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Introduction: Immobilized Enzymes: 
Past, Present and Prospects

1.1
Introduction

Since the second half of the last century, numerous efforts have been devoted to
the development of insoluble immobilized enzymes for a variety of applications [2];
these applications can clearly benefit from use of the immobilized enzymes rather
than the soluble counterparts, for instance as reusable heterogeneous biocatalysts,
with the aim of reducing production costs by efficient recycling and control of the
process [3, 4], as stable and reusable devices for analytical and medical applica-
tions [5–11], as selective adsorbents for purification of proteins and enzymes [12],
as fundamental tools for solid-phase protein chemistry [13, 14] and as effective mi-
crodevices for controlled release of protein drugs [15] (Scheme 1.1).
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Scheme 1.1 Range of application of immobilized enzymes.

However, whatever the nature of an immobilized enzyme and no matter how it
is prepared, any immobilized enzyme, by definition, must comprise two essential
functions, namely the non-catalytic functions (NCF) that are designed to aid separ-
ation (e.g. isolation of catalysts from the application environment, reuse of the cat-
alysts and control of the process) and the catalytic functions (CF) that are designed
to convert the target compounds (or substrates) within the time and space desired
(Scheme 1.2).

NCF are strongly connected with the physical and chemical nature of the non-
catalytic part of the immobilized enzymes, especially the geometric properties, e.g.
the shape, size, thickness, and length of the selected carrier, whereas the CF are
linked to the catalytic properties, for example activity, selectivity, and stability, pH



and temperature profiles. General criteria for selection of these two properties for
robust immobilized enzymes as catalysts are proposed in Table 1.1 [16].

In practice, catalytic functions are designed in line with the desired activity, se-
lectivity, substrate specificity, productivity and space–time yield, with the aim of
achieving fewer side reactions, high tolerance of structural variation of the sub-
strates, high productivity, high space–time yield, and high durability of the catalyst.
On the other hand, the selection criteria for non-catalytic functions, especially geo-
metric properties, are largely dependent on the design of reactor configurations
(e.g. batch, stir-tank, column and plug-flow), the types of reaction medium (aque-
ous, organic solvent, or two-phase system), the reaction systems (slurry, liquid-to-
liquid, liquid-to-solid, or solid-to-solid), and the process conditions (pH, tempera-
ture, pressure). The objectives when designing the non-catalytic properties are
mainly to achieve easy separation of the immobilized enzymes from the reaction
mixtures, broad reactor considerations (i.e. flexibility of reactor design), broad ap-
plicability in different reaction media and reaction systems, and facilitating pro-
cess development, down-stream processing and, particularly, control of the pro-
cess.

It is usually the peculiarities of these two essential elements, i.e. the non-catalyt-
ic functions and the catalytic functions that dictate the scope of the final application
of the immobilized enzymes obtained. Conversely, the peculiarities of each appli-
cation also dictate the design and selection of the two essential elements. In gener-
al, the NCF and CF of an immobilized enzyme are the two sides of a coin which are
the basis of the scope of the final application, as illustrated in Scheme 1.2.

It is, therefore, hardly surprising that the main task of enzyme immobilization is
to select a suitable immobilization method (carriers, conditions, and enzymes) to
design an immobilized biocatalyst which can meet not only the catalytic needs (ex-
pressed as productivity, space–time yield, stability and selectivity) but also the non-
catalytic needs (e.g. separation, control, down-streaming process) of a given appli-
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Scheme 1.2 Relationship between NCF and CF of an immobilized enzyme and its applications.



cation. As a result, an immobilized enzyme can be labelled “robust” when its cata-
lytic and the non-catalytic functions both meet the requirements of a specific appli-
cation. Consequently, it is envisaged there are two possibilities in the development
of a biocatalytic process – design of a process around an available immobilized en-
zyme and the design of an immobilized enzyme around a process.

31.1 Introduction

Table 1.1 Criteria for robust immobilized enzymes (from Ref. [16])

Parameter Requirement Benefits

Non-catalytic Suitable particle size  and shape Aid separation, easy control of the 
function reaction

Suitable mechanical properties Flexibility of reactor design
Low water regain capability Easy removal of water
High stability in a variety No change of pore radius and thus 
of organic solvents fewer diffusion constraints 

Catalytic function High volume activity (U g–1) High productivity and space–time yield
High selectivity Fewer side reactions, easier down-

stream processing and separation of
products, and less pollution

Broad substrate specificity Tolerance of structural variation of the
substrates

Stability in organic solvents Shift of reaction equilibrium with the
use of organic solvents

Thermostability Short reaction time by increasing 
temperature

Operational stability Cost-effective and lower cost-
contribution for the product

Conformational stability Modulation of enzyme properties

Immobilized Recyclability Low cost-contribution of catalyst
enzyme

Broad applicability Tolerance of process variation
Reproducibility Guarantee product quality
Easy and quick design Early insight into process development

and avoidance of learning process

E and E Lower volume Lower cost for the solid handling
consideration

Easy disposal Less environmental concern? 
Easy biodegradability?

Rational design Avoidance of laborious screening
Safety for use Meeting safety regulations

IPR Innovative Protection of IPR
Attractive Licensing 
Competitive Strengthening marketing position

E and E: Economical and Ecological; IPR: Intellectual Property



The first possibility is obviously less desirable, because a ready-made immobi-
lized enzyme (either commercially available or made in-house) is a specific immo-
bilized enzyme only and is thus not necessarily the optimum catalyst for the de-
sired processes, as exemplified by the fact that many types of carrier-bound immo-
bilized penicillin G acylase which are regarded as robust immobilized catalysts for
the production of 6-APA are not necessarily good catalysts for the kinetically con-
trolled synthesis of semi-synthetic -lactam antibiotics [17, 18]. This is largely as-
cribed to the fact that changing the process conditions often provokes a change of
enzyme performance.

By contrast, the diversity of the processes (as reflected by different substrates, re-
action types, reactor configurations, down-streaming processes) necessarily re-
quires the design of specific immobilized enzymes which can match process re-
quirements. Thus, it is hardly surprising that design of the immobilized enzyme
around a process will dominate the future development of immobilized enzymes.

Although it is becoming increasingly appreciated that the availability of a robust
immobilized enzyme in the early stage of process development will definitively en-
able early insight into process development and save costs not only in process de-
velopment but also in production, the lack of guidelines to selection of the method
of immobilization and the performance to be expected of an immobilized enzyme
for a specific application seriously hampers application of a rational approach to
the design of such robust immobilized enzymes [19].

In this regard, we attempt to analyse important developments in the history of
enzyme immobilization and thus to provide readers with a fundamental basis for
understanding and designing robust immobilized enzymes.

1.2
The Past

Although the chronological development of enzyme-immobilization techniques
has been discussed intensively for several decades [20–22], it is still worth going
back to several historical phases which were important milestones in the history of
enzyme immobilization, to appreciate that the roots of enzyme-immobilization
techniques are the basis of future development.

For the purpose of discussion, the development enzyme immobilization is clas-
sified according to five criteria:

• the number of methods developed,
• the number of materials used for enzyme immobilization,
• the number of binding types established,
• the degree of understanding of the factors influencing the performance of the

immobilized enzymes, and
• the number of processes using immobilized enzymes.
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Accordingly, the history of bio-immobilization can be divided into several phases:

• the early days (1916–1940s),
• the underdeveloped phase (1950s),
• the developing phase (1960s),
• the developed phase (1970s),
• the post-developed phase (1980s), and
• the rational design phase (1990s–present).

Although there might be some overlap in respect of the time and continuity of de-
velopment, this classification reflects major developments in enzyme-immobiliza-
tion techniques. Following this order, we briefly discuss what has been achieved in
the last 90 years.

1.2.1
The Early Days (1916–1940s)

Although in 1916, Nelson and Griffin rediscovered that artificial carrier-bound in-
vertase on Al(OH)3 and charcoal was still catalytically active [1], the potential of bio-
immobilization as a method of obtaining useful and reusable immobilized biocat-
alysts was unfortunately not recognized in the succeeding 40 years. This simple
fortuitous discovery has, however, been widely recognized as the cornerstone of
the various enzyme-immobilization techniques currently available, because in the
last half century it actually stimulated much interest and effort in exploration of in-
solubilized active enzymes for various studies and industrial applications that can
be better met with immobilized rather than free enzymes.

In these early days, bio-immobilization techniques were mainly used to prepare
adsorbents for isolation of proteins by immunologists, via adsorption on simple in-
organic carriers such as glass [23], alumina [24] or hydrophobic compound-coated
glass [25].

Along with these prototypes of pseudo-immobilized enzymes (immobilized by re-
versible non-covalent physical adsorption), few irreversible immobilized enzymes
prepared by covalent attachment were also reported in the literature at that time [26].

1.2.2
The Underdeveloped Phase (1950s)

Although in 1950s the method of enzyme immobilization was still dominated by
physical methods, i.e. non-specific physical adsorption of enzymes or proteins on
solid carriers, for example α-amylase adsorbed on activated carbon, bentonite or
clay [27], AMP deaminase on silica [28], and chymotrypsin on kaolinite [29], the
method of adsorption was gradually switched from simple physical adsorption to
specific ionic adsorption, for instance, chymotrypsin on phosphocellulose [29], cat-
alase on the ionic resin DEAE–cellulose [30, 31], DNase on cellulose [32, 33], lipase
and catalase on styrenepolyaminostyrene (Amberlite XE-97) [34], and ribonuclease
on the anionic exchanger Dowex-2 and the cationic exchanger Dowex-50 [35].
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Along with physical methods of enzyme immobilization, however (e.g. non-spe-
cific adsorption, or ionic adsorption), other important methods of enzyme immo-
bilization, for example covalent immobilization, were further investigated. Exam-
ples of enzymes were lipases and other enzymes or antibodies covalently bound to
polyaminostyrene [34, 36–38], diazotized cellulose [7], poly(acrylic acid) chlo-
ride [40, 41], diazotized polyaminostyrene [36, 41, 42], and polyisocyanate [34, 38].
Unfortunately, those early-developed carriers were found to be less suitable for co-
valent enzyme immobilization, because of poor retention of activity (2–20 % of the
native activity), probably attributable to the highly hydrophobic nature of the car-
riers used at that time [38–45] or the unsuitable active functionality such as diazo-
nium salt, which often affords an immobilized enzyme with lower retention of ac-
tivity [45].

Apart from the physical adsorption and covalent immobilization used in this pe-
riod, it was demonstrated for the first time by Dickey that some enzymes such as
AMP deaminase entrapped in the sol–gel inorganic matrix formed by silicic acid-
derived glasses retained reasonable biological activity [28]. Unfortunately, the im-
portance of this finding was not recognized in the succeeding 40 years [46–48].

In addition to the use of natural polymers, derivatives such as CM-cellulose [30]
and DEAE-cellulose [31], and inorganic materials such as carbon [35], glass, kaoli-
nite [39], and clays as carriers for enzyme immobilization, a few synthetic poly-
mers, for example aminopolystyrene and polyisocyanate, prepared directly by poly-
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Table 1.2 Survey of enzyme-immobilization techniques in the 1950s

Carriers Activation or Techniques developed and 
coupling methods important observations

Natural polymers and Acylazide Physical adsorption
derivatives Diazotium salt Ionic adsorption [35]
Cellulose Polyacrylic acid chloride Covalent [36]
DEAE-cellulose Isocyanate [38] Entrapment in sol-gel glass [28]

Modification-adsorptive immobilization
Synthetic polymers pH optimum shifting [35]
Amberlite
Diaion
Dowex
Polystyrene
Other polyacrylic 
polymers and derivatives

Inorganic carriers
Carbon
Silica
Kaolinite
Clay



merization of active monomers for covalent enzyme immobilization [37], and syn-
thetic ionic adsorbents such as Amberlite XE-97 [34], Dowex-2, and Dowex 50 [35]
for non-covalent enzyme immobilization by ionic adsorption [35, 37, 38, 41] were
also added to the family of carriers used for enzyme immobilization (Table 1.2).

1.2.3
The Developing Phase (1960s)

Although different covalent methods of enzyme immobilization were the main fo-
cus of bio- immobilization at this time, the long-established non-covalent enzyme
immobilization, i.e. adsorption [50] and entrapment [51–53] were further devel-
oped, as is reflected in the publications of the time (Ref. [54] and references cited
therein). In addition, encapsulation of enzymes in semi-permeable spherical
membranes (also called “artificial cells”) was first proposed by Chang [55]. Enzyme
entrapment techniques were also further extended by the use of synthetic polymer-
ic gels such as PVA (polyvinyl alcohol) [56] or PAAm (polyacrylamide gel) [51] or
the use of natural polymer derivatives such as nitrocellulose or starch [56] or silicon
elastomers for the sol–gel process [57, 58]. Other techniques of enzyme immobil-
ization, for example adsorptive cross-linking of enzymes on films and mem-
branes [62], or beads for the formation of enzyme envelopes [62], were also devel-
oped.

Apart from the development of carrier-bound immobilized enzymes, it was also
demonstrated that insoluble carrier-free immobilized enzymes could be prepared
by cross-linking of crystalline enzymes [63] or dissolved enzymes [64], by use of a
bifunctional cross-linker such as glutaraldehyde. Although the potential of cross-
linking of enzyme crystals was not recognized at that time, intensive studies were
devoted to preparation of these carrier-free immobilized enzymes, especially CLE
(cross-linked dissolved enzymes), as immobilized enzymes. More than twenty en-
zymes of different classes were either directly cross-linked to form a variety of CLE
or first adsorbed on inert supports, such as membranes, and subsequently cross-
linked to form supported CLE (Ref. [54] and references cited therein). In the late
1960s, however, research emphasis switched mainly to carrier-bound immobilized
enzymes; at this time a wide range of carriers was specifically developed for en-
zyme immobilization and several important organic reactions for binding en-
zymes to carriers were established, as is shown in Table 1.3.

From the middle to the end of the 1960s the scope of bio-immobilization was
greatly extended owing to the use of more hydrophilic insoluble carriers with de-
fined geometric properties, for example cross-linked dextran, agarose, and cellu-
lose beads (Table 1.3) and particularly as a result of the use of new methods of ac-
tivation, for example cyanogen bromide [65] and triazine for polysaccharide [66],
isothiocyanate for coupling amino groups [67], and Woodward reagents [69] for ac-
tivation of carboxyl groups. Furthermore, the preparation of synthetic carriers
bearing active functionality such as polyanhydride [79] or polyisothiocyanate [67],
etc., which could bind enzyme directly (Table 1.3), enabled relatively simple prep-
aration of immobilized enzymes.
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The enzymes studied changed, moreover – from a few classic enzymes such as
invertase, trypsin, urease and pepsin to a broad range of enzymes such as galactos-
idase, amyloglucosidase, urease [78], subtilisin, chymotrypsin [69], lactate dehy-
drogenase [81], apyrase [83], amino acylase [82], amino acid oxidase [86], catalase,
peroxidase [84], hexokinase [85], cholinesterase [91], α-amylase [87], ATPase and
adolase, alkaline phosphatase [88], penicillin G acylase [89], -galactosidase [90], de-
oxyribonuclease [91], urate oxidase, and cholinesterase, etc., which were expected
to have great application potential in chemical, pharmaceutical, and medical indus-
trial sectors.

At the same time it was increasingly appreciated that the physical and chemical
nature of the carriers, especially the microenvironment, for example their hydro-
philic or hydrophobic nature, the charges on the carriers, and the binding chemis-
try also strongly dictated the catalytic characteristics of the enzyme, for example ac-
tivity [76, 79, 92, 93], retention of activity [79, 94] and stability [87].

8 1 Introduction: Immobilized Enzymes: Past, Present and Prospects

Table 1.3 Survey of enzyme-immobilization techniques in the 1960s

Carriers Activation or Techniques developed and 
coupling methods important observations

Synthetic polymers Cyanogen bromide [65] Entrapment of whole cells in synthetic
Poly(AAc-MAAn) Triazine method [66] gel [53]
PAAm Glutaraldehyde for Encapsulation in artificial cell [57]
PVA [56] crosslinking and Adsorption-cross-linking [62]
Nylon coupling [63] Active site titration [71, 72]
Polystyrene [59, 60] Woodward reagents [69] First industrial process with 

Anhydride immobilized enzymes [52]

Natural polymers and Isothiocyanate [67] Modification-covalent 
derivatives Activation of carboxyl immobilization [73, 171]
DEAE-cellulose groups [68] Cross-linked enzyme (CLE) [63]
Sephadex Activation of hydroxyl and cross-linked enzyme crystals 
Sepharose group with monohalo- (CLEC) [63]
Starch acetyl halides [70] Micro-environmental effect [76]

Immobilization or post-treatment by 
Semi-synthetic carriers denaturant [77]
Collodion Binding mode was related to the
Nitrocellulose enzyme stability [78]
Epoxy ring-grafted Importance of binding chemistry in
natural polymer terms of activity retention was 

appreciated [78]
Inorganic carriers
Carbon
Clay
Silica gel
Hydroxyapatite
Kaolinite
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With increasing awareness that besides functioning as supports, i.e. as scaffolds
for the enzyme molecules, the carriers could be used practically as the modifiers of
enzyme properties, many carriers of different physical or chemical nature, differ-
ent hydrophilicity or hydrophobicity, or different shape or size (for example beads,
sheet, film, membrane [95] or capsules [55]) were developed to provide carriers
with sufficient diversity. This was reflected by the shift of the carriers from a few
classics, for example cellulose and its derivatives [44], inorganic carriers [86, 88, 97]
and polystyrene and derivatives [37, 59, 60], to a broad variety ranging from natu-
rally occurring materials such as agarose, Sephadex [83], Sepharose [65], glass [97],
kaolinite, clay, DEAE-Sephadex, DEAE-cellulose [50], to synthetic carriers such as
polyacrylamide [51], ethylene maleic acid copolymer [94], a co-polymer of methyl-
acrylic acid and methylacrylic acid-m-fluoroanilide [96], nylon [98, 99], PVA-based
carriers for covalent binding or entrapment [56], and a variety of synthetic ion-ex-
change resins such as Amberlite [100], Diaion and Dowex [101], which have de-
fined chemical and physical properties.

It is also worthy of note that introduction of active-site titration has made it pos-
sible to assess the availability of the active site and how this immobilization was af-
fected by incorrect orientation, by deactivation or by diffusion constraints [71, 72].
Meanwhile, the first example of resolution of a racemic compound catalysed by
carrier-bound immobilized enzymes was also demonstrated and the first enzyme
electrode appeared [6]. Glazer et al. demonstrated that introduction of extra func-
tional groups to the enzyme before immobilization was an efficient means of con-
trolling the mode of binding between the enzyme and the carrier [73, 75]. This
technology also has other benefits, for example enzyme inactivation resulting from
direct coupling of the enzyme to the resin might be avoided. This concept was lat-
er developed as modification–immobilization techniques, with the objective of im-
proving the enzyme, e.g. by enhancement of its stability, activity and selectivity, be-
fore immobilization [103].

Remarkably, it was found that not only the soluble enzyme but also the enzyme
crystals can be entrapped in a gel matrix with reasonable retention of activity [74].

By the end of 1960s the first industrial application of an immobilized enzyme
(ionically bound l-amino acid acylase) for production of l-amino acids from racem-
ic amino acid derivatives had been developed by a Japanese company [50]; this not
only exemplified the practical (or industrial) value of immobilized enzymes but al-
so inspired several new research interests; this was subsequently reflected by
steadily increasing interest, by an explosive increase in publications on enzyme im-
mobilization, and by the number of new immobilization techniques [174, 175].

1.2.4
The Developed Phase (1970s)

In the 1970s, enzyme immobilization continued to flourish into a maturing phase,
although the methods used in this period were still labelled as “less rational”. The
methods developed in previous phases had been widely extended to several en-
zymes which were expected to have great industrial potential, for example α-amy-
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lase, acylase, penicillin G acylase, and invertase, etc. Achievements in this period
have been the subject of several reviews [174, 175, 178].

Although the methods used for enzyme immobilization were not beyond the
scope of the four basic methods already previously developed, namely covalent, ad-
sorption, entrapment and encapsulation, many new method subgroups, for exam-
ple affinity binding and coordination binding [105], and many novel variations of
enzyme immobilization were developed (Tables 1.4 and 1.5).

The objective of the sophisticated immobilization techniques developed in 1970s
was, primarily, improvement of the performance of the immobilized enzymes
which could not be achieved by conventional methods of immobilization. For in-
stance, enzymes can be entrapped in gel-matrix by copolymerization of an enzyme
modified with double bonds in the presence of the monomers, leading to the for-
mation of “plastic enzymes” with improved stability [110]. Entrapment of enzyme
in the gel matrix can be followed by cross-linking, to reinforce the beads and to
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Table 1.4 Survey of enzyme-immobilization techniques in the 1970s

Carriers Activation or Important techniques developed
coupling methods

Active synthetic carriers Ugi reaction [146, 147] Reversibly covalent coupling and 
Halogen Alkylation with epoxide intra-molecular cross-linking [112]
Epoxy ring [107] Affinity immobilization [115]
Aldehyde Aldehyde activation Coordination immobilization [116]
Anhydride Carbonyldiimidazole for Oriented enzyme immobilization [115]
Acylazide hydroxyl groups [109] Introduction of spacer [117]
Carbonate Oxidization of glucosylat- Complimentary multipoint 
Isocyanate ed enzymes [120] attachment [118]

Benzoquinone [121] Hydrophilicity–hydrophobicity balance

Functionalized Carbonate [122] of the carrier [125]
prepolymers Imidoester [123] Enzyme immobilization in organic 
(for entrapment) Divinylsulphone solvents
PVA-SbQ Glutaraldehyde for Enzyme entrapment by reactive 
PEG-DMA polyacrylamide [124] prepolymers [126, 127]
PEG-CA Immobilization of enzymes to soluble 
ENTP supports [128]

Reversibly soluble enzymes [128]
Inorganic carriers Modification and immobilization [103]
for covalent coupling Adsorption-covalent binding [104]
Silica [118]

Natural polymers 
and derivatives
Gelatin
Alginate
Agarose
Collagen



avoid leakage [111]; immobilization of the enzymes (either covalent or by affinity
adsorption) via a suitable spacer can improve the enzyme activity [114, 115].

More importantly, inspired by the observation that chemical modification of en-
zymes often improves their characteristics, for example activity and stability, mod-
ified enzymes with improved properties, for example enhanced stability, have been
further immobilized by a variety of suitable immobilization methods, for example
adsorption on the cationic exchanger by introduction of carboxylic ions to the en-
zymes by succination [129] or entrapment in a polymeric matrix [130].

Another important discovery in the 1970s was that enzyme immobilization does
not necessarily have to be performed in aqueous media – covalent coupling of an
enzyme to a solid carrier or entrapment of an enzyme in a gel matrix can be per-
formed in organic solvents [131, 132]; such methods have much attractive poten-
tial, for example modulation of enzyme conformation or extending the coupling
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Table 1.5 Important technologies developed in the 1970s

Method Remarks Ref.

Covalent immobilization With the aim of modulating retention of enzyme 114 
via spacer activity 

Affinity immobilization Combines mild immobilization conditions and 115
reversibility of binding 

Oriented enzyme With the aim of enhancing activity retention compared 115
immobilization with random immobilization 

Coordination Combines immobilization and regeneration of the 116
immobilization carrier

Enzyme immobilization With the aim of exploring other binding chemistry that 117
in organic solvents works exclusively in the absence of water

Complimentary multi- With the aim of enhancing the enzyme stability 118
point attachment

Immobilization of With the aim of acting on sparingly soluble substrates 128
enzymes to soluble 
supports

Modification and Combines the techniques of chemical modification 129
immobilization with immobilization techniques 

Reversibly soluble Combines the advantages of soluble enzymes and 135
enzymes immobilized enzymes

Stabilization and Combines the techniques of enzyme stabilization with 136
immobilization enzyme-immobilization techniques

Entrapment by wet High enzyme loading can be obtained 137, 138
spinning technique

Covalent entrapment Enzyme entrapment and covalent binding of the 139
enzyme molecules to the matrix occurred concomitantly



chemistry beyond the scope of aqueous media. Unfortunately, this technology was
not well developed at the time.

As with the carriers used in 1970s, different polymers with designed characteris-
tics, for example tailored-made hydrophobicity or hydrophilicity, particle size and
binding functionality, became available for bioimmobilization. By the end of the
1970s, several new synthetic or natural functionalized polymers with pre-designed
chemical and physical nature, particularly natural polymer-based carriers bearing
reactive functional groups such as aldehyde, cyclic carbonate, anhydride and acyla-
zide, and synthetic polyacrylic polymers bearing different active functionality such
as oxirane ring, aldehyde, anhydrides and carbonate [133], were specifically devel-
oped or designed for covalent enzyme immobilization [134].

Among these, synthetic polymers with epoxy groups [140, 141] and derivatives of
natural polymers [142], which have defined chemical or physical nature and can be
directly used to bind enzymes under mild conditions, attracted much attention
[104–143]. An inter-conversion technique which was actually proposed by Man-
neck at the beginning of 1960s [37] was also widely used to convert the built-in ac-
tive or inactive functionality into other suitable binding functionality for covalent
immobilization [143–145].

More importantly, many new chemical reactions were identified and established
for covalent coupling of enzymes to carriers; these included:

• the Ugi reaction [146, 147],
• acylation with an imidoester [149],
• carbohydrate coupling [150],
• use of N-hydroxysuccinimide esters for activation of carboxyl groups [151],
• coupling and concomitant purification via thio–disulphide interchange [152],
• oxirane coupling [153],
• the benzoquinone method [154], and
• reversible covalent coupling [112].

Remarkably, increasing attention was also directed toward the preparation of im-
mobilized enzymes with designed geometric properties, for example beads [113],
foam [155] or fibres [143], to suit various applications and reactor configurations.

During this period much deep insight was gained into the effect on the perfor-
mance of the immobilized enzymes of factors such as the microenvironment effect
of the carrier [155], the effect of the spacer or arm [158, 160], different modes of
binding (chemistry, position and number) [170], enzyme loading [87, 167], chang-
es in the conformation of the enzyme, diffusion constraints [161, 163], orientation
of the enzyme [164], and the protective effect of substrate or inhibitor during im-
mobilization, namely prevention of deactivation of enzyme from owing to modifi-
cation of the active site [166] (Table 1.6).

Consequently, many new strategies were developed to improve the performance of
the immobilized enzymes, for example the archetype of site-specific enzyme immo-
bilization on the micelle [164], the stabilization–immobilization strategy [170], intra-
molecular crosslinking [118] and complimentary multipoint attachment [185]. Some
of these achievements have been summarized in books and reviews [174, 159, 259].
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131.2 The Past

Table 1.6 Important factors influencing performance of immobilized 
enzymes discovered in the 1970s

Factors Implication or application Ref.

Hydrophobic partition effect Enhancement of reaction rate of hydrophobic 125, 157
substrate

Microenvironment effect of Hydrophilic nature often stabilizes the enzyme, 127, 156
the carrier whereas hydrophobic nature often destabilizes the  

protein

Multipoint attachment effect Enhancement of enzyme thermal stability –

Spacer or arm various types With the aim of avoiding deactivation of the 158–160
of immobilized enzyme enzyme by incompatible interaction with protein-

carrier or mitigating the steric hindrance

Diffusion constraints Enzyme activity might decrease and stability 161, 162
increases

Orientation of the enzyme Site-specific enzyme immobilization techniques 163
featured

Presence of substrates or Higher activity retention 164
inhibitor

Conformational changes or Protection of the enzyme from conformational 164
protection change during enzyme immobilization process 

leading to high activity retention

Physical post-treatments Improvement of enzyme performance 165

Enzyme loading Higher enzyme loading is essential to avoid lower 87, 166
enzyme activity expression

Different binding mode Activity and stability can be affected 167

Enzyme modification Suitable chemical modification often leads to the 118
improvement of enzyme stability

Enzyme modification/ Formation of active enzyme, which can be 168
immobilization covalently bound to the inert carrier, can control 

the binding mode such as number of bonds 
formed between the carrier and enzyme, thus 
improving the activity retention

Physical structure of the Activity retention was often pore-size-dependent 169
carrier such as pore size

Stabilization-immobilization Enzyme can, moreover, be stabilized before binding 170
of enzyme to carrier

Physical nature of the carrier Carriers with large pore size mitigates diffusion 171
limitation, leading to higher activity retention

Hydrophilic-hydrophobic A delicate balance of hydrophilic and hydrophobic 172
balance of the carrier character of the selected carrier is essential for the 

activity and stability



Because of these in-depth investigations, the potential of enzyme-immobiliza-
tion techniques in commercial processes has been completely recognized and
many other commercial processes with use of enzymes have been under develop-
ment, for example use of immobilized penicillin G acylase for production of 6-APA
– the key intermediate in the synthesis of semi-synthetic -lactam antibiotics – or
the use of immobilized glucose isomerase for production of fructose syrup from
glucose [119]. Other proposed applications of immobilized enzymes include con-
trolled-release protein drugs and biomedical application as biosensors or artificial
organs [176].

By the end of 1970s enzyme-immobilization techniques had matured to such ex-
tent that every enzyme could be immobilized by selecting a suitable method of im-
mobilization (entrapment, encapsulation, covalent attachment, adsorption and
combi-methods) or a suitable carrier (organic or inorganic, natural or synthetic,
porous or non-porous, film, beads, foam, capsules or disks) and immobilization
conditions (aqueous, organic solvents, pH, temperature, etc.). It was also increas-
ingly appreciated that the main problem in enzyme immobilization was not immo-
bilization of the enzymes on the carriers but how to obtain the performance de-
sired for a given application by selecting a suitable immobilization approach from
the numerous methods available.

1.2.5
The Post-developed Phase (1980s)

In this period, which spans the beginning to the end of the 1980s, incentives to de-
sign robust immobilized enzymes originated from the following potential of the
immobilized enzymes:

• Immobilized enzymes might meet the increasing demand by manufacturers of
pharmaceuticals and agrochemicals for enantiomerically pure compounds, be-
cause of their greater selectivity and specificity.

• Biocatalytic processes might meet increasingly strict environmental regulations,
because of their mild reaction conditions and lower energy consumption.

• Biocatalytic processes can provide short-cuts compared with conventional chem-
ical processes, because protecting chemistry can be abandoned, as was demon-
strated in the production of 6-APA (6-aminopenicillanic acid, a core intermedi-
ate for semi-synthetic penicillins) [174].

It is worth mentioning that another important incentive in the search for robust
immobilized enzymes in the 1980s and 1990s was the re-discovery that many en-
zymes are catalytically active and stable in organic solvents [177–179], thus ena-
bling many reactions which cannot be performed in aqueous media.

Enzyme stability and activity are, however, usually lower in organic solvents, be-
cause of distortion of enzyme structure by the organic solvents used [177]. Conse-
quently, much effort was devoted to elucidation of the effects of carriers or immo-
bilization techniques on the catalytic behaviour of the immobilized enzymes ob-
tained and of the effects of organic solvents on the enzyme activity, selectivity and
stability under non-aqueous conditions. For example, encaging of enzymes in
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symplex [180] or sandwich complexes [181] could drastically enhance enzyme
stability under non-natural conditions; strengthening multipoint attachment to the
carrier [182–185], instead of the complimentary multipoint attachment originally
proposed by Martinek et al. [186], could stabilize the overall enzyme scaffold by
trapping the hot area that is crucial for stabilization of the enzymes [187]; immobi-
lizing an enzyme by a combination of covalent L–B–L(layer-by-layer) techniques
and cross-linking could dramatically enhance enzyme loading and enzyme stabil-
ity [188]; cross-linking of crystalline enzymes can be used to create stable biocata-
lysts for biotransformation, especially in organic solvents, because of their high
stability in these solvents (see Table 1.7 for details) [189].

151.2 The Past

Table 1.7 Survey of enzyme-immobilization techniques developed in the 1980s

Carriers Activation methods Important techniques and 
or coupling reactions findings

Synthetic microporous Azalactone Encagement (double encagement)
carriers Tosylation (hydroxyl [180, 181]
Reactive carriers of groups) [212] CLEC might be stable biocatalysts in 
pre-designed shape Chloroformate [213] organic solvents [188]
and size and active 2-Fluro-1- Introduction of aquaphilicity [190]
binding functionalities, methylpyridinium Dynamic immobilization 
e.g. Eupergit C and toluene-4-sulphonate for technique [216]
azalactone, were hydroxyl group [214] Deposition technique [201]
commercialized Carbonochloridate for Covalent multilayer immobilized

activation of hydroxyl enzyme [187]
Other types of carrier groups [215] Post-loading entrapment [217]
More than 100 other Organosoluble polymer–enzyme 
types of polymeric complex [191–194]
carrier have been made Organosoluble lipid-coated 
commercially available enzyme [195]
[143] Introduction of genetically engineered

tags [198]
Introduction of orientation groups to
the carrier
Carrier-bound multipoint attachment
[182–185]
Stabilization and/or immobilization
[218]
Covalent immobilization of enzyme in
organic solvents to design active 
enzyme in organic solvent [199]
Imprinting of enzyme by entrapment
[200]
Covalent binding of enzyme to carriers
might freeze the enzyme conformation
induced by the effectors [202]
Stabilization of immobilized enzyme by
the presence of inhibitors [203]



Besides efforts to prepare stable immobilized enzymes, several methods and
concepts were developed to make the enzymes more active in organic solvents.
First, the concept of the water activity of the reaction medium was proposed [190],
and reliable comparison of different catalytic processes in low-water media became
possible. The introduction of the concept “aquaphilicity” for the carrier enables
quantitative measurement and screening of the desired carriers for immobiliza-
tion of enzymes intended for use in organic solvents with regard to the close rela-
tionship between the carrier and the activity and selectivity of the immobilized en-
zymes [191]. The finding that physical and/or chemical modification of enzymes
(for example chemical modification with activated PEG [192–195, 247] or lipid
pairs [197], encapsulating the enzyme in micelles [196], and coating the enzyme
surface with lipids) renders them soluble in organic solvents enabled the mass
transfer limitation associated with the use of lyophilized enzyme powders to be
surmounted [197]. Thus, higher activity can be obtained with these techniques.

Along with the cell-free enzymes, whole-cell associated biocatalysts, in the pres-
ence or absence of support materials, have also been successfully used in organic
solvents [208–211].

Many techniques developed in the 1970s were further implemented to improve
enzyme performance [272]. For instance, site-specific enzyme immobilization via
a variety of genetically engineered tags attracted much attention [198] because of
better retention of activity. Covalent attachment of the enzyme to the carrier in or-
ganic media was found to be unique in that the immobilized enzyme obtained is
active in organic solvents whereas the immobilized enzyme prepared in aqueous
medium is completely inactive, even though their hydrolytic activity was almost
identical [199]. This inspired much research interest in preparing active and stable
immobilized enzymes in organic solvents in 1990s, as will be discussed below.

1.2.6
Rational Design of Immobilized Enzymes (1990s–date)

Since the 1990s (Table 1.8) there has been an important transition in the develop-
ment of immobilized enzymes. Approaches used for the design of immobilized
enzymes have become increasingly more rational; this is reflected in the use of
more integrated and sophisticated immobilization techniques to solve problems
that cannot be easily solved by previously developed single immobilization ap-
proaches.

In this phase, the major focus of enzyme immobilization was on the develop-
ment of robust enzymes that are not only active but also stable and selective in or-
ganic solvents. Although in the period from the 1970s to the 1980s it was recog-
nized that many enzymes are active and stable in organic solvents under appropri-
ate conditions, the enzymes used are usually less active or stable in organic sol-
vents than in conventional aqueous media [177]. For this reason development of
more robust immobilized enzymes which can work under hostile conditions, espe-
cially in non-aqueous media came to the forefront of many research interests in
this period [219–231].
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171.2 The Past

Table 1.8 Survey of important enzyme-immobilization techniques developed 
from the 1990s until the present

Strategies Improvement Remark Ref.

Formation of plastic Stability and activity in Stable in organic 240, 241
immobilized enzymes in organic solvents solvents
organic solvent

Introduction of tentacle Substantial enhancement High enzyme loading 242
carriers of enzyme loading and less diffusion 

limitation 

Chemical Improvement of enzyme Such as pH-imprinting, 223, 243
post-immobilization stability and activity consecutive modifica-
techniques tion, solvent washing 

and increasing pH, 
addition of additives

Stabilization–immobiliza- Enzyme stability in The enzyme is 245, 246
tion strategy organic solvents, followed stabilized first, followed

by entrapment techniques by another suitable
immobilization strategy 

Engineering the Improvement of enzyme Improvement of 248
microenvironment stability and activity enzyme stability in 

organic solvent

Strengthening the Improvement of stability Increasing the number 249
multipoint attachment of bonds enhanced the 

enzyme stability

Site-directed enzyme Improvement of enzyme Orientation of enzyme 250
immobilization activity and stability on the carrier surface

improves activity
retention 

Imprinting-immobiliza- Improvement of enzyme Alter the enzyme 251
tion strategies selectivity by conformer selectivity by sol–gel

selectors techniques and/or 
cross-linking techniques

Improved sol–gel Improvement of activity Selection of suitable 47, 48
entrapment and selectivity monomers and con-

former selector is 
essential

Cross-linked enzyme Improvement of enzyme Selectivity relative to 16
aggregates activity and selectivity CLEC was improved
Entrapped CLEA Improvement of the CLEA can be prepared 252

mechanical stability and in a pre-designed 
tailor-made particle size hollow microsphere

Non-covalent L-B-L Substantial enhancement Less diffusion 254
immobilization of enzyme loading limitation

Enzyme deposition Improvement of enzyme Monolayer principle 201
techniques dispersion state in

organic solvent 



Among these, many efforts were devoted to the development of cross-linked en-
zyme crystals (CLEC) suitable for biotransformations in non-aqueous media or in
organic–water mixtures, because of the greater stability of the enzymes under hos-
tile conditions [232–234]. Remarkably, it has been noticed that the performance of
the CLEC obtained is highly dependent on the predetermined conformation of the
enzyme molecules in the crystal lattice. Thus, selection of a highly active enzyme
conformation by varying the crystallization conditions becomes crucial for the
creation of highly active, stable and selective CLEC.

Because the process of protein crystallization is homogenization of enzyme con-
formation, and the enzyme conformation in the crystal lattice is predetermined by
the crystallization conditions, each type of cross-linked enzyme crystal of the same
enzyme might represent only a specific immobilized enzyme whose conformation
is homogeneous and fixed by the cross-linking. Although it is possible to crystallize
an enzyme in different conformations, and thus to modulate its properties, this
technology is obviously laborious and limited compared with carrier-bound meth-
ods.

Broad analysis of the performance of CLEC and comparison with conventional
carrier-bound immobilized enzymes is still lacking. Cross-linked enzymes, espe-
cially CLEC, have occasionally been compared with lyophilized enzyme powder,
which was proved to be not only less active but also less selective [235]. A few stud-
ies have also shown that the turnover frequency of cross-linked enzymes in organ-
ic solvents is generally lower than that of carrier-bound immobilized enzymes
based on the same protein mass and the same reaction conditions, suggesting that
rigidification or confinement of the enzyme molecules in the compact crystal lat-
tice or diffusion limitation might be major factors responsible for the lower activ-
ity [236].

Increasing efforts have also been devoted to developing novel strategies for im-
proving the performance of immobilized enzymes, for example their activity [237],
selectivity [207, 251] and stability [239], by combining different immobilization
techniques [236]. For example, biocatalytic plastics, which are prepared by poly-
merizing lipid-coated organic solvent-soluble enzymes bearing attached polymer-
izable double bonds, were found to be highly stable and active in organic sol-
vents [240, 241] and polymerization of enzyme derivatives bearing unsaturated
bonds in the presence of ligands or substrates proved to be an effective means of
creation of insoluble enzymes with improved selectivity [207]. The use of dendri-
meric (or tentacle) carriers has been found advantageous in that enzyme loading
can be dramatically enhanced by at least one order of magnitude, with high reten-
tion of enzyme activity and stability [242]. Furthermore, sol–gel techniques were
only recognized as an interesting immobilization technique in the 1990s – 40 years
after the first use of these techniques for enzyme immobilization [46–48].

Apart from improvement by immobilization strategies, in the 1990s it was also
increasingly appreciated that attachment of enzymes to the selected carriers is not
the whole story of enzyme immobilization, because the performance of the immo-
bilized enzymes can be substantially improved by use of various post-immobiliza-
tion techniques; for example, strengthening the multipoint attachment often en-
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hances enzyme stability [249] and consecutive treatment of immobilized enzymes
by chemical or physical modification, or other activation and stabilization tech-
niques, can dramatically improve enzyme performance [243], as will be discussed
elsewhere in this book.

More important, the molecular imprinting techniques originally proposed in the
1970s, has been further developed and extended to several other, related are-
as [244]. The objective is to improve enzyme performance. For example, pH im-
printing of the immobilized enzymes, including enzyme powders, enables maxi-
mum activity of the enzyme in anhydrous organic solvents [246], significant activ-
ity or selectivity improvement can be achieved by simply lyophilizing the enzymes
with the ligands or transition-state analogues or by polymerizing the enzyme–
ligand complex under more anhydrous conditions or in aqueous medium.

Remarkably, it has been found that even the stability of the immobilized en-
zymes can be imprinted. For instance, the temperature optimum of epoxy hydro-
lase immobilized on DEAE-cellulose was dramatically shifted from 35 to 45 °C if
non-ionic detergent Triton X-100 was added during enzyme binding to the carri-
er [344], suggesting that the stable enzyme conformation induced by the additive
was frozen on the carrier. Similarly, it was found that stability of Candida rugosa li-
pase, which was covalently immobilized on silanized controlled-pore silica (CPS)
previously activated with glutaraldehyde in the presence of PEG-1500, was in-
creased fivefold compared with the immobilized enzyme without addition of PEG-
1500 [209]. Thus, in those cases, the stability or, more precisely, the enzyme con-
formation induced by the effectors (or additives) was imprinted.

Also worthy of note is that in the last few years of the 1990s it was discovered that
not only enzyme crystals but also physical enzyme aggregates could be cross-
linked to form catalytically active insoluble immobilized enzymes, nowadays
known as CLEA [252, 255, 257]. This discovery might theoretically and/or practical-
ly open another possibility for design of robust, highly active, stable and selective
immobilized enzymes [16].

As with cross-linked crystalline enzymes, however, the factors which hamper
their industrial application lie not in their catalytic properties but in their non-cat-
alytic part – they are usually small and their mechanical stability is usually very
poor. This causes difficulties when they are applied to heterogeneous reaction sys-
tems, e.g. “solid-to-solid” reaction systems [256], in which large (>100 μm) immo-
bilized enzymes are often chosen to facilitate separation by use of a sieve-plate re-
actor, as in the kinetically controlled enzymatic synthesis of -lactam antibio-
tics [17].

It has recently been found that industrially robust CLEA, with greater activity
both in organic solvents and in aqueous media, can be prepared by use of new
cross-linking technology [252]. The use of preformed soft hollow microsphere has,
moreover, enabled the preparation of CLEA with greater mechanical stability and
tailor-made size, and which are thus, in principle, applicable to any reaction sys-
tem, reactor configuration and reaction medium [253].

By combining the advantages of carrier-bound and carrier-free immobilized en-
zymes, CLEA with tailor-made properties with regard to both non-catalytic and cat-
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alytic function can be designed at will – an attractive proposition for industrial ap-
plications.

In general, the techniques currently used for creation of robust immobilized en-
zymes, which meet both catalytic requirements (desired activity, selectivity, and
stability) and non-catalytic requirements (desired geometric properties such as
shape, size and length) expected for a given process, are all characterized in that an
combined method are used to solve problems that are unsolvable by the straight-
forward method.

1.3
Immobilized Enzymes: Implications from the Past

Having discussed the historical development of immobilized enzymes in the past
90 years, we are interested in the status of immobilization techniques. In this sec-
tion, we briefly summarize what has been achieved, what more we can achieve,
and what will be achieved in the near future.

1.3.1
Methods of Immobilization

More than 5000 publications, including patents, have been published on enzyme-
immobilization techniques [259–263]. Several hundred enzymes have been immo-
bilized in different forms and approximately a dozen immobilized enzymes, for ex-
ample amino acylase, penicillin G acylase, many lipases, proteases, nitrilase, amy-
lase, invertase, etc., have been increasingly used as indispensable catalysts in sev-
eral industrial processes.

Although the basic methods of enzyme immobilization can be categorized into
a few different methods only, for example adsorption, covalent bonding, entrap-
ment, encapsulation, and cross-linking [264], hundreds of variations, based on
combinations of these original methods, have been developed [265]. Correspond-
ingly, many carriers of different physical and chemical nature or different occur-
rence have been designed for a variety of bio-immobilizations and bio-separa-
tions [143, 262, 263]. Rational combination of these enzyme-immobilization tech-
niques with a great number of polymeric supports and feasible coupling chemis-
tries leaves virtually no enzyme without a feasible immobilization route [266].

It has recently been increasingly demonstrated that rational combination of
methods can often solve a problem that cannot be solved by an individual method.
For instance, the physical entrapment of enzymes in a gel matrix often has draw-
backs such as easy leakage, serious diffusion constraints, and lower stability than
that for other immobilized enzymes. These drawbacks can, however, be easily
solved by rational combination of different methods. For instance, higher stability
can be achieved by means of the so-called pre-immobilization stabilization strate-
gy [266] or post-immobilization strategy [267].
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In the former case, the enzyme, for instance, can be first crosslinked to form sta-
bilized enzyme preparations e.g. CLEA. Subsequent entrapment endows the CLEA
with a suitable particle size and high mechanical stability [266]. Stabilization can be
also achieved by chemical modification [267]. For instance, chemical modification
of the soluble enzyme with a hydrophilic polymer often stabilizes the enzyme be-
cause of the introduction of a favourable hydrophilic microenvironment. Thus, the
subsequent entrapment of the stabilized enzyme often leads to the formation of
more stable enzyme, compared with the entrapped native enzymes [238, 267, 270].

In the later case, the entrapped enzyme can be further crosslinked, with the aim
of enhancing the stability or avoidance of enzyme leakage. For instance, -amylase
from Bacillus megaterium immobilized in BSA gel matrix and subsequently cova-
lently crosslinked was fourteen time more thermally stable than the native en-
zyme [269].

Because of these possibilities, a rational combination of the available methods
will definitely facilitate the design of robust immobilized enzymes that can suit
various applications. Consequently, use of immobilized enzymes is now becoming
commonplace in many fields, for example chemical, medical, pharmaceutical and
analytical applications [271–273], with the aim of enabling processes in continuous
mode, control of the processes, overcoming cost constraints, and solving problems
that were previously approached mainly by chemical means [274] or which could
not easily be solved by chemical methods.

There is, nevertheless, still a significant lack of systematic analysis of the meth-
ods available. Most enzyme immobilization has been performed without any
knowledge of structural information, and the relationship between the perfor-
mance of the immobilized enzyme and the method selected for immobilization
has, so far, rarely been defined or identified. Thus, a central task in the future de-
velopment of immobilization techniques is probably not to develop new methods
of immobilization but to establish guidelines linking the method selected with the
performance expected.

1.3.2
Diversity versus Versatility

Despite our increasingly understanding of enzyme-immobilization techniques,
and the numerous possible means of obtaining robust immobilized enzymes, de-
velopment of a robust immobilized biocatalyst which can meet the requirements
of modern biocatalytic processes – mild reaction conditions, high activity, high se-
lectivity, high operational stability, high productivity, and low cost [275] – still relies
on laborious trial-and-error experimental approaches [276]. Consequently, a crucial
question is whether it is possible to develop a generic method or to establish gener-
ic guidelines for enzyme immobilization. Obviously, the answer to this question
lies both in the reality of different immobilization techniques and the peculiarity of
each individual application. The establishment of the guidelines necessitates
systematic analysis of the methods available and the experimental information that
has been obtained in the past. The poor comparability of many experimental re-
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sults (obtained by different groups and people) seriously hampers the establish-
ment of such universally applicable guidelines, however.

On the other hand, the peculiarities of applications, for example the types of re-
action (hydrolytic reaction or reverse reaction), reaction medium (aqueous or or-
ganic solvents), reaction system (solid-to-solid, liquid-to-solid, liquid-to-liquid), re-
actor configuration (stir-tank, plug-flow), economic viability (cost contribution of
the immobilized enzyme, space-time yield and productivity) and the intrinsic char-
acteristics of the enzymes selected might differ from case to case. Thus differenc-
es between the peculiarities of each application also require specific solution of
each individual application.

It must, therefore, be expected that choice of the method of immobilization is
mainly dictated by the specific conditions and requirements of each application,
which should selectively employ the positive attributives of the method selected. In
this sense, the diversity of enzyme-immobilization techniques could be a powerful
asset in the design of robust immobilized enzymes, because changes in the pecu-
liarities of the applications often require design of new immobilized enzymes
which fit the new applications.

It has, for instance, been demonstrated that differently carrier-bound immobi-
lized penicillin G acylase (PGA) is not only suitable for catalysis of the hydrolysis
of penicillin G for production of 6-APA – the nucleus of semi-synthetic -lactam
antibiotics (amoxicillin or ampicillin) [277] – it has also recently been increasingly
applied to the synthesis of semi-synthetic -lactam antibiotics (amoxicillin or am-
picillin). In the hydrolysis many types of carrier-bound immobilized penicillin G
acylase can be used, for example PGA immobilized on Eupergit C (PcA) or PGA
immobilized on polyacrylamide, whereas for the synthesis of semi-synthetic anti-
biotics such as ampicillin, cephalotin, and cephalexin only few carrier-bound im-
mobilized penicillin G acylases, for example gelatin-bead-bound or agarose bead-
bound proved advantageous in terms of the high ratio of synthesized antibiotic to
hydrolytic product [17, 249, 277].

Another example is the development of immobilized amino acid acylase for use
in the production of chiral amino acids [278]. Among a number of preparations ob-
tained by different methods of immobilization, several promising products, for ex-
ample the enzyme ionically bound to DEAE-Sephadex, covalently bound to iodoa-
cetyl cellulose, or entrapped in PAAm polyacrylamide gel matrix, were screened for
further evaluation. Because of the possibility of regenerating the carrier, the stabil-
ity of the immobilized enzyme, the ease of immobilization, and the cost of the im-
mobilized enzyme, only DEAE-Sephadex was selected for the final process – reso-
lution of racemic amino acid esters. Remarkably, although amino acid acylase im-
mobilized on DEAE-Sephadex was the first enzyme used in commercial processes,
the same immobilized enzyme was recently found to be inactive for resolution of
racemic amines or alcohols in organic solvents [279].

The importance of diversity in enzyme immobilization techniques has recently
been beautifully demonstrated by screening of carriers for immobilization of gly-
colate oxidase. Twenty-one different carriers were screened, ranging from natural
polysaccharide-based carriers such as CNBr-activated agarose sepharose or epoxy
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activated agarose or sepharose, ionic exchange CH-sepharose, hydrophobic adsor-
bents such as phenyl sepharose, to synthetic organic carriers such as epoxy carriers
such as Eupergit C, Eupergit C250 L, azalactone carrier such as Emphaze, ionic ex-
changers Bio-Rex 70, hydrophobic adsorbent such as Amberlite XAD 4, XAD 8, to
inorganic carriers such as silanized CPG glass bead derivatives and silanized celite
derivatives. The coupling mode covers three types, namely physical adsorption,
ionic binding and covalent binding [280].

Remarkably, it was found that among the polysaccharide-based carriers immobi-
lized enzyme with higher activity and retention of activity was obtained with CNBr-
activated agarose Sepharose. In contrast, epoxy activated agarose or Sepharose usu-
ally afforded lower activity. Remarkably, comparable activity was obtained with
synthetic epoxy carrier, i.e. Eupergit C [280]. This example strongly suggests that
the performance of a carrier-bound immobilized enzyme is dictated by the physi-
cal and chemical nature of the carrier (e.g. chemical composition, binding chemis-
try, hydrophilicity, pore size and etc.) and that a good carrier or a suitable binding
chemistry for an enzyme is not necessary the right one for other enzymes or other
applications.

Because of the diversity of carrier nature in terms of the source (synthetic/natu-
ral, organic/inorganic), structure (porous/nonporous), the diversity in coupling
chemistry, the nature of the interaction (physical, specific adsorption, covalent),
designing or screening of a specific immobilized enzyme that suits a specific appli-
cation becomes possible.

Thus, there is no doubt that changing the type of reaction (hydrolysis or conden-
sation), the reaction medium (aqueous solutions or organic solvents), the reaction
system (heterogeneous or homogeneous), the reaction conditions, or even the sub-
strates might lead to a change in the criteria used to assess the robustness of the
immobilized enzymes. On the other hand, the diversity of carrier nature (physical
and chemical), the binding chemistry, and different immobilization methods pro-
vide us an indispensable tool for the design of robust immobilized enzymes.

1.3.3
Complimentary versus Alternative

Enzymes belong to the category of natural catalyst which includes DNA, RNA and
catalytic antibodies. A unique function of enzymes is that all the reactions they cat-
alyse, can be performed sequentially, selectively and precisely under mild physio-
logical reaction conditions. This unique feature makes enzymes very attractive for
synthetic chemistry, which is usually based on use of hazardous reactants and re-
action conditions.

There is, however, no doubt that many are not ideal catalysts for industrial appli-
cations, for example in the manufacture of fine chemicals [281, 282] and pharma-
ceuticals and their intermediates [283], in which the enzymes are usually exposed
to non-natural conditions such as high substrate concentrations, high pH, high
temperature and the use of deleterious organic solvents. Accordingly, for most 
industrial applications, they must be modified either by genetic engineering or by
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chemical modification, with the objective of improving their selectivity, activity and
durability under the process conditions. They must, furthermore, be used in the
immobilized forms, to reduce production cost by facilitating downstream process-
ing such as recycling and separation [284].

In the last decade, although it has been increasingly appreciated that genetic
engineering is a powerful tool for improvement of enzyme performance, enzyme
immobilization is the only technique, which can combine immobilization of an
enzyme with improvement of enzyme performance, for example stability, selectiv-
ity and activity [285]. Thus, immobilization-improvement strategies might be very
attractive for enzymes designed to be used in the immobilized form anyway (Sche-
me 1.3). In this sense, it is also increasingly recognized that rational immobiliza-
tion of enzymes by combining immobilization and genetic engineering might be
an alternative and complimentary technique for protein engineering.

Many examples have excitingly demonstrated that even for genetically engi-
neered enzymes performance can be further improved by immobilization tech-
niques and many examples have revealed that enzyme-immobilization techniques
are indeed an indispensable complimentary tool in enzyme engineering, due to its
potential for:

• combination of immobilization and improvement,
• modulation of enzyme performance by selecting appropriate method 

of immobilization, and
• combination of different immobilization methods.

As shown in Scheme 1.3, improvement by immobilization is obviously straightfor-
ward compared with genetic engineering. Furthermore, improvement by immo-
bilization does not normally obviate immobilization of the exact structure.
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As more information becomes available about the relationship between the per-
formance of the immobilized enzyme and the method selected, design of more ro-
bust immobilized enzymes at will, via the use of different immobilization tech-
niques, might be a reality in the near future.

It is currently possible to draw the conclusion that immobilized enzymes might
perform better than the native enzymes (improved stability, activity and stability) if
the method is correctly selected. This will be discussed in Section 1.3.4 [285–287].

1.3.4
Modification versus Immobilization

As already noted, the problem of enzyme immobilization is not how to immobilize
the enzyme but how to achieve the desired performance for a given application by
selecting an appropriate means of immobilization. Thus, it is also important to dis-
tinguish the two concepts – modification and immobilization – before we enter
discussion.

Although enzyme immobilization and improvement of enzyme performance by
immobilization share the same principles, the emphasis is different. The former is
mainly associated with efforts to find suitable immobilization methods for en-
zymes that must be immobilized for certain applications. Thus, the immobiliza-
tion technique developed is mainly intended to retain the major catalytic functions
of the native enzymes. In contrast, improvement-by-immobilization is focused
mainly on utilization of available immobilization techniques to alter (or improve)
enzyme performance, to suit the desired application. Thus, the native enzyme
might be not suitable for a desired process, because of its poor performance such
as lower activity, or stability or selectivity. Consequently, the technique to be devel-
oped should improve the performance of the enzyme besides immobilizing it. Be-
cause the success of the latter largely depends on knowledge acquired from experi-
mental information from the former application, we recognize it is essential to pro-
vide detailed analysis of the results so far obtained from improvement, by immo-
bilization, of three catalytic characteristics, i.e. activity, stability and selectivity, of
the enzymes.

1.3.4.1 Enhanced Stability
Of these three important characteristics of enzymes stabilization by immobiliza-
tion has been studied since the 1970s, when immobilized enzymes became in-
creasingly used in industrial processes, in which the cost-contribution of the im-
mobilized enzyme is often the indicator of process viability [285]. Since then, many
useful strategies have been developed for stabilization of enzymes by immobiliza-
tion, for example cross-linking, multipoint attachment and engineering of the mi-
croenvironment, confining the enzyme molecules, etc.

The stability of a native enzyme (i.e. a non-immobilized or modified enzyme) is
principally determined by its intrinsic structure whereas the stability of an immo-
bilized enzyme is highly dependent on many factors, including:
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• the properties of its interaction with the carrier,
• the binding position and the number of the bonds,
• the freedom of the conformation change in the matrix,
• the microenvironment in which the enzyme molecule is located,
• the chemical and physical structure of the carrier,
• the properties of the spacer (for example, charged or neutral, hydrophilic or 

hydrophobic, size, length) linking the enzyme molecules to the carrier, and
• the conditions under which the enzyme molecules were immobilized.

Whatever the reason, the enhanced stability resulting from immobilization can of-
ten be ascribed to the intrinsic features of individual immobilization processes, for
example:

• molecular confinement (which occurs often in the entrapment process, 
particularly the sol–gel process) [289];

• favourable microenvironment – achieved by selecting appropriate carriers [256]
or engineering the microenvironment by post-immobilization techniques [258];

• chemical modification effect in covalent bonding (such as formation of an extra
hydrogen bond as a result of chemical modification in the covalent immobiliza-
tion process) [290]; and

• rigidification of conformation as a result of multipoint attachment [184].

It might, nevertheless, also be true that many stabilization factors can be integrat-
ed into one immobilization process, as in the stabilization and immobilization pro-
cedures [291] and three-dimensional immobilization (by cross-linking crystalline
enzymes or enzyme aggregates) [16]. Also, it is very difficult to judge which meth-
od can give the most stable enzymes, because even the same method (let us say co-
valent immobilization) might lead to immobilized enzymes of different stability,
depending on the carrier selected, the immobilization conditions (e.g. enzyme
loading, pH, temperature, ionic strength, additives) [292] or subsequent treatment.

It will, however, never be found that an enzyme cannot be stabilized. Thus, sta-
bilization by immobilization can be always achieved by selecting a suitable immo-
bilization method. One can confidently state that stabilization by immobilization is
currently no longer an exception, because of our increasing understanding of the
immobilization processes. Remarkably, it has been found that even thermophilic
enzymes or extremophilic enzymes [293] can be further stabilized by immobiliza-
tion [239, 294–296, 230], suggesting that stabilization of enzyme by immobilization
can be additive.

1.3.4.2 Enhanced Activity
Observation of the enhancement of enzyme activity by immobilization can be dat-
ed back to the early 1960s, when Goldstein et al. noted that for trypsin immobilized
on a charged carrier the Km for charged substrates could be reduced by a factor of
fourteen [79], because of the so-called microenvironment effect.

It has been found that many types of enzyme immobilized by different immobil-
ization techniques have higher activity than the native enzymes. For instance, ep-
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oxy hydrolase adsorbed on DEAE-cellulose by ionic bonding was more than twice
as active as the native enzyme [344], lipase–lipid complex entrapped in n-vinyl-2-
pyrrolidone gel matrix was 50-fold more active than the native enzyme [298]. Acti-
vation by immobilization is, however, often regarded as an extra benefit rather
than a rational goal of enzyme immobilization.

Activity retention by carrier-bound immobilized enzymes is usually approxi-
mately 50 %. At high enzyme loading, especially, diffusion limitation might occur
as a result of the unequal distribution of the enzyme within a porous carrier, lead-
ing to a reduction of apparent activity [299]. The conditions for high activity reten-
tion are often marginal, thus often requiring laborious screening of immobiliza-
tion conditions such as enzyme loading, pH, carrier and binding chemistry [292].

Next to the microenvironment effect mentioned above, it has been demonstrat-
ed that immobilized enzymes can be more active than the native enzymes, when
the inhibiting effect of the substrate was reduced. For example, immobilization of
invertase from Candida utilis on porous cellulose beads led to reduced substrate in-
hibition and increased activity [301]. A positive partition effect (enrichment of sub-
strates in the proximity of the enzymes) might also enhance enzyme activity as was
observed for kinetically controlled synthesis of ampicillin with penicillin G acylase
immobilized on a positively charged carrier [302] or horse liver alcohol dehydroge-
nase immobilized on poly(methylacrylate-co-acrylamide) matrix [124, 157].

Greater retention of enzyme activity can occasionally be achieved, especially for
allosteric enzymes such as some lipases which have lids covering the active centre;
conformational change increases the accessibility of the active centre [303–306]. In
other instances of improvement of the molecular accessibility of enzymes by im-
mobilization, enhancement of enzyme activity relative to that of the native enzyme
powder can be achieved when the enzymes are intended for use in anhydrous or-
ganic solvents, for example lipase PS immobilized in sol–gel [236] or protease co-
valently bonded to silica, because of increasing dispersion of the enzyme mole-
cules and conformation induction.

In general, the activity of the immobilized enzymes can be enhanced by at least
ten different effects involved in enzyme immobilization:

• microenvironment effect,
• partition effect,
• diffusion effect (reducing the pH),
• conformational change,
• flexibility of conformational change,
• molecular orientation,
• water partition (especially in organic solvent),
• conformation flexibility,
• conformation induction, and
• binding mode.

For conformation-controlled activity it was found that the enzyme activity (U mg–1

protein immobilized) was strongly dependent on the nature of the carriers used.
For instance, the activity of lipase PS (Pseudomonas cepacia) immobilized on Toyo-
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nite, Celite, glass and Amberlite was highly dependent on the nature of the carrier.
The highest activity for transesterification in organic solvent was obtained with
Toyonite (37.2 μmol min–1 mg–1) and the lowest activity was obtained with Amber-
lite (0.4 μmol min–1 mg–1) [307]; the difference in activity is approximately two or-
ders of magnitude!

Enhancement of activity in organic solvents after immobilization by sol–gel pro-
cesses was clearly demonstrated for lipases, the activity of which in organic sol-
vents, relative to that of the native enzyme powders, can be increased at least five-
fold by use of conformer selectors such as surfactants or crown ethers, suggesting
that the presence of conformer selectors induced an active conformation, which is,
however, frozen by the corresponding immobilization process [47].

Molecular orientation-controlled activity of enzymes was observed early in
1972 [163]. In connection with this observation and enzyme immobilization in or-
ganic solvents, it was also demonstrated that the lipase from Mucor risopus immo-
bilized in organic solvent was more active in transesterification in organic solvent
whereas the lipase immobilized in aqueous medium had almost no activity in or-
ganic solvents. The author suggested that the position of binding of the enzymes
to the carrier in organic solvents is different from that when immobilization is per-
formed in aqueous medium [199]. Many other types of immobilized enzyme,
which can be categorized as immobilized enzymes with orderly oriented enzyme
molecules generally have higher activity or stability relative to the counterpart (ran-
domly immobilized enzymes), because of favourable accessibility or avoidance of
the modification of the active site [308].

The effect of conformation flexibility is often in contradiction with enzyme activ-
ity, i.e. reduction of enzyme conformation flexibility often reduces the enzyme ac-
tivity. This was confirmed initially by the observation that immobilization of an en-
zyme on a carrier via a suitable spacer often resulted in better retention of activity
than if the enzyme was immobilized without a spacer [309–312].

In contrast, higher activity has been achieved by increasing conformational flex-
ibility. For example, amino acid acylase immobilized ionically on DEAE-cellulose
has high activity after post-treatment with a denaturant, which could possibly en-
hance the enzyme conformational flexibility [352]. For enzymes acting in low-
water media, especially, enzyme conformational flexibility is much less than in
aqueous media. Thus, if the water content of enzyme preparations is kept to a min-
imum that enables the enzyme to have the highest conformational flexibility, max-
imum activity may be achieved in organic solvent because of higher conformation-
al flexibility. For quantitative control of water hydration level, water activity was de-
veloped [190].

Nevertheless, water activity is not the whole story of enzyme activity in organic
solvents. The fact that dehydration history largely dictates enzyme activity rather
than the water activity suggests that some dehydration processes might reversibly
deactivate the enzyme [313]. Consequently, it is concluded that the water-activity
concept is only valid when the enzyme preparation is not reversibly deactivated by
the process for dehydration.
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The effect of binding mode on the enzyme activity can be reflected by three fac-
tors – the number of bonds formed between the carrier and the enzyme molecules,
the position of the bonds and the nature of the bonds. It is easily conceivable that
the greater the number of bonds formed between the enzyme and the carrier, the
lower the enzyme activity, as demonstrated by immobilization of -galactosidase
E. coli and K. lactis on thiolsulphinate-agarose and glutaraldehyde-agarose [313].
The greater retention of activity with thiolsulphinate-agarose can be largely as-
cribed to the fewer bonds formed between the enzyme and the carrier – thiolsul-
phinate-agarose [314]. Indeed, these two enzymes are much richer in the lysine
residues than the cysteine residues. Thus, more bonds can be formed with gluta-
raldehyde-agarose, resulting in less retention of activity [314].

Interestingly, a recent example showed that α-amylase immobilized on thionyl
chloride (SOCl2) activated poly(Me methacrylate-acrylic acid) microspheres has
67.5% retention of activity whereas 80.4 % was achieved with carbodiimide (CDI)-
activated poly(Me methacrylate-acrylic acid) microspheres. Irrespective of whether
the enzyme is immobilized on the same carrier with the same binding nature. It
was, moreover, found that the former is twice as stable after storage for 1 month.
On the other hand the free enzyme lost its activity completely in 20 days. Apparent-
ly, this difference can be solely ascribed to the difference in the position of the
bonds formed [315].

1.3.4.3 Improved Selectivity
The selectivity of enzymes is nowadays becoming a powerful asset of enzyme-me-
diated asymmetric synthesis, because of the increasing need of the pharmaceutical
industry for optically pure intermediates [312].

In general, the selectivity of enzymes includes [317]:
• substrate selectivity – the ability to distinguish and act on a subset of compounds

within a larger group of chemically related compounds;
• stereoselectivity – the ability to act on a single enantiomer or diastereomer exclu-

sively;
• regioselectivity – the ability to act exclusively on one location in a molecule;
• functional group selectivity – the ability to act on one functional group selective-

ly in the presence of other equally reactive or more reactive functional groups,
for example the selective acylation of amino alcohols [318].

Although a dramatic change of enzyme selectivity by genetic engineering has been
beautifully demonstrated [225], there are also numerous attractive examples in
which enzyme selectivity has been changed by a variety of immobilization tech-
niques, for example covalent bonding, entrapment, and simple adsorption, as dis-
cussed in the following section (for details see Table 1.9). In several extreme in-
stances it has been demonstrated that a non-selective enzyme such as chloroperox-
idase was transformed into a stereoselective enzyme after immobilization [319];
the S-selective lipase has also been converted to R-selective CR lipase by covalent
immobilization [320].
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Table 1.9 Alteration of selectivity by immobilization

Method of Selectivity Remark Enzyme Ref.
immobilization

Adsorption Regioselectivity Non-selective chloroper- Chloroperoxidase 318
oxidase was transferred 
to stereoselective enzyme 
after immobilization

Adsorption, Enantio- Selectivity was improved Lipases 319 
covalent selectivity but dependent on the 340

reaction conditions

Covalent CPG Product map Subtilisin 324
Covalent Product map Resulted in different Proteases 326

product map

Covalent immobi- Different Resulted in different Urokinase 327
lization on glyoxal selectivity? selectivity
agarose

Covalent? Product map Immobilized on phenol- α-Amylase 328
formaldehyde resulted 
in different product 
composition 

Gelatin-entrapped, Action pattern The action pattern Glucoamylase 329
and surface-bound depended on how the 

enzymes were immobi-
lized, namely entrapped 
or linked to the surface

Adsorption on Substrate Resulted in changed Dextransucrease 330
DEAE-cellulose selectivity substrate selectivity 

relative to the native 
enzyme 

Adsorption Enantio- The selectivity of the Lipase CAL-B 331
selectivity enzyme is reduced

Covalent on Enantio- Selectivity is dependent Lipase CRL 332 
agarose selectivity on the carrier and 333 

binding chemistry

Covalent on silica Enantio- The enantioselectivity CRL 332
selectivity was enhanced 7-fold 

relative to the free 
enzyme with trichloro-
triazine as activating 
agent
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Table 1.9 Continued

Method of Selectivity Remark Enzyme Ref.
immobilization

Adsorption on Enantio- Simple adsorption Lipase CRL 334
celite selectivity enhanced the stability 

of Candida rugosa lipase 
against acetaldehyde, 
and the selectivity

Entrapment Enantio- Enhanced selectivity RML 335
selectivity compared with the 

native enzymes

Sol–gel Enantio- Chiral template Lipase 252
entrapment selectivity influenced enzyme 

selectivity

Entrapment in Enantio- Increased threefold the Pegylated PCL 336
Ca-alginate gel selectivity enantioselectivity of 
beads pegylated PCL in

Ca-alginate gel beads

Sol–gel Enantio- Immobilization can Fructose-1,6- 337
entrapment selectivity trap different enzyme bisphosphatase

conformation 

Double Substrate (Adsorption on solid 2-Mannosidase 338
immobilization selectivity carrier, followed by 
technique entrapment in alginate 

beads) resulted in 
different product 
spectrum

Covalent Reaction The ratio of condensa- Penicillin G 339
immobilization selectivity tion to hydrolysis in the acylase

kinetically controlled 
synthesis of -lactam 
antibiotics depended on 
the immobilization 
methods

Covalent Enantio- The enantioselectivity Mucor miehei 340
selectivity of lipase MML immobi- lipase

lized on oxirane carrier 
is dependent on newly 
introduced functional-
ities

Ionic binding Enantio- The selectivity is mainly Alkylsulphatase 350
selectivity dictated by the nature

of pending charged 
groups 
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In general, the selectivity that can be influenced by the immobilization techniques
can be classified into the following categories, according to the source of the effect:

1. Carrier-controlled selectivity
a) pore size-controlled selectivity
b) diffusion-controlled selectivity

2. Conformation-controlled selectivity
a) microenvironment-controlled selectivity
b) active centre-controlled selectivity

The effect of steric hindrance on enzyme selectivity, for example the product map,
was observed in 1970s [324]. For example, the product pattern of CPG (controlled
pore glass)-immobilized subtilsin-catalysed digestion of proteins can be affected 
by the pore size of the carrier used [325]. Similarly, immobilized ATP deaminase,

-galactosidase [325] and proteases also have different product maps [328, 329].
Urokinase covalently immobilized on glyoxal agarose has different selectivity [326].
α-Amylase immobilized on silica [329] or covalently bound to CNBr-activated car-
boxymethylcellulose [324] afforded products of composition different from that of
the native enzyme. This was largely attributed to the fact that the size of the pores
where the enzyme molecules are located determines the accessibility of the sub-
strates, depending on their size.

Diffusion-controlled enantioselectivity was reported recently after a study of the
enantioselectivity of lipase CAL-B in the transesterification in organic solvents
[332]. For the first time it was reported that diffusion can reduce the enantioselec-
tivity of enzymes. A relevant example worth mentioning is that simple adsorption
of lipase CRL on Celite not only enhanced the stability of Candida rugosa lipase
against acetaldehyde but also enhanced the enantioselectivity up to threefold [331].
It is possible that improvement of enzyme dispersion enhanced the enantioselec-
tivity of the immobilized enzymes relative to the enzyme powders.

The important implication of this discovery is that in diffusion-controlled enan-
tioselectivity reduced enantioselectivity is always accompanied by reduced reaction
rate [332]. When screening an enzyme for resolution of racemic compounds it is
essential to ensure that the enzyme preparation selected has no diffusion con-
straints. Otherwise the real potential of the enzyme might be overlooked [332].

Not only can immobilization change the selectivity (product map or enantiose-
lectivity), the presence of diffusion constraints can also affect the selectivity
between two reactions that might occur in parallel in the same reaction system.
One example is the kinetically controlled synthesis of peptides or -lactam antibio-
tics in which one of the reactants, for example an amino acid ester (or generally
called active acyl donor), can be integrated into the desired product (S) or hydro-
lysed into the unwanted amino acid (H) [17]. Thus the S/H ratio was regarded as a
criterion of the viability of the corresponding process [255].

As with conformation-controlled selectivity, there are often difficulties distin-
guishing microenvironment effect from conformation change. For instance, en-
trapment of RML in cellulose acetate–TiO2 gel fibre improved selectivity in the hy-
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drolysis of 1,2-diacetoxypropane, compared with that of native enzymes [336], and
the enantioselectivity of pegylated PCL was increased threefold by entrapment in
Ca-alginate gel beads [341]. In such cases the lipases might adopt a conformation
different from that in the native enzymes owing to interaction between the carrier
and the enzyme (change of the enzyme conformation) or to the micro-environ-
mental effect (pH gradient).

The micro-environmental effect has, however, been clearly demonstrated for 1,2-α-
mannosidase, for which a double immobilization technique, adsorption on china clay
or cellulose DE-52, followed by entrapment in alginate beads, was used; the product
spectrum obtained depended on the carrier used for adsorption before entrapment in
sodium alginate [339]. Similarly, the substrate selectivity of dextransucrease adsorbed
on DEAE-cellulose was different from that of the native enzyme [329].

Most strikingly, it has recently been found that the enantioselectivity of CRL im-
mobilized on silica activated with 2,4,6-trichloro-1,3,5-triazine was approximately
seven times higher than that of the soluble enzyme whereas CLR immobilized on
agarose activated with tosylate was only four times more selective than the native
enzyme [333], implying that chemical modification of the enzyme by active carriers
can also affect enzyme selectivity.

Similarly, it was recently found that enzyme activity and selectivity can be also
influenced by the nature of the pendant binding functionality. For example, the
enantioselectivity of alkylsulphatase immobilized on anionic exchangers such as
DEAE-Sephadex, TEAE-cellulose, and Ecetola-cellulose differed substantially, de-
pending on the pendant ionic groups. Immobilization of alkylsulphatase on Eceto-
la-cellulose enhanced the selectivity severalfold in the hydrolysis of sec-alkyl sul-
phates. Because TEAE-cellulose and Ecetola cellulose differ mainly in the spacer,
the selectivity of the immobilized enzyme is mainly dictated by the side chain and
the spacer of the binding functionality. Enhancement of the selectivity might be
because the charged groups might be able to approach certain negatively charged
domains or sites (e.g. the active sites) [351]

Conformation-controlled selectivity was also recently observed for so-called mo-
lecular impinging techniques, which are based on the hypothesis that the confor-
mation induced by a ligand can be frozen by physical or chemical means such as
lyophilization or cross-linking or molecular confinement. One possible explana-
tion is that the population of some enzyme conformers is enhanced by the con-
former selectors used and, consequently, enzyme selectivity toward some sub-
strates can be improved, as is exemplified by the so-called molecular imprinting
techniques (MIT) [251].

When improving the selectivity of enzymes by immobilization it is essential to
pay attention to medium engineering, because microenvironment–controlled se-
lectivity is not only related to the carrier selected but also to the medium used. Im-
mobilization of the enzyme often results in a change in the optimum pH or tem-
perature. Thus, enzyme characteristics such as activity and selectivity, which are
closely related to the pH and temperature, might be correspondingly changed. The
optimum pH for selectivity expression might also be different from that of the na-
tive enzyme; this was shown by a recent study of catalysis of the resolution of (R,S)-
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mandelic acid methyl ester by immobilized CRL [320]. In this process the extent of
selectivity enhancement was strongly related to the pH of the medium used.

In general, improvement of enzyme enantioselectivity by immobilization might
be attractive, because of its simplicity and universal applicability and because it
usually obviates the need for detailed structural information.

As discussed above, enzyme immobilization can be regarded as a modification
process. It is hardly surprising that the performance of the immobilized enzyme
depends on the modification (e.g. the immobilization conditions), the nature of the
modifier (i.e. the selected carriers) and the nature of the enzymes (source, purity
and strain) to be modified.

With regard to the similarity of enzyme immobilization and chemical modifica-
tion [321], many methods and principles which are widely used for chemical mod-
ification of enzymes to enhance enzyme functionality can also be used to improve
the performance of the carrier-bound immobilized enzymes. For instance, the sta-
bilization of enzymes by chemical modification can usually be achieved by two ma-
jor approaches – rigidification of enzyme scaffold with the use of a bifunctional
crosslinker and engineering the microenvironment by introduction of new func-
tional groups which favour of hydrophobic interaction (by hydrophobization of the
enzyme surface) or hydrophilization of the enzyme surface (because of mitigation
of unfavourable hydrophobic interaction) or formation of new salt bridges or hy-
drogen bonds (because of the introduction of polar groups) [322]. Similarly, these
two principles have been also increasingly applied to improve the enzyme perfor-
mance for instance the stability, selectivity and activity [323].

1.4
Prospective and Future Development

1.4.1
The Room for Further Development

Although the best method of immobilization might differ from enzyme to en-
zyme, from application to application and from carrier to carrier, depending on the
peculiarities of each specific application, criteria for assessing the robustness of
the immobilized enzymes remain the same – industrial immobilized enzymes
must be highly active (high activity in a unit of volume, U g–1 or mL–1), highly se-
lective (to reduce side reactions), highly stable (to reduce cost by effective reuse),
cost-effective (low cost contribution thus economically attractive), safe to use (to
meet safety regulations) and innovative (for recognition as intellectual property).

As with the volume activity (U enzyme g–1 carrier used), most enzymes bound to
carriers with particle sizes above 100 μm (minimum size requirements for a car-
rier-bound immobilized enzyme [284]) have a loading (or payload) ranging from
0.001 to 0.1. The volume ratio of catalyst to reactor is usually in the range 10–20 %.
Thus the productivity of most immobilized enzymes is still much lower than in
chemical processes, mainly because of the small number of active sites per kg of
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biocatalyst (low volume activity) [342]. For currently available porous carriers,
moreover, activity retention at maximum enzyme loading is often below 50 %, be-
cause of diffusion constraints [299].

Although development of carrier-free enzymes such as CLEA [16] or CLEC [233]
can eliminate the use of the extra non-catalytic mass-carrier, the intrinsic draw-
backs associated with the carrier-free immobilized enzymes, for example narrow
reactor configuration (because of the small sizes), laborious screening of condi-
tions for aggregation, crystallization and cross-linking, can hardly make them the
first choice for the bioprocess engineers.

Because the carrier not only functions as a scaffold for the enzyme molecules but
also strongly modifies the enzyme characteristics, it is conceivable that abandon-
ing the carrier might simultaneously reject a powerful means of modulating en-
zyme properties (both non-catalytic and catalytic function) which would easily be
obtained by use of appropriate carriers, binding chemistry and immobilization
methods.

As a result, it is to be expected that the focus in bio-immobilization should be the
development of a new method of enzyme immobilization that combines the advan-
tages of carrier-free and carrier-bound methods. In other words, the new method
of enzyme immobilization should be able to provide high enzyme loading (close to
that of carrier-free enzymes), high retention of activity, and broad reactor configu-
rations. No currently available method can meet these criteria. Thus, the develop-
ment of carriers with a predetermined chemical and physical nature, especially
suitable geometric properties and binding chemistry, which can bind (or hold) en-
zyme directly under mild conditions and thus can be used in different reactor con-
figurations, will continue to be the major focus of future developments.

As regards the stability of the immobilized enzymes, it is known that any type of
immobilization method (entrapment, encapsulation or covalent entrapment or ad-
sorption [335]) has the potential to stabilize the enzymes relative to the native en-
zymes or that an immobilized enzyme can be better-stabilized than others immo-
bilized by different methods. For example, lipase from Candida rugosa entrapped
in alginate gel was found to be more stable than the covalently bound enzyme on
Eupergit C or the enzyme encapsulated in a sol–gel matrix [347], and immobilized
glucoamylase entrapped in polyacrylamide gels was more stable than that covalent-
ly bound to SP-Sephadex C-50 [346]. Another striking example is that pronase and
chymotrypsin covalently attached to PDMS film are less stable than the entrapped
enzymes [349].

It is, therefore, appreciated that each enzyme-immobilization technique is
unique and thus the possibility of improving enzyme performance such as activity,
selectivity and stability, and pH optimum, is limited. For example, although multi-
point attachment can improve enzyme stability, the extent of this stabilization
might be limited because only a part of the protein surface is rigidified. Often, ad-
sorption of enzyme on carriers cannot be used to improve, significantly, enzyme
performance such as stability, compared with covalent enzyme immobilization.
For instance, covalently immobilized limonoid glycosyltransferase is much more
stable than its non-covalent adsorbed counterpart [350]. On the other hand, entrap-

351.4 Prospective and Future Development



ment of the enzyme in hard sol–gel matrix can often be used to stabilize the over-
all molecule in a spatially restricted three-dimensional matrix.

Thus, the matrix-entrapped enzymes are, occasionally, even more stable than the
covalently immobilized enzymes [349]. In contrast, encapsulation of enzymes in
semi-permeable capsules often has less effect on enzyme stability, because neither
the microenvironment of the enzyme nor the structure of the enzyme molecules is
significantly modified. Thus, it is not surprising that combination of a variety of
immobilization techniques will increasingly be used to solve problems which can-
not be solved by any single immobilization technique.

With regard to improvement of enzyme selectivity, although, as noted above,
there are many exciting examples of immobilized enzymes for which selectivity,
e.g. reaction selectivity, substrate selectivity, stereoselectivity or chemical selectiv-
ity, can be affected by the immobilization procedure [339, 343, 344], perhaps com-
bined with reaction medium engineering [341], improvement of enzyme selectiv-
ity by immobilization is still, fundamentally, a new endeavour, lacking guidelines
that can be used to guide practical experiments. Nevertheless, as with increasing
understanding of the relationship between enzyme selectivity and the structural
changes resulting from genetic engineering or other chemical modification, in-
creasing interest in improvement of enzyme selectivity by immobilization can be
expected in the near future.

1.4.2
An Integration Approach

As noted above, a vast number of methods of immobilization are currently avail-
able. Thus, the major problem in enzyme immobilization is not how to immobilize
enzymes, but how to design the performance of the immobilized enzyme at will.
Unfortunately, the approaches currently used to design robust industrial immobi-
lized enzymes are, without exception, labelled as “irrational”, because they often
result from screening of several immobilized enzymes and are not designed. As a
result, many industrial processes might be operating under suboptimum condi-
tions because of a lack of robust immobilized enzymes.

Another difficulty in rational design is that the comparability of different meth-
ods of immobilization is often very poor, mainly owing to inconsistency in the en-
zymes used (for example source, purity, contamination), the immobilization con-
ditions (time, pH, additives, ionic strength), the assay (substrate, concentration,
temperatures), the preconditioning of the carrier and the post-treatment of cata-
lysts. In addition, many data and results reported in the literature are often incom-
plete, so many conclusions or explanations are not only obscure but also controver-
sial and misleading.

We therefore surmise it might be more realistic to use a Lego approach. In oth-
er words, if the enzyme-immobilization method (or approach) can be generally di-
vided into several essential steps (or components), individual optimization of these
by use of a rational design might lead to the more rational creation of a robust im-
mobilized enzyme. Analysis of all the methods of immobilization currently avail-
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able has led to the proposal of a rational general approach to enzyme immobiliza-
tion based on three stages, selection of enzymes, selection of carriers, and selection
of conditions and post-treatments, as shown in Scheme 1.4.

Although many books and reviews dealing with enzyme immobilization ap-
peared in the second half of the last century, the subject still lacks systematic anal-
ysis of a general approach to enzyme immobilization, because the books available
merely report the feasibility or list the different immobilization techniques [265].
In this context, the author of this book will try to delineate the basic principles gov-
erning the individual approaches used to design robust enzymes (Scheme 1.4) and
to provide a rational basis for future development of immobilized enzymes.
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