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1.1
Introduction

In recent years research involving nanoparticles and nanoscale materials has gener-
ated a great deal of interest from scientists and engineers of nearly all disciplines.
This interest has been generated in large part by reports that a number of physical
properties including optical and magnetic properties, specific heats, melting points,
and surface reactivities are size-dependent. These size-dependent properties are
widely believed to be a result of the high ratio of surface to bulk atoms as well as the
bridging state they represent between atomic and bulk materials. In the nanoscale
regime, materials (especially metals and metal oxides) can be thought of as neither
atomic species which can be represented by well defined molecular orbitals, nor as
standard bulk materials which are represented by electronic band structures, but
rather by size-dependent broadened energy states. Because metallic particles are of
great importance industrially, an understanding of their properties from small clus-
ters to bulk materials is essential. Although these nanoscale colloidal metals are of
interest to scientists of many disciplines, methods for their preparation and chemi-
cal applications are primarily the focus of chemists.
Originally called gold sols, colloidal metals first generated interest because of

their intensive colors, which enabled them to be used as pigments for glass or ce-
ramics. Nanoparticulate metal colloids are generally defined as isolable particles be-
tween 1 and 50 nm in size that are prevented from agglomerating by protecting shells.
Depending on the protection shell used they can be redispersed in water (“hydrosols”)
or organic solvents (“organosols”). The number of potential applications for these colloi-
dal particles is growing rapidly because of the unique electronic structure of the nano-
sized metal particles and their extremely large surface areas. A considerable body of
knowledge has been gained about these materials throughout the last few decades, and
the reader is directed to the numerous books and review articles in the literature which
cover these subjects in detail [1–12, 19–26]. This contribution will be focused
towards presenting an overview of the synthetic methods used to prepare metallic
nanomaterials, factors influencing size and shape, and a survey of potential applica-
tions in materials science and biology. Although not covered here, the area of biodir-
ected syntheses is an emerging area of extreme interest [13–18].
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1 Synthetic Approaches to Metallic Nanomaterials

1.2
Wet Chemical Preparations

Nanostructured metal colloids have been obtained by both the so-called “top down”
and “bottom up” methods. A typical “top down” method for example involves the
mechanical grinding of bulk metals and subsequent stabilization of the resulting
nanosized metal particles by the addition of colloidal protecting agents [27, 28].
Metal vapor techniques have also provided chemists with a very versatile route for
the production of a wide range of nanostructured metal colloids on a preparative
laboratory scale [29–34]. Use of metal vapor techniques is limited because the opera-
tion of the apparatus is demanding and it is difficult to obtain a narrow particle size
distribution. The “bottom up” methods of wet chemical nanoparticle preparation
rely on the chemical reduction of metal salts, electrochemical pathways, or the
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Figure 1.1. Formation of nanostructured metal colloids via the
“salt reduction” method. (Adapted from Ref. [4].)
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1.2 Wet Chemical Preparations

controlled decomposition of metastable organometallic compounds. A large variety
of stabilizers, e.g., donor ligands, polymers, and surfactants, are used to control the
growth of the primarily formed nanoclusters and to prevent them from agglomerat-
ing. The chemical reduction of transition metal salts in the presence of stabilizing
agents to generate zerovalent metal colloids in aqueous or organic media was first
published in 1857 by Faraday [35], and this approach has become one of the most
common and powerful synthetic methods in this field [10, 11, 36]. The first repro-
ducible standard recipes for the preparation of metal colloids (e.g., for 20 nm gold
by reduction of [AuCl4

–] with sodium citrate) were established by Turkevich [1–3].
Based on nucleation, growth, and agglomeration he also proposed a mechanism for
the stepwise formation of nanoclusters which in essence is still valid. Data from
modern analytical techniques and more recent thermodynamic and kinetic results
have been used to refine this model as illustrated in Fig. 1.1 [31–38].
The metal salt is reduced to give zerovalent metal atoms in the embryonic stage

of nucleation [37]. These can collide in solution with further metal ions, metal
atoms, or clusters to form an irreversible “seed” of stable metal nuclei. Depending
on the difference of the redox potentials between the metal salt and the reducing
agent applied, and the strength of the metal–metal bonds, the diameter of the
“seed” nuclei can be well below 1 nm.
Nanostructured colloidal metals require protective agents for stabilization and to

prevent agglomeration. The two basic modes of stabilization which have been distin-
guished are electrostatic and steric (Fig. 1.2) [36]. Electrostatic stabilization [see Fig.
1.2(a)] involves the coulombic repulsion between the particles caused by the electri-
cal double layer formed by ions adsorbed at the particle surface (e.g., sodium citrate)
and the corresponding counterions. As an example, gold sols are prepared by the
reduction of [AuCl4

–] with sodium citrate [1–3]. By coordinating sterically demand-
ing organic molecules that act as protective shields on the metallic surface, steric
stabilization [Fig. 1.2(b)] is achieved. In this way nanometallic cores are separated

a

b

Figure 1.2. (a) Electrostatic stabilization of nanostructured
metal colloids. (Scheme adapted from Ref. [36].) (b) Steric stabi-
lization of nanostructured metal colloids. (Scheme adapted
from Ref. [36].)
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1 Synthetic Approaches to Metallic Nanomaterials

from each other, and agglomeration is prevented. The main classes of protective
groups selected from the literature are: polymers and block copolymers [45–48]; P,
N, S donors (e.g., phosphines, amines, thioethers) [6, 65–90]; solvents such as THF
[6, 91], THF/MeOH [92], or propylene carbonate [93]; long chain alcohols [49–64,
94]; surfactants [6, 7, 9, 21, 22, 93, 95–106]; and organometallics [107–110]. In gen-
eral, lipophilic protective agents give metal colloids that are soluble in organic
media (“organosols”) while hydrophilic agents yield water-soluble colloids (“hydro-
sols”). In Pd organosols stabilized by tetraalkylammonium halides the metal core is
protected by a monolayer of the surfactant coat (Fig. 1.3) [111].
Metal hydrosols, in contrast, are stabilized by zwitterionic surfactants which are

able to self-aggregate, and are enclosed in organic double layers. After the applica-
tion of uranylacetate as a contrasting agent, the transmission electron micrographs
show that the colloidal Pt particles (average size= 2.8 nm) are surrounded by a dou-
ble layer zone of the zwitterionic carboxybetaine (3–5 nm). The hydrophilic head group
of the betaine interacts with the charged metal surface and the lipophilic tail is asso-
ciated with the tail of a second surfactant molecule, resulting in the formation a hydro-
philic outer sphere (see Fig. 1.4) [112]. Pt or Pt/Au particles can be hosted in the hydro-
phobic holes of nonionic surfactants, e.g., polyethylene monolaurate [113, 114].

Metal Core

Stabilizing Shell e.g. NR4+Br-

∆

dTEM

dSTM

∆ = (dTEM - dSTM)/2

Figure 1.3. Differential transmission electron microscopy/
scanning transmission electron microscopy (TEM/STEM)
study of a Pd organosol showing that the metal core
(size = dTEM) is surrounded by a monolayer of the surfactant
(thickness D= (dTEM – dSTM)2). (Adapted from Ref. [9].)

1.3
Reducing Agents

The type of reducing agent employed has been found to greatly affect the resulting
particles. It has been experimentally verified in the case of silver that stronger reduc-
ing agents produce smaller nuclei in the “seed” [37]. During the so-called “ripening”
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1.3 Reducing Agents

process these nuclei grow to yield colloidal metal particles in the size range of 1–50
nm which have a narrow size distribution. It was assumed that the mechanism for
the particle formation is an agglomeration of zerovalent nuclei in the “seed” or –
alternatively – collisions of already formed nuclei with reduced metal atoms. The
stepwise reductive formation of Ag3

+ and Ag4
+ clusters by spectroscopic methods

has been followed by Henglein’s group [38]. Their results strongly suggest that an
autocatalytic pathway is involved in which metal ions are adsorbed and successively
reduced at the zerovalent cluster surface. The formation of colloidal Cu protected by
cationic surfactants (NR4

+) has been investigated by in situ X-ray absorption spec-
troscopy which demonstrated the formation of an intermediate Cu+ state prior to
the nucleation of the particles [41]. It is now generally accepted that the size of the
resulting metal colloid is determined by the relative rates of nucleation and particle
growth, although the processes taking place during nucleation and particle growth
cannot be analyzed separately.
The salt reduction method has the main advantage that in the liquid phase it is

reproducible and it allows colloidal nanoparticles with a narrow size distribution to
be prepared on the multigram scale. The classical Faraday route via the reduction of
[AuCl4]

– with sodium citrate for example, is still used to prepare standard 20-nm
gold sols for histological staining applications [1, 115]. Wet chemical reduction pro-
cedures have been applied in the last 20 years or so to combine practically all transi-
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Figure 1.4. (a) TEM micrographs of colloidal
Pt particles (single and aggregated, average
core size = 2.8 nm) stabilized by carboxybetaine
12 (3–5 nm, contrasted with uranylacetate
against the carbon substrate). (b) Schematic

model of the hydrosol stabilization by a double
layer of the zwitterionic carboxybetaine
12 (= lipophilic alkyl chain; vvvvv. = hydrophilic,
zwitterionic head group). (Adapted from Ref. [4].)



1 Synthetic Approaches to Metallic Nanomaterials

tion metals with different types of stabilizers, and the whole range of chemical re-
ducing agents has successfully been applied. In 1981, Schmid et al. established the
“diborane-as-reductant route” for the synthesis of Au55(PPh3)12Cl6 (1.4 nm), a full
shell (“magic number”) nanocluster stabilized by phosphine ligands [57–72]. Clus-
ters of Au55 were uniformly formed when a stream of B2H6 was carefully introduced
into a AuIII ion solution. The “diborane route” for M55L12Cln nanoclusters was
recently reviewed by Finke et al. [11]. Bimetallic nanoclusters that were made acces-
sible by this method have been thoroughly characterized [65–80]. The phosphane
ligands may be exchanged in the Au55 nanoclusters quantitatively using silsesquiox-
anes, which causes important changes in the physical and chemical behavior of the
gold clusters [80]. The synthesis and general chemistry of nanosized silica-coated
metal particles has been elaborated by Mulvaney et al. [80]. The “alcohol reduction
process” described by Hirai and Toshima et al. [10, 45–48] is widely applicable to the
preparation of colloidal precious metals stabilized by organic polymers such as
poly(vinylpyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and poly(methylvinyl ether).
Alcohols containing a-hydrogen atoms are oxidized to the corresponding carbonyl
compound (e.g., methanol to formaldehyde) during the salt reduction. The method
for preparing bimetallic nanoparticles via the coreduction of mixed ions has been
evaluated in a recent review [10]. Recently, it has been demonstrated that through
the appropriate choice of reduction temperature and acetate ion concentration,
ruthenium nanoparticles prepared by the reduction of RuCl3 in a liquid polyol could
be monodispersely prepared with sizes in the 1–6 nm range [116]. Hydrogen has
been used as an efficient reducing agent for the preparation of electrostatically stabi-
lized metal sols and of polymer-stabilized hydrosols of Pd, Pt, Rh, and Ir [117–121].
Moiseev’s giant Pd cluster [Fig. 1.5(a)] [81–86], Finke’s polyoxoanion, and tetrabutyl-
ammonium-stabilized transition-metal nanoclusters [Fig. 1.5(b)] [11, 40, 122–126]
were also prepared by the hydrogen reduction pathway.
Finke et al. have recently reviewed the characterization of Moiseev’s “giant” cat-

ionic Pd clusters [81–86] [Fig. 1.5(a)] [idealized formula Pd»561L»60(OAc)»180 (L= phe-
nanthroline, bipyridine)] and their catalytic properties [11]. The results of a combina-
tion of modern instrumental analysis methods applied to Finke’s nanoclusters have
also recently been carefully discussed [11].
Using CO, formic acid or sodium formate, formaldehyde, and benzaldehyde as

reductants, colloidal Pt in water [2, 127] was obtained [128]. Silanes have been found
to be effective for the reductive preparation of Pt sols [129, 130]. Duff, Johnson, and
Baiker et al. have successfully introduced tetrakis(hydroxymethyl)phospho-
niumchloride (THPC) as a reducing agent, which allows the size- and morphology-
selective synthesis of Ag, Cu, Pt, and Au nanoparticles from their corresponding
metal salts [131–136]. Further, hydrazine [137], hydroxylamine [138], and electrons
trapped in, for example, K+[(crown)2K]

– [139], have also been successfully applied as
reductants. In addition, BH4

– has been found to be a powerful and valuable reagent
for the salt reduction method. A disadvantage, however, is that transition metal bor-
ides are often found along with the nanometallic particles [140, 141]. Tetraalkylam-
monium hydrotriorganoborates [6, 7, 9, 21, 95–97] offer a wide range of applications
in the wet chemical reduction of transition metal salts. The reductant [BEt3H

–] is
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a

b

Figure 1.5. (a) Idealized model of Moiseev’s “giant palladium
cluster” Pd»561Phen»60(OAc)»180 (Phen = phenanthroline)
(adapted from Ref. [4]). (b) Idealized model of a Finke type Ir(0)
nanocluster P2W15Nb3O62

9– – and Bu4N
+-stabilized Ir(0)»300.

(Adapted from Ref. [4].)

combined with the stabilizing agent (e.g. NR4
+) in this case. The surface-active NR4

+

salts are formed immediately at the reduction center at high local concentration and
prevent particle aggregation. Trialkylboron is recovered unchanged from the reac-
tion and there are no borides contaminating the products. Most recently it has been
demonstrated that the chain length of the alkyl group in the tetraalkylammonium
plays a critical role in the stabilization of various metal colloids [142].

MXm + NR4(BEt3H) ��! Mcolloid + m NR4X + m BEt3 + m/2H2 " (1)

where M= metals of groups 6–11; X =Cl, Br; m= 1,2,3; and R= alkyl, C6–C20. The
NR4

+-stabilized metal “raw” colloids as synthesized typically contain 6–12 wt% of
metal. “Purified” transition metal colloids containing ca. 70–85 wt% of metal are
obtained by work-up with ethanol or ether and subsequent reprecipitation by a sol-
vent of different polarity (see Tab. 9 in Ref. [6]). When NR4X is coupled to the metal
salt prior to the reduction step the pre-preparation of [NR4

+ BEt3H
–] can be avoided.

Transition metal nanoparticles stabilized by NR4
+X– can also be obtained from

NR4X-transition metal double salts. A number of conventional reducing agents may
be applied since the local concentration of the protecting group is sufficiently high
to give Eq. (2) [7, 21].

(NR4)w MXvYw + v Red ��! Mcolloid + v RedX + w NR4Y (2)

where M= metals; Red=H2, HCOOH, K, Zn, LiH, LiBEt3H, NaBEt3H, KBEt3H;
X,Y =Cl, Br; v, w= 1–3 and R= alkyl, C6–C12.
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1 Synthetic Approaches to Metallic Nanomaterials10

The scope and limitations of this method have been evaluated in a recent review
[11]. Isolable metal colloids of the zerovalent early transition metals which are stabi-
lized only with THF have been prepared via the [BEt3H

–] reduction of the preformed
THF adducts of TiBr4, [Eq. (3)] ZrBr4, VBr3, NbCl4, and MnBr2 [Eq. (3)].

x · [TiBr4 · 2 THF + x · 4K[BEt3H] THF, 2h, 20 RC (3)
����������!

[Ti · 0.5 THF]x + x · 4 BEt3 + x · 4KBr# + x · 4H2"

The results are summarized in Tab. 1.1.

Table 1.1. THF-stabilized organosols of early transition metals.

Product Starting material Reducing agent T
(*C)

T
(h)

Metal content
(%)

Size
(nm)

[Ti · 0.5THF] TiBr4 · 2THF K[BEt3H] rt 6 43.5 (<0.8)
[Zr · 0.4THF] ZrBr4 · 2THF K[BEt3H] rt 6 42 –
[V · 0.3THF] VBr3 · 3THF K[BEt3H] rt 2 51 –
[Nb . 0.3THF] NbCl4 · 2THF K[BEt3H] rt 4 48 –
[Mn · 0.3THF] MnBr2 · 2THF K[BEt3H] 50 3 70 1–2.5

Detailed studies of [Ti · 0.5 THF] [91] show that it consists of Ti13 clusters in the
zerovalent state, stabilized by six intact THFmolecules (Fig. 1.6).

OO

O

O

O

O

Ti

Figure 1.6. Ti13 cluster stabilized by six THF-O atoms in an
octahedral configuration [7].
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Figure 1.7. Organosols stabilized by tetrahydrothiophene. For
M=Ti, V: decomposition. For M= Mn, Pd, Pt: stable colloids.



1.3 Reducing Agents

By analogy, [Mn · 0.3 THF] particles (1–2.5 nm) were prepared [143] and the phys-
ical properties studied [144]. In the case of Mn, Pd, and Pt organosols the THF in
Eq. (3) was successfully replaced by tetrahydrothiophene (THT); but attempts to sta-
bilize Ti and V this way led to decomposition (Fig. 1.7) [7].
Figure 1.8 gives an overview of the [BEt3H

–] method. The advantages of this
method may be summarized as follows:

THF-stabilized nanometals

NR4
+-stabilized nanometals

Nanometal powders

Ti
<0.8

Cr
3.0

Mn
1-2.5

Fe
3.0

Co
2.8

Ni
2.8

Cu
8.3

Ag
2-13

Au
10

Pd
2.5

Pt
2.8

Ru
1.3

Mo
2-3

NbZr

Re

Rh
2.1

Ir
1.5

V

Os

Figure 1.8. Nanopowders and nanostructured metal colloids
accessible via the [BEt3H

–] reduction method (including the
mean particle sizes obtained). (Adapted from Ref. [7].)

. The method is generally applicable to salts of metals in groups 4–11 in the
periodic table.

. It yields extraordinarily stable metal colloids that are easy to isolate as dry
powders.

. The particle size distribution is nearly monodisperse.

. Bimetallic colloids are easily accessible by coreduction of different metal
salts.

. The synthesis is suitable for multigram preparations and easy to scale up.

One of the drawbacks of thismethod, however, is that the particle size of the resulting
sols cannot be varied by altering the reaction conditions. Using betaines instead of NR4

+

salts as the protecting group in Eq. (1), highly water-soluble hydrosols, particularly those
of zerovalent precious metals, were made accessible. A wide variety of hydrophilic sur-
factants may be used in Eq. (2) [7, 21, 96]. Reetz and Maase et al. have reported a new
method for the size- and morphology-selective preparation of metal colloids using
tetraalkylammonium carboxylates of the type NR4

+R’CO2
– (R = octyl, R¢ = alkyl, aryl,

H) both as the reducing agent and the stabilizer [Eq. (4)] [145–147].

M+ + R4N
+ R¢CO2– 50 – 90 RC M0 (R4 NR¢CO2)x + CO2 + R¢-R (4)

��������!
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1 Synthetic Approaches to Metallic Nanomaterials

where R = octyl, R¢= alkyl, aryl, H. The resulting particle sizes were found to corre-
late with the electronic nature of the R¢ group in the carboxylate. Electron donors
produce small nanoclusters while electron-withdrawing substituents R¢, in contrast,
yield larger particles. For example, Pd particles of 2.2 nm size were found when
Pd(NO3)2 was treated with an excess of tetra(n-octyl)ammonium-carboxylate bearing
R¢= (CH3)3CCO2

– as the substituent. The particle size was found to be 5.4 nm with
R¢=Cl2CHCO2– (an electron-withdrawing substituent). Bimetallic colloids of the fol-
lowing were obtained with tetra(n-octyl) ammonium formiate as the reductant:
Pd/Pt (2.2 nm), Pd/Sn (4.4 nm), Pd/Au (3.3 nm), Pd/Rh (1.8 nm), Pt/Ru (1.7 nm),
and Pd/Cu (2.2 nm). The shape of the particles was also found to depend on the
reductant: with tetra(n-octyl) ammonium glycolate reduction of Pd(NO3)2 a signifi-
cant amount of trigonal particles were detected in the resulting Pd colloid. Recent
work in our group has shown that organoaluminum compounds can be used for the
“reductive stabilization” of mono- and bimetallic nanoparticles [see Eq. (5) and
Tab. 1.2] [107–108].

Table 1.2. Mono- and bimetallic nanocolloids prepared via the organo-aluminum route.

Metal salt Reducing agent Solvent
Toluene

Conditions Product Metal
content
wt.%

Particle
size

g/mmol g/mmol ml t [*C] t [h] m [g] F [nm]

Ni(acac)2 0.275/1 Al(i-but)3 0.594/3 100 20 10 0.85 Ni: 13.8 2–4

Fe(acac)2 2.54/10 Al(me)3 2.1/30 100 20 3 2.4 n.d.

RhCl3 0.77/3.1 Al(oct)3 4.1/11.1 150 40 18 4.5 Rh: 8.5
Al: 6.7

2–3

Ag-decanoate 9.3/21.5 Al(oct)3 8.0/21.8 1000 20 36 17.1 Ag: 11.8
Al: 2.7

8–12

Pt(acac)2 1.15/3 Al(me)3 0.86/7.6 150 20 24 1.45 Pt: 35.8
Al: 15.4

2.5

PtCl2 0.27/1 Al(me)3 0.34/3 125 40 16 0.47 Pt: 41.1
Al: 15.2

2.0

Pd(acac)2
Pt(acac)2

0.54/1.8
0.09/0.24

Al(et)3 0.46/4 500 20 2 0.85 Pd: 22
Pt: 5.5
Al: 12.7

3.2

Pt(acac)2
Ru(acac)3

7.86/20
7.96/20

Al(me)3 8.64/120 400 60 21 17.1 Pt: 20.6
Ru: 10.5
Al: 19.6

1.3

Pt(acac)2
SnCl2

1.15/2.9
0.19/1

Al(me)3 0.86/12 100 60 2 1.1 Pt: 27.1
Sn: 5.2
Al: 14.4

n.d.
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1.3 Reducing Agents

   Toluene
MXn    +    AlR3                                                                                              +    [R2Alacac]

M = Metals of Groups 6-11 PSE

X = Halogen, Acetylacetonate n = 2-4

R = C1-C8

Particle sizes 1-12nm

Al acac

CH3

Al CH3
acac

Al

acac

CH3

Alacac
CH3

Al
CH3

acac

AlCH3
acac

-Alkyl

(5)

where M= metals of groups 6–11; X = halogen, acetylacetonate, n= 2–4; R =C1–C8-
alkyl; particle sizes 1–12 nm.
Colloids of zerovalent elements of groups 6–11 of the periodic table (and also of

tin) may be prepared according to Eq. (5), in the form of stable, isolable organosols.
The analytical data available suggest that a layer of condensed organoaluminum spe-
cies protects the transition metal core against aggregation as visualized in Eq. (5).
The exact nature of the “backbone” of the colloidal organoaluminum protecting
agent has not yet been completely established.
Quantitative protonolysis experiments have detected the presence of unreacted

organoaluminum groups (e.g., Al–CH3, Al–C2H5) from the starting material which
are still present in the stabilizer. These active Al–C bonds have been used for con-
trolled protonolysis by long-chain alcohols or organic acids (“modifiers”) to give al-
alkoxide groups in the stabilizer [Eq. (6)].

  + R-OH (Modifier)

             - CH4

Al acac

CH3

Al CH3
acac

Al

acac

CH3

Alacac
CH3

Al
CH3

acac

AlCH3
acac

Al acac

OR

Al OR
acac

Al

acac

OR

Alacac
OR

Al
RO

acac

AlRO
acac

(6)

Modifiers: alcohols, carbonic acids, silanols, sugars, polyalcohols, polyvinylpyrro-
lidone, surfactants, silica, alumina, etc.
The dispersion characteristics of the original sol can be tailored by this “modifica-

tion” [Eq. (6)] of the organoaluminum protecting shell. A wide variety of dissolubili-
ties of the colloidal metals in hydrophobic and hydrophilic media (including water)
has been achieved this way. The active Al–C bonds in the colloidal protecting shell

13



1 Synthetic Approaches to Metallic Nanomaterials

can react with inorganic surfaces bearing –OH, which opens new ways for the het-
erogeneous catalyst preparation. The particle size of the metal core is not altered
during this modification process (Fig. 1.9) [109].

Modifier
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Particle size distribution:modified Pt/Ru-colloidParticle size distribution:(CH3)2-Alacac Pt/Ru-colloid
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Figure 1.9. Size conservation of colloidal Pt/Ru particles under
the hydrophilic modification of the (CH3)n–Alacac protecting
shell using polyethyleneglycol-dodecylether.

1.4
Electrochemical Synthesis

Since 1994 this very versatile preparation route for nanostructured mono- and bime-
tallic colloids has been further developed by Reetz and his research group [8, 98, 99].
The overall process of electrochemical synthesis [Eq. (7)] can be divided into six ele-
mentary steps (see Fig. 1.10).

Anode: Mbulk ! Mn+ + ne–

Cathode: Mn+ + ne– + stabilizer ! Mcoll/stabilizer (7)

Sum: Mbulk + stabilizer ! Mcoll/stabilizer

1. Oxidative dissolution of the sacrificial Metbulk anode
2. Migration of Metn+ ions to the cathode
3. Reductive formation of zerovalent metal atoms at the cathode
4. Formation of metal particles by nucleation and growth
5. Arrest of the growth process and stabilization of the particles by colloidal pro-

tecting agents, e.g., tetraalkylammonium ions
6. Precipitation of the nanostructured metal colloids.

Advantages of the electrochemical pathway are that contamination with bypro-
ducts resulting from chemical reduction agents is avoided, and that the products are
easily isolated from the precipitate. The electrochemical preparation also provides
size-selective particle formation. Experiments using Pd as the sacrificial anode in
the electrochemical cell to give (C8H17)4N

+Br+-stabilized Pd(0) particles indicate that
the particle size depends on the current density applied: high current densities led
to small Pd particles (1.4 nm); low current densities, in contrast, gave larger particles
(4.8 nm) [98]. As was seen in a careful analysis of tetraalkylammonium-stabilized Pd
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1.4 Electrochemical Synthesis

Figure 1.10. Electrochemical formation of NR4
+Cl–-stabilized

nanometal. (Adapted from Ref. [9].)

and Ni with a combination of transmission electron microscopy (TEM) and small
angle X-ray scattering (SAXS), particle size is not controlled by a single cause but
rather can be adjusted by varying the following parameters:

. The distance between the electrodes

. The reaction time and temperature

. The polarity of the solvent.

Through the use of electrochemical synthesis nearly monodisperse Pd(0) particles
with sizes between 1 and 6 nm can be obtained. It was also shown that the size of
NR4

+-stabilized Ni(0) particles [100] can be adjusted at will. The electrochemical
method [98–105] [Eq. (7)] has been successfully applied to prepare a number of
monometallic organosols and hydrosols, e.g., of Pd, Ni, Co, Fe, Ti, Ag, and Au on a
scale of several hundred milligrams (yields >95%). Using the electrochemical path-
way, solvent-stabilized (propylene carbonate) Pd particles (8–10 nm) have also been
obtained [93]. If two sacrificial Metbulk anodes are used in a single electrolysis cell,
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bimetallic nanocolloids (Pd/Ni, Fe/Co, Fe/Ni) are accessible [103]. In the cases of Pt,
Rh, Ru, and Mo, which are anodically less readily soluble, the corresponding metal
salts were electrochemically reduced at the cathode (see lower part of Fig. 1.10 and
Tab. 1.3).

Table 1.3. Electrochemically prepared metallic colloids

Metal salt d(nm) Element analysis

PtCl2
PtCl2
RhCl3 · x H2O
RuCl3 · x H2O
OsCl3
Pd(OAc)2
Mo2(OAc)4
PtCl2 + RuCl3 · xH20

2.5b

5.0c

2.5
3.5
2.0
2.5
5.0
2.5

51.21% Pt
59.71% Pt
26.35% Rh
38.55% Ru
37.88%Os
54.40% Pd
36.97% Mo
41.79% Pt + 23.63% Rhd

a Based on stabilizer-containing material.
b Current density: 5.00 mA cm-2.
c Current density: 0.05 mA cm-2.
d Pt-Ru dimetallic cluster.

Tetraalkylammonium-acetate was used both as the supporting electrolyte and the
stabilizer in a Kolbe electrolysis at the anode [see Eq. (8)] [104].

Cathode: Pt2+ + 2e ��! Pt0 (8)
Anode: 2CH3CO2 ��! 2CH3CO2 + 2e–

Bimetallic nanocolloids can be prepared by combining the electrochemical meth-
ods described in Eqs. (7) and (8) (see Tab. 1.4) [104].

Table 1.4. Bimetallic colloids prepared electrochemically

Anode Metal salt d(nm) Stoich. Energy disperse X-ray
analysis

Sn
Cu
Pd

PtCl2
Pd(OAc)2

a

PtCl2

3.0
2.5
3.5

Pt50Sn50
Cu44Pd56
Pd50Pt50

a Electrolyte: 0.1M [(n-octyl)4N]OAc/THF.

By modifying the electrochemical method, the synthesis of layered bimetallic
nanocolloids (e.g., Pt/Pd) was achieved [100, 105]. A preformed (Oct)4NBr-stabilized
Pt colloid core (size: 3.8 nm) was electrolyzed in 0.1M (Oct)4NBr/THF solution with
Pd as the sacrificial anode (Fig. 1.11).
The preformed Pt core may be regarded as a “living metal polymer” on which the

Pd atoms are deposited to give “onion-type” bimetallic nanoparticles (5 nm).
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Pt

Pd

Pt

_+

Pt-Cathode Pd-Anode

Electrolysis Cell

Electrolyte

(0.1 M Oct4NBr/THF 

+ Oct4Br/Pt-Colloid)

Figure 1.11. Modified electrolysis cell for the preparation of
layered bimetallic Pt/Pd nanocolloids. (Adapted from Ref. [100].)

1.5
Decomposition of Low-Valency Transition Metal Complexes

Short-lived nucleation particles of zerovalent metals in solution which may be stabi-
lized by colloidal protecting agents are formed by decomposition of low-valency or-
ganometallic complexes and several organic derivatives of the transition metals
under the action of heat, light, or ultrasound. Thermolysis [148–153], for example,
leads to the rapid decomposition of Co carbonyls to give colloidal Co in organic solu-
tions [148, 149]. Thermolysis of labile precious metal salts in the absence of stabili-
zers yields colloidal Pd, Pt, and bimetallic Pd/Cu nanoparticles [150] with a broad
size distribution. In the presence of stabilizing polymers, such as PVP, these results
were greatly improved [151]. Recently, heating in a simple household microwave
oven was proposed to prepare nanosized metal particles and colloids [152, 153]. The
electromagnetic waves heat the substrate uniformly, leading to more homogeneous
nucleation and a shorter aggregation time.
Sonochemical decomposition methods have been successfully developed by Sus-

lick et al. [154] and Gedanken et al. [155–157] and have yielded Fe, Mo2C, Ni, Pd,
and Ag nanoparticles in various stabilizing environments.
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By the controlled chemical decomposition of zerovalent transition metal complex-
es on the addition of CO or H2 in the presence of appropriate stabilizers, isolable
yields of colloidal product in multigram amounts can be prepared [87–90, 158–168].
Bradley and Chaudret et al. [87–90, 159–165] have demonstrated the use of low-
valency transition metal olefin complexes as a very clean source for the preparation
of nanostructured mono- and bimetallic colloids. Micelles, inverse micelles, and
encapsulation methods have also been successfully employed for the preparation of
nanoparticulate colloids [38, 39, 94]. It is also worth mentioning that, although
beyond the focus of this article, a number of nanoparticulate metal oxide systems
have been successfully developed [7, 167–172].
The radiolytic synthesis of mixed Au(III)/Pd(II) solutions has been studied at dif-

ferent dose rates [173]. It was found that at low dose rates, a bilayered cluster with
an Au core/Pd shell predominates due to intermetal electron transfer from Pd
atoms to Au ions, resulting first in the reduction of the latter to form the core of the
particle and then in Pd ion reduction to form the shell. However, at high dose rates
when the ion reduction is faster than a possible intermetal electron transfer, genu-
ine alloyed clusters are formed.

1.6
Particle Size Separations

When the particle size deviates less than 15% from the average value, metal colloid
sols are generally addressed as “monodisperse.” Histograms with a standard devia-
tion r from the mean particle size of approximately 20% are described as showing a
“narrow size distribution.” The kinetics of the particle nucleation from atomic units
and of the subsequent growth process cannot be observed directly by physical meth-
ods. The two primary tools available to the preparative chemist to control the particle
size in practice are size-selective separation [51, 174, 175] and size-selective synthesis
[41–56, 90, 135–137, 165–181].
So-called size-selective precipitation (SPP) was predominantly developed by Pileni

[50]. Monodisperse silver particles (2.3 nm, r = 15%) were precipitated from a poly-
disperse silver colloid solution in hexane by the addition of pyridine in three iterative
steps. Recently the two-dimensional “crystallization” of truly monodisperse Au55
clusters has been reported by Schmid et al. [174]. Chromatographic separation
methods have thus far proven unsuccessful because the colloid was decomposed
after the colloidal protecting shell had been stripped off [145]. CVlfen and Pauck
have developed size-selective ultracentrifuge separation of Pt colloids [175]. How-
ever, although this elegant separation method gives true monodisperse metal col-
loids, it still provides only milligram-scale samples. Turkevich et al. were the first to
describe size-selective colloid synthesis [1, 2]. They were able to vary the particle size
of colloidal Pd between 0.55 and 4.5 nm using the salt reduction method. The cru-
cial parameters were the amount of the reducing agent applied, and the pH value.
According to the literature on the process of nucleation and particle growth, the
essential factors which control the particle size are the strength of the metal–metal
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bond [48], the molar ratio of metal salt, colloidal stabilizer, reduction agent [1, 128,
135, 176–193], the extent of conversion or the reaction time [128], the temperature
applied [1, 177, 189], and the pressure [177]. The preparation of nearly monodisperse
nanostructured metal colloids using the salt reduction pathway is well documented
in the literature. The “control,” i.e., the variation of particle sizes (and shapes), in
wet chemical colloid synthesis in practice is left to the intuition of the chemist. At
present the most rational method for selecting the particle size is offered by the elec-
trochemical synthesis of Reetz and coworkers. The authors have obtained at will
almost monodisperse samples of colloidal Pd and Ni between 1 and 6 nm using vari-
able current densities and suitable adjustment of further essential parameters
[98–105]. The resulting particle size in the thermal decomposition method depends
on the heat source (see Tab. 1.5) [154]. Size control has also been reported for the
sonochemical decomposition method and c-radiolysis [173, 194, 195].

Table 1.5. Platinum colloids prepared by thermal decomposition methods. (From Ref. [153]).

No.a PVPb Na0Hb Average
diameter
(nm)

Standard
deviation
(nm)

Relative
standard
deviation

1 10 0 3.8 0.57 0.15
2 20 0 3.4 0.56 0.16
3 50 0 3.0 0.50 0.17
4 100 0 2.9 0.47 0.16
5 50 2 3.0 0.49 0.16
6 50 4 2.6 0.48 0.18
7 50 6 1.9 0.33 0.17
8 50 8 2.0 0.32 0.16
9 50 10 2.1 0.40 0.19
10 50 0 3.1 1.08 0.35
11 50 8 1.8 0.55 0.31
12 50 0 2.7 0.74 0.27
13 50 8 1.1 0.31 0.28

a Nos. 1–9 were prepared by microwave dielectric heating without
stirring; nos. 10 and 11 were prepared without stirring, and nos. 12 and
13 were prepared with stirring by oil bath heating.
b Data refer to the molar ratios of PVP (as a monomeric unit) and
NaOH to Pt respectively.

The domain of preparation methods using constrained environments affords con-
trol of the metal particle shape via the preformation of size and the morphology of
the products in nano-reaction chambers [49–64]. Recently, the controlled tempera-
ture-induced size and shape manipulation of 2- to 6-nm Au particles encapsulated
in alkanethiolate monolayers has been reported [62]. The use of near-infrared laser
light has induced an enormous increase in the size of thiol-passivated Au particles
up to ca. 200 nm [62]. A new medium-energy ion scattering (MEIS) simulation pro-
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gram has successfully been applied to the composition and average particle size
analysis of Pt-Rh/a–Al2O3[63].

1.7
Potential Applications in Materials Science

It is expected that metal nanoparticles and their assemblies will have numerous ap-
plications in materials science. It has been demonstrated that physical properties
including magnetic and optical properties, melting points, specific heats, and sur-
face reactivity are size-dependent. Quantum size effects are related to the “dimen-
sionality” of a system in the nanometer range. “Zero-dimensional” metal particles
might still comprise hundreds of atoms. One-dimensional nanoparticle arrange-
ments (cluster wires) are of potential practical interest as semiconducting nanopaths
for applications in nanoelectronics. One-dimensional particle arrangements may be
induced through host templates. Using vacuum or electrophoretic methods Schmid
et al. [196–198] were able to fill the parallel channels of nanoporous alumina mem-
branes with chains/rows of 1.4-nm Au particles giving one-dimensional “quantum
wires” consisting of insulated 20- to 100-Au55 clusters in a helical array. The diame-
ter of the nanowire could be controlled by varying the pore size.
Interestingly, 1.4-nm Au particles were found to arrange themselves into a linear

row when attached to single-stranded DNA oligonucleotides [199, 200]. Driven by
the technological significance associated with such architectures, the fabrication of
ordered two-dimensional nanoparticle arrays has been successfully achieved by sev-
eral research groups whose work has recently been reviewed [201]. Planar arrays of
uniform metal nanoparticles would allow the design of new “supercomputers” with
a superior data storage capacity. Langmuir–Blodgett films of nanometal systems
have frequently been studied in this respect. Starting with nanoparticles of defined
nuclearity, two-dimensional lattices of thiolized Au55, Pd561, and Pd1415 have been
made [202]. Recently, the first successful preparation of two-dimensional hexagonal
and cubic lattices of Au55 nanoparticles by self-assembly on polymer films was
reported [174]. Simply dipping polyethylenimine-modified surfaces into aqueous so-
lutions of acid-functionalized Au55 cluster generates the Au55 monolayers shown in
Fig. 1.12.
The interactions between the nanoparticles and the surface are obviously strong

enough to prevent mechanical removal. Whereas the hexagonal form shown in Fig.
12 (a) is normal for an ordered monolayer, the cubic orientation seen in Fig. 12 (b) is
unprecedented. Most of the work published on organized nanometal structures is
focused on gold particles and sulfur-containing groups in the various ligands [203–
208]. Schiffrin et al. have achieved the self-organization of nanosized gold particles
using NR4

+X surfactants [209]. Ramos et al. have recently reported the surfactant-
mediated two-dimensional crystallization of colloidal crystals [210]. A potential new
route to self-assembly of ordered colloidal structures is through the use of attractive
Coulomb interactions between colloidal structures and surfactant structures. Nano-
structured palladium clusters, stabilized by a monomolecular coat of tetraalkylam-
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a) b)

10 nm10 nm

Figure 1.12. Au55 monolayers showing a hexagonal (a) and a
cubic (b) structure. The insert in (a) shows single clusters in the
hexagonal form. (Adapted from Ref. [174].)

monium halide surfactants, self-assemble on carbon surfaces in an ordered manner
with the formation of hexagonal close packed (hcp) structures [211–215].
The self-organization of magnetic nanosized cobalt particles was studied by Pile-

ni’s group [216, 217]. A comparison of the magnetic properties of deposited cobalt
nanoparticles with those dispersed in a solvent indicates a collective flip of magneti-
zation of adjacent particles when they are self-assembled. Mulvaney et al. have
described two-dimensional and three-dimensional assemblies of metal core–silica
shell nanoparticles in a recent review article [218]. A feature article by Balazs et al.
[219] outlines how solid additives can be used to tailor the morphology of binary
mixtures containing nanoscopic particles and thereby control the macroscopic prop-
erties (e.g., the mechanical integrity) of composites. In addition, computer-aided
design has been employed to establish how self-assembled nanostructures can be
induced to form arbitrary functional designs on surfaces [220]. Bifunctional spacer
molecules such as diamines have been used in attempts to link nanoparticles three-
dimensionally [221]. The multilayer deposition of particle arrays on gold has been
successfully achieved via the sequential adsorption of dithiol and near-monodisperse
nanometal or CdS particles.
Several monometal, bimetal, and metal-semiconductor superlattices have been

prepared by dipping a gold substrate into the respective solutions with intermediate
steps involving washing and drying [222]. The stepwise three-dimensional assembly
of layered gold nanoparticles in porous silica matrices has also been reported [223].
A different field of technological interest stems from the high spin density of

nanostructured magnetic metals of the Fe, Co, Ni series [224–225]. THF-stabilized
Mn(0) particles which exhibit superparamagnetism below 20K were described as the
first example of an antiferromagnetic metal colloid [226].
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New strategies utilizing DNA as a construction material for the generation of bio-
metallic nanostructures have made it possible to develop larger “nanotechnology
devices” (<100 nm) for microelectronic photolithographic applications. DNA is
regarded as a promising construction material for the selective positioning of molec-
ular devices because of its recognition capabilities, physicochemical stability, and
mechanical rigidity. Seeman was the first to propose DNA for the precise spatial
arrangement of three-dimensional networks [227]. Assemblies of DNA-derivatized
gold colloids were recently prepared via the DNA hybridization-based self-organiza-
tion pathway and the resulting defined arrangements of nanometal particles have
real applications in laser technology [228–231]. For example, Alivisatos et al. [199]
have obtained defined mono-adducts from commercially available 1.4-nm gold clus-
ters where one reactive maleimido group is attached to every particle. These were
coupled with thiolated 18-mer oligonucleotides in order to add an individual “codon”
sequence. When a single-stranded DNA template containing complementary
codons is added, a self-assembly of nanocrystal molecules is observed (Fig. 1.13)
[199, 232]. This work has been the subject of recent reviews [232–234].
Niemeyer et al. [233] have recently reported the coupling of metal particles bear-

ing a biotin substituent with the DNA–streptavidin hybrid. The growth of a 12-mm-
long, 100- nm wide conductive silver wire has been achieved using a DNA molecule
stretched between two gold electrodes as a template [235].
It remains to be seen how the practical applications of these materials will

develop over the next few years.
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a

b

Figure 1.13. Self-organization of conjugates
from gold particles (shaded spheres) and oligo-
nucleotide codons to supramolecular assem-
blies by the addition of a template strand. The
derivatization of the oligonucleotides in 3¢ or 5¢

position allows control of the mode: head-to-
head (a) or head-to-tail (b) homodimers. The
trimer (c) is formed using the complementary
sequence in triplicate. (Adapted from
Ref. [232].)
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