can be impeded by various mechanisms, including the collapse of the
genuine pore structure close to the particle boundary and/or the deposition of
strongly adsorbed species on the external surface of the particle. This may result in
either total blockage of a fraction of the poremouths or pore-mouth narrowing aswell
as the possibility that the surface may be covered by a layer of dramatically reduced
permeability for the guest species under consideration. In all these cases the flux
though the particle boundary can be represented by a surface rate coefficient (ks)
defined by:

J ¼ ksðq��qÞ ð1:36Þ

where (q� � q) represents the difference between the equilibrium concentration of
the adsorbed phase and the actual boundary concentration within the particle. If the
surface resistance is brought about by a homogeneous layer of thickness d with
dramatically reduced diffusivity Ds, the surface rate coefficient is easily seen to be
given by ks¼RsDs/d,withRs denoting the ratio of the guest solubilities in the surface
layer and in the genuine particle pore space.

1.3.3
External Resistance to Mass Transfer

In addition to any surface resistance and the internal diffusional resistances
discussed above, whenever there is more than one component present in the fluid
phase, there is a possibility of external resistance to mass transfer. This arises
because, regardless of the hydrodynamic conditions, the surface of an adsorbent or
catalyst particlewill always be surrounded by a laminar boundary layer throughwhich
transport can occur only by molecular diffusion. Whether or not the diffusional
resistance of this external fluid �film� is significant depends on the thickness of the
boundary layer, which in turn depends on the hydrodynamic conditions. In general,
for porous particles, this external resistance to mass transfer is smaller than the
internal pore diffusional resistance but it may still be large enough to have a
significant effect.

External resistance is generally correlated in terms of a mass transfer coefficient
(kf), defined in the usual manner according to a linearized rate expression of similar
form to that used to represent surface resistance [Eq. (1.36)]:

J ¼ kf ðc�c�s Þ ð1:37Þ
in which c is the sorbate concentration in the (well-mixed) bulk phase and c� is the
fluid phase concentration that would be at equilibrium with the adsorbed phase
concentration at the particle surface. The capacity of the fluid film is small
compared with that of the adsorbent particle and so there is very little accumu-
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lation of sorbate within the film. This implies a constant flux and a linear
concentration gradient through the film. The time required to approach the
steady state profile in the film will be small so that, even in a transient situation,
in which the adsorbed phase concentration changes with time, the profile through
the film will be of the same form, although the slope will decrease as equilibrium
is approached and the rate of mass transfer declines. This is shown schematically
in Figure 1.4.

The concentration gradient through the film is given by (c� c�)/d where d is the
film thickness and, comparing Eqs. (1.1) and (1.36), it is evident that kf¼D/d.
However, since d is generally unknown and can be expected to vary with the
hydrodynamic conditions, this formulation offers no real advantage over a direct
correlation in terms of the mass transfer coefficient. It is mainly for this reason that
external fluid film resistance is generally correlated in terms of a mass transfer
coefficient while internal resistances are correlated in terms of a diffusivity. For an
isolated spherical adsorbent particle in a stagnant fluid it may be easily shown (by
analogy with heat conduction) that:

kf � 2D=d; Sh ¼ kf d=D � 2 ð1:38Þ

Under flow conditions the Sherwood number (Sh) may be much greater than 2.0.
The relevant dimensionless parameters that characterize the hydrodynamics are the

Figure 1.4 Schematic diagram showing the form of concentration profile for an initially sorbate-
free particle exposed at time zero to a steady external fluid phase concentration or sorbate under
conditions of combined external fluid film and internal diffusion control.
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Schmidt number (Sc� g/rD) and the Reynolds number (Re � revd=g). Correla-
tions of the form:

Sh ¼ f ðRe; ScÞ ð1:39Þ

have been presented for various well-defined fluid–solid contacting patterns. For
example, for flow through a packed bed [33, 34]:

Sh ¼ 2:0þ 1:1 Re2=3Sc�0:3 ð1:40Þ
This correlation has been shown to be valid for both gases and liquids over a wide

range of flow conditions.

1.4
Experimental Methods

There are three distinct but related aspects to the study of diffusion: the investigation
of the elementary process at the molecular level, the study of tracer or self-diffusion,
and the measurement of transport diffusion. The first two involve measurements
under equilibrium conditions while the third type of study necessarily requires
measurements under non-equilibrium conditions. A wide variety of different
experimental techniques have been applied to all three classes of measurement; a
short summary is given in Table 1.1, in which the various techniques are classified
according to the scale of the measurement. Some of these methods are discussed in
detail in Part Four (Chapters 10–14).

The study of the elementary steps of diffusion requires measurement of the
movement of individual molecules and this can be accomplished only by spectro-
scopic methods. Nuclear magnetic resonance (NMR) and neutron scattering have
been successfully applied. NMR phenomena are governed by the interaction of the
magnetic dipole (or for nuclei with spin I > 1

2, the electric quadrupole) moments of
the nuclei with their surroundings. Information can therefore be obtained concern-
ing the spatial arrangement of individual molecules and the rate at which the
positions and orientations of the molecules are changing. In scattering experiments
with neutrons,molecularmotionmay be traced over distances of a fewA

�
ngstr€omsup

to the nanometer range. Such distances are, however, short comparedwith the length
scales required for the study of the overall diffusion process.

Diffusion in the strict sense canbe studied only over distances substantially greater
than the dimensions of the diffusing molecules. Such measurements fall into two
broad classes: self-diffusion measurements that are made by following the move-
ment of labeled molecules under equilibrium conditions and transport diffusion
measurements that are made by measuring the flux of molecules under a known
gradient of concentration. The �microscopic� equilibrium techniques (incoherent
QENS and PFG NMR) measure self-diffusion directly by determining the mean
square molecular displacement in a known time interval. The �macroscopic�
techniques generallymeasure transport diffusion at the length scale of the individual
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crystal by following either adsorption/desorption kinetics, under transient condi-
tions, or flow through a zeolite membrane, generally under steady-state conditions.
Such techniques can be adapted to measure self-diffusion by using an isotopically
labeled tracer. Single-crystal FTIR and single crystal permeance measurements can
be regarded as intermediate (mesoscopic) techniques sincemeasurements aremade
on an individual crystal. Recently, microscopic measurement of transport diffusion
has also become possible. In coherent QENS, the relevant information is extracted
from density fluctuations analogous to the situation in light scattering. In interfer-
ence microscopy (IFM) this information is acquired by monitoring the evolution of
intracrystalline concentration profiles.

In recent years it has become clear that the length scale at which intracrystalline
diffusion measurements are made can be important since the effect of structural
defects becomes increasingly important when the measurement scale spans many
unit cells. As a result, the diffusivity values derived frommacroscopicmeasurements
may be much smaller than those from microscopic measurements which approx-
imate more closely the behavior for an ideal zeolite crystal. Uniquely among the
techniques considered, PFG NMR offers the possibility of varying the length scale
from sub-micron to several microns (or even mm under favorable conditions), thus
allowing a direct quantitative assessment of the impact of structural defects. NMR

Table 1.1 Classification of experimental methods for measuring intracrystalline diffusion in
nanoporous solids. After References [35, 36].

Non-equilibrium Equilibrium

Transient Stationary

Macroscopic
Sorption/desorption Membrane permeation Tracer sorption/desorption
Frequency response (FR)
Zero length column (ZLC)

Effectiveness factor in
chemical reactions

Tracer ZLC (zero length column)

IR-FR
Positron emission profiling
(PEP)
Temporal product analysis
(TAP)
IR spectroscopy

Mesoscopic
IR microscopy (IRM) Single-crystal-permeation Tracer IR microscopy

Microscopic
Interference microscopy
(IFM)

Tracer IR micro-imaging
Pulsed field gradient NMR

IR micro-imaging (IRM) (PFG NMR)
Quasi-elastic neutron scattering
(QENS)
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methods are also applicable to the measurement of long-range (intercrystalline or
macropore) diffusion in an adsorbent particle. NMR labeling may also be applied to
tracer diffusionmeasurements, thus providing essentially the same information that
can be obtained from measurements with isotopically labeled molecules.

Figure 1.5 depicts the historical development of the study of intracrystalline
diffusion and shows how the stimulus provided by the earliest PFG NMR mea-
surements led to the introduction of a large spectrum of new experimental
techniques.

With the impressive increase of computer power, over the last few decades
molecular modeling and computer simulation have become powerful tools that
complement the direct measurement of diffusion. The unique option to �play� with
system parameters that, in reality, are invariable provides insights into the diffusion
mechanisms that are often inaccessible from �real� experiments. With the wide-
spread availability of very fast computers this approach, which is discussed in Part
Three (Chapters 7–9), has become increasingly popular. In assessing results derived
from molecular simulations it is, however, important not to lose sight of the
limitations of this approach.Our knowledge of repulsive forces remains rudimentary
and, for hindered diffusion, the impact of such forces is often dominant. As a result
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Figure 1.5 Measurement of zeolitic diffusion: historical development [37].
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minor errors in the assumed force field can lead to very large errors in the predicted
diffusivities, especially for diffusion in small pores. Direct experimental validation
therefore remains critically important.
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