1 Molecules with Holes – Cyclodextrins

Helena Dodziuk

1.1 Introduction

Cyclodextrins, CyDs, are macrocyclic oligosugars most commonly composed of 6, 7, or 8 glucosidic units bearing the names α-1, β-2, and γ-3 CyD, respectively [1–3]. Other, usually smaller, molecules (called guests) can enter their cavity forming inclusion complexes with these hosts. α- and β-CyDs are believed to have been isolated for the first time at the end of nineteenth century [4] while their first complex seems to have been reported early in the twentieth century [5]. However, it took more than 50 years to establish and confirm the structure of CyDs. Today we take for granted the idea of inclusion complex formation by these macrocycles, but when it was suggested by Cramer in the 1940s the idea was not, to put it mildly, generally accepted. Cramer said later with considerable enjoyment [6]: “When I presented my results for the first time at a meeting in Lindau, Lake Konstanz, I met fierce opposition from some parts of the establishment. One of my older (and very important) colleagues even stated publicly and bluntly in the discussion that he would try to remove a young man with such crazy ideas from the academic scene. But there was also a good number of supporters, so I finally made it.”

According to Stoddart [6], “Cyclodextrins are all-purpose molecular containers for organic, inorganic, organometallic, and metalloorganic compounds that may be neutral, cationic, anionic, or even radical.” They are usually built of glucopyranoside units in the \(C_1 \) conformation (Fig. 1.1). In most cases these host molecules have an average structure of a truncated cone with a cavity lined with H3 and H5 protons and lone pairs of glycosidic oxygen atoms lying in a plane thus endowing the cavity with hydrophobic character, while the bases formed by the primary and secondary OH groups bestow a hydrophilic character (Fig. 1.2). The great significance of CyDs both in research and applications lies in their ability to selectively form inclusion complexes with other molecules, ions, or even radicals. This phenomenon bears the name molecular recognition while the selectivity in the formation of complexes with enantiomeric species as guests is called chiral recognition. Complex formation changes the properties of both host and guest, allowing one to monitor the process by several experimental techniques. On the basis of X-ray
Fig. 1.1. Notation of conformations of the glucopyranoside ring.

1. Molecules with Holes – Cyclodextrins
measurements, native CyDs 1–3 have for years been considered to possess a rigid, truncated-cone structure [7–9]. This view is inconsistent both with the CyDs’ ability to selectively complex guests of various shapes and with several experimental and theoretical findings, discussed later in this chapter. These data reveal the amazing flexibility of the CyD macrocycles. The implications of the non-rigidity of CyDs for their complexing ability, and its influence on the results obtained using different experimental techniques, are also presented there. One of the most striking examples of this kind is provided by the different mode of entrance of the guest in the complex of nitrophenol 4 with permethylated \(\alpha \)-CD 5 \((R1 = R2 = R3 = \text{Me})\) [10] in the solid state and in solution shown in Fig. 1.3.

The ability to predict recognition by CyDs would be of great practical value, especially for drug manufacturers. Consequently, several models of chiral recognition by CyDs have been proposed in the literature, neglecting the complexity of the complexation process involving very small energy differences between the complexes with enantiomeric species. The models critically reviewed later in this chapter are mostly based on very few experimental data and some of them contradict
the basic properties of three-dimensional space. For instance, the most often used 3-point Dalgleish model [11] is incompatible with the basic requirement of three-dimensional space that at least four points (not lying in a plane) are necessary for an object to be chiral [12, 13].

Numerous CyD derivatives have been synthesized with the aim of improving their complexing properties and to make them suitable for various applications, in particular to increase the bioavailability of a drug complexed with a particular CyD derivative. By appropriate choice of host and guest one can achieve a very high selectivity. For instance, \(\text{6} \) is complexed much more strongly by the dimeric host \(\text{7} \) than is \(\text{8} \) [14]. Numerous CyD derivatives mono- or polysubstituted in positions 2, 3 and/or 6 by alkyl groups 5, 9 as well as modifications of hydroxyl groups.
to sulfopropyl, carboxymethyl, tosyl, aldehyde, silyl, and many other groups have been obtained [15, 16]. The reactivity of CyD and the plethora of exciting CyD structures developed, among other reasons, to enhance and modify their complexing ability will be shown in Chapter 2. Fascinating CyD structures include, among others, 10 [17], 11 [18], amphiphilic 5 \((R_1 = R_2 = \text{OH}, R_3 = \text{CH}_2\text{S(\text{CH}_3)}_3\text{C}_6\text{F}_{13} \) [19], capped 12 [20], peptide appended 13 [21] and 2:2 complex 14 formed by the CyD dimer with porphyrin and zinc ion [22]. On the other hand, obtaining dimers
of isomeric naphthalenic acid, using an appropriately substituted \(\gamma \)-CyD template to exert control of the reaction’s stereochemistry, shows a very elegant method making use of the encapsulation of two naphthyl-involving substituents on different glucopyranoside rings (Fig. 1.4) [23].

Exciting CyDs involving oligomers and polymers both covalently bound and self-assembled will be presented in Chapter 3 while their SPM observations and some
polymers having catenane or rotaxane structures (Fig. 1.5) will be discussed in Section 10.6 and Chapter 12.

CyD catalysis, discussed in Chapter 4, and the application of CyDs as enzyme models constitute a fascinating field. The influence of a specific CyD on the stability of the included molecule can have, like the two-headed god Janus, contrasting consequences. Mostly, luckily for pharmaceutical applications, complexation with CyD usually stabilizes the guest. (However, it can also catalyze its decomposition as is the case with aspirin 16 [24] preventing its application in the form of a CyD complex.) CyDs are known to catalyze numerous reactions. Notably, the catalytic activity is usually not high, but (a) it can reach high values in a few cases as evidenced by the ca. 1.3 million-fold acceleration of the acylation of β-CyD 2 by bound p-nitrophenyl ferrocinnamate 17 [25] and (b) CyDs may impose limitations on the reaction’s regioselectivity. Chlorination of anisole in the absence or presence of α-CyD illustrates this point [26] (Fig. 1.6) since it is known to produce only para-substituted isomers in the presence of α-CyDs while both meta- and para-isomers are obtained in its absence [27]. It should be stressed that, although the catalytic activity of CyD can achieve high levels [25, 28], these oligosaccharides are much more effective in inducing stereo- or regioselectivity than in genuine catalytic action. Another example of regioselectivity induced by γ-CyD was presented earlier in Fig. 1.4.

An exciting field of considerable importance related to CyD catalysis is their use as enzyme models by testing the reactivity of appropriately substituted CyDs [29–32]. For instance, to mimic the cleavage of RNA followed by cyclization of phosphate ester with subsequent hydrolysis using imidazole groups of Histidine-12 and Histidine-119 of ribonuclease A, isomeric diimidazole-substituted at C6 positions β-CyDs 18–20 were synthesized [29] and checked for their influence on the
Interestingly, contrary to the classic mechanism proposed for this reaction, the close to linear arrangement of imidazole 21 groups in 20 did not lead to the most efficient catalysis, causing the abandonment of the mechanism commonly accepted in textbooks. The catalytic action of nuclease, ligase, phosphatase, and phosphorylase was also analyzed using more complicated CyD derivatives [33].

Fig. 1.4. Regioselectivity of the reaction of the included guest: schematic views of (a) disubstituted γ-CyDs, (b) the course of the reaction, (c) the product and yield of the reaction.
Fig. 1.5. Schematic catenane (a) and rotaxane (b) structures.
As mentioned before, CyDs and their complexes elicit a vivid interest as systems that allowing us to study the factors that drive the selective complexation known as molecular recognition. Particularly great interest is focused on the differentiation between enantiomers of guest molecules by their complexation with CyDs, i.e. on chiral recognition. This will be of great importance in future CyD applications, in particular in the pharmaceutical industry, since most drugs and the active sites in which they operate are chiral. As a consequence (remember a small child trying to put his foot into the other shoe?), enantiomers of several drugs have been found to exhibit different pharmacological activities [34]. The differences may go so far as to result in harming instead of healing. (The old thalidomide tragedy, when pregnant women taking this drug in the racemate form later gave birth to babies with crippled extremities, was sometimes interpreted in terms of the teratogenic activity of its second enantiomer [35]. However, the recent revival of interest in thalidomide drug for various illnesses [36–38] should be acknowledged.

Chromatography is one of the most important methods for direct studies of molecular and chiral recognition by CyDs. Today it has split into several branches, e.g. gas chromatography, GC, high-performance liquid chromatography, HPLC, and capillary electrophoresis and other electromigration techniques, that enable us not only to detect the recognition but also to estimate the complex stoichiometry and formation constant and, consequently, the enthalpies and entropies of complex for-
The amazing sensitivity of CyDs to the shapes of guest molecules or ions may be illustrated by the big difference among retention times of the complex of 1,8-dimethylnaphthalene $23h$ with 2 on the one hand and those of other isomers $23a$–$23g$ on the other, determined by gas–liquid chromatography (discussed in Chapter 4 in more detail) [39]. Such a big difference is most probably caused by a difference in the stoichiometry of these complexes. Namely, the latter complexes are of 1:1 stoichiometry while in the former one guest molecule is mostly embedded in a capsule formed by two host CyDs [40]. The striking change in elution order with temperature rise indicates the importance of the entropy factor and of CyD flexibility on the complex stability [41]. Similarly, the dependence of the elution order of the enantiomers of phenothiazines 24 complexed with γ-CyD 3 on the buffer used shows the complexity of the complexation process [42]. Molecular and chiral recognition by CyDs, as studied mainly by HPLC and GC, will be presented in Chapter 5 together with the application of this method for studying complex stoichiometries and stability constants while a wide range of chromatographic methods used for enantioseparations will be discussed in Chapter 6.

In most cases, CyD structures are elucidated on the basis of X-ray studies which will be presented in Chapter 7 together with the results of a few, but very interesting, neutron diffraction investigations. They include systems of $O2H \rightarrow O3$ and $O3H \rightarrow O2$ hydrogen bonds in β-CyD 2 rapidly interchanging at room temperature (Fig. 1.7) [43]. Freezing the process and accurately determining the positions of hydrogen atoms using neutron diffraction [9] allowed the determination of the
circular systems of the bonds shown in the figure. The mechanism of simultaneous change of directions of hydrogen bonds in 2 is called “flip-flop”. Other fascinating examples of X-ray determined CyD structures are provided among others by [3] catenane-type CyDs 25 [44], the sixteenfold deprotonated γ-CyD dimer with Pb ions 26 [45], and the complex of an alkali ion buried inside a capsule formed by two crown ethers, in turn inserted in another capsule built of two γ-CyD molecules, the whole system resembling a Russian doll [46, 47].

The forces driving complexation by CyDs cannot be understood without a knowledge of the energy differences and barriers involved in the complexation. The calorimetric measurements, involving isothermal titration calorimetry and differential scanning calorimetry are discussed in Chapter 8. They give the most accurate thermodynamic data characterizing the complexes. In particular, these data provide further examples of the amazing enthalpy–entropy compensation that is not limited to CyD complexes [48]. Exciting studies of isotope effects on complex formation are also discussed there.

X-ray and neutron diffraction studies yield precise information on the CyD structure in the solid state. On the other hand, in addition to the information on the structure and dynamics of complexes in the solid state, NMR spectra allow elucidation of the structure in solution, which is of particular importance since most CyD applications take place in this state. (Even if we take a drug as a CyD complex in the form of a pill it dissolves in the stomach before acting.) NMR studies can give not only unequivocal proof of the complex formation in form of, usually small, chemical shifts but also, by studying the NOE effect [49], they can show how the organic guest molecule enters the host cavity in the solid state and in solution. The spectra are also sensitive to the dynamics of the complex and so they provide
information on the complex's nonrigidity showing the host and/or guest movement even in the solid state where, owing to positional and time averaging, X-ray results point to a single rigid structure. This is the case for the complex of benzyl alcohol 27 with 2 for which 2H NMR spectra indicate a rapid flip of the aromatic ring around the C1C4 axis [50]. In addition to information on the complex's
stoichiometry and stability constants, in favorable cases the study of relaxation rates in 1H NMR spectra can show the orientation of the guest in the host cavity in solution, which no other technique can give, as shown for the complexes of camphor enantiomers 28 with 1 [51]. The kind of information on CyDs and their complexes that can be provided by NMR studies is discussed in Chapter 9 while Chapter 10 is devoted to the application of other physicochemical methods (UV, circular dichroism, mass spectroscopy, electrochemistry, AFM and STM, etc.) to the elucidation of the structure of CyDs and their complexes. Some of these methods are usually less sensitive to complex formation involving CyDs, but the effect can be considerable in specific cases and is of importance for applications in sensors and other devices. Although CyDs themselves do not have electroactive groups, electrochemical studies of their complexes form the basis of their future applications. Dendrimers with electroactive end groups like 29 [52] forming multiple CyD complexes are, probably, one of the most interesting examples in this area. Of course, mass spectra are most frequently used to prove the synthesis of a CyD derivative but, as shown in this chapter, they can be a source of valuable information on CyD complexes. New, rapidly developing AFM and STM techniques allowing the study of CyD aggregates on surfaces will also be presented there. They provide information on a single molecular aggregate or superstructures formed by
them. In particular, rotaxane-type structures 15b (discussed in detail in Chapter 12) can be observed with atomic resolution by the latter method.

The possibility of predicting the molecular and chiral recognition ability of CyDs would be of great value, in particular for the pharmaceutical industry. The need for reliable theoretical treatment of CyD complexes is also reflected in several chapters in this book. Numerous studies applying quantum mechanics [53], molecular mechanics [54], and molecular dynamics [55] have been published by researchers fascinated by beautiful computer models and the ease of carrying out the calculations. The complexity of the complexation process and its consequences for the nonrigidity of CyDs, as well as the limited accuracy of the calculations, are neglected in most of these studies. Modeling of CyDs and their complexes and the dependence of the results of calculations on the assumed model and its parameterization are critically reviewed in Chapter 11.

The exciting catenanes, like 25 [44], and rotaxane molecular necklace 30 of 1:n stoichiometry incorporating $n = 20–22$ α-CyD macrocycles [56], respectively, falling into the realm of topological chemistry [57] will be shown in Chapter 12. These systems, also discussed in Chapters 10.6 and 16, form the basis of exciting applications. Large CyDs such as the 12-membered 31, which differ dramatically from native CyDs in properties and, most probably, in complexing ability, will be discussed in Chapter 13. In particular, contrary to the structure of 1–3, large CyDs do not have truncated-cone average structures with glycosidic oxygen atoms lying approximately in a single plane, but some of them are known to be twisted allowing for formation of hydrogen bonds between OH groups of distant glycosidic units [58].

Chiral recognition by CyDs is of primary importance for the pharmaceutical industry since the second enantiomer of a drug, usually present as 50% impurity as the result of chemical synthesis, can be harmful. Therefore, an effective preparative separation of enantiomers is one of the important goals of applied CyD research since at present it has not reached the industrial scale. Today the main CyD application in the pharmaceutical industry is their use as drug carriers, since CyD containers in most cases stabilize and solubilize the included drugs (see, how-
ever, the aspirin case mentioned above). Moreover, the slow release of a drug from
the complex results in its higher and more uniform content in the organism,
allowing less frequent administration of the drug. Interestingly, CyD applications
in drug delivery were considerably delayed by the erroneous determination of their
toxicity at an early stage of development [59]. Today we know that they are not
harmful in most cases by oral, parenteral, nasal, or skin administration [60]. CyD
applications in the form of inclusion complexes in the pharmaceutical industry in
general are presented in Chapter 14 with a detailed discussion of the ways in
which various CyD types (hydrophilic, hydrophobic, or ionizable ones) affect the
bioavailability of drugs by influencing their solubility and the rate of release from
the CyD complex. A small section on site-specific drug delivery is also included.
The even better therapeutic effect of drugs in the form of emulsions, micro-
particles, nanoparticles, and higher aggregates is given in Chapter 15.

CyD applications are by no means restricted to the pharmaceutical industry. Sev-
eral examples, mainly prospective ones, are scattered throughout this book. CyDs
are used to remove unpleasant tastes, odors, or other undesirable components in
the food industry, in agrochemistry, cosmetics, dyeing, cleaning, and in many other
areas. To name just a few examples of numerous CyDs applications: grapefruit
juice loses its unpleasant taste when its bitter component naringine is removed by
complexation with β-CyD [61]; similarly, removal of phenylalanine and tyrosine
makes the food harmless for those suffering from phenylketonuria [62]. Garlic retains all its health benefits but lacks its annoying odor when applied in the form of a CyD complex. Similarly, other flavor components (such as apple, citrus fruits, and plums) and spices (cinnamon, ginger, horseradish, menthol, etc.) are marketed as β-CyD complexes characterized by high stability exhibited towards heating during industrial food processing [63–66]. The problems encountered by the use of CyDs for stabilization of mixtures has to be mentioned here since the components involved can be released at different rates, changing the taste or smell of the product. The creation and higher stability of foams used in both the food and cosmetic industries is also favored by the complexation. Interestingly, CyD applications should not only improve the properties of a marketed product but, consistently with modern trends, they are also aiming at creating new needs by producing new types of products with unheard of properties. A long-lifetime fragrance-releasing room-decorating paint is one example of such applications [67]. A few examples of numerous CyD applications in industries other than pharmaceuticals are briefly presented in Chapter 16, which concludes with the presentation of their thought-challenging prospective applications in molecular devices and machines.

The cyclodextrin field is rapidly expanding. According to information from the Cyclolab website, 3.9 articles per day on CyDs were published on average in 1995. This figure increased to 4.4 in 2004 (http://www.cyclolab.hu/literature_0.htm) and is still growing. The field is not only very large but also highly diversified. This is probably the reason why no general modern comprehensive monograph on CyDs has been available [1–3, 16, 68–71] for so long. We would like to bridge this gap, providing a survey of the whole exciting area with numerous references to help novices to enter this domain on the one hand and to give researchers in a specific field a broader insight into the whole area on the other. We apologize for not being able to mention, even briefly, numerous valuable works on CyDs but we hope to have given the picture of the whole CyDs field, illustrated by representative examples of the respective research and applications.

1.2 Cyclodextrin Properties

In the standard way, native CyDs 1–3 are obtained by enzymatic degradation of starch. First obtained in minute amounts and very expensive, in particular α- and γ-CyD, they now cost less than $10/kg, making their large-scale industrial use feasible [72]. IUPAC names of these macrocycles are cumbersome; 5,10,15,20,25,30,35-heptakis-(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoc-tacyclo[31.2.2.2. 6.28; 11.213; 16.218; 22.213; 26.228; 31]nonatetracontane-36,37,38,39,40,41,42,43,44,45,46,47,48,49-tetradecol for β-CyD makes the use of trivial names necessary. Lichtenthaler and Immel proposed a general system of naming macrocyclic oligosaccharides [73] but it has not been generally accepted and used. The chemical, physical, and biological properties of CyDs, and in particular their toxicity by various type of administration, are summarized in Ref. [60] while their stability when
treated by various enzymes is presented in Ref. [74]. Some of their properties are given in Table 1.1.

As mentioned earlier, native CyDs are usually obtained by biochemical processes [72]. However, a 21-step synthesis of 1 with 0.3% total yield [75] and that of 3 [76] with 0.02% yield are worth mentioning. The macrocycle built of only five gluco-pyranose rings 32 [77] (thought to be too strained to exist on the basis of model calculations [78]) and probably thousands of CyD derivatives have been synthesized [15, 16]. Several exciting CyDs have been presented earlier. Here CyDs having glucopyranoside ring(s) in 1) [79–81] or skew conformations [82], those incorporating other than glucopyranoside units [83] and large CyDs having from 9 to

Table 1.1. Some properties of native CyDs [60]*

<table>
<thead>
<tr>
<th></th>
<th>α-CyD 1</th>
<th>β-CyD 2</th>
<th>2γ-CyD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of glucose units</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>972</td>
<td>1134</td>
<td>1296</td>
</tr>
<tr>
<td>Approximate inner cavity diameter (pm)</td>
<td>500</td>
<td>620</td>
<td>800</td>
</tr>
<tr>
<td>Approximate outer diameter (pm)</td>
<td>1460</td>
<td>1540</td>
<td>1750</td>
</tr>
<tr>
<td>Approximate volume of cavity (10^4 pm^3)</td>
<td>174</td>
<td>262</td>
<td>427</td>
</tr>
<tr>
<td>[s]_D at 25 °C</td>
<td>150 ± 0.5</td>
<td>162.5 ± 0.5</td>
<td>177.4 ± 0.5</td>
</tr>
<tr>
<td>Solubility in water (room temp., g/100 mL)</td>
<td>14.5</td>
<td>1.85</td>
<td>23.2</td>
</tr>
<tr>
<td>Surface tension (MN/m)</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>Melting temperature range (°C)</td>
<td>255–260</td>
<td>255–265</td>
<td>240–245</td>
</tr>
<tr>
<td>Crystal water content (wt.%)*</td>
<td>10.2</td>
<td>13–15</td>
<td>8–18</td>
</tr>
<tr>
<td>Water molecules in cavity</td>
<td>6</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

*a Some data on these and larger CyDs are also given in Tables 9.1 and 13.1.
more than 100 monosaccharide rings (discussed in Chapter 13) should be mentioned [58, 84, 85]. Interestingly, three unusual CyD derivatives have been found in nature [86].

As discussed in Chapter 7, native CyDs can form complexes with differing amounts of water. CyDs are seldom really empty. Even if they do not contain another guest there is usually at least one solvent molecule in their cavity. Almost all their applications involve inclusion complex formation when one or more molecules are at least partly immersed in the CyD cavity. The complexes can be obtained both in solution (sometimes requiring heating or the use of a cosolvent) or in the solid state, e.g. by cogrinding or milling [87]. In solution, they exist in a rapidly exchanging equilibrium of the free CyD host and guest. As mentioned before, CyD complexes of different stoichiometry are known. In addition to 1:1 complexes like 4@5 (R1 = R2 = R3 = Me) [10], the 1:2 ones like those of camphor enantiomers 28 embedded in a capsule formed by two α-CD 1 [51] and that of C60 buried in two γ-CyD molecules 3 in a similar way [88], 2:2 complex 14 [22] or even rotaxane molecular necklace 29 of 1:n stoichiometry involving n = 20–22 α-CyD macrocycles [56] are known. In spite of the years that have passed from the publication of the Szejtli review [89], his statement “The ‘driving force’ of complexation, despite the many papers dedicated to this problem, is not yet fully understood.” is still valid. The complexation process in a, mostly water, solvent is considered to involve a release of water molecule(s) from the relatively hydrophobic CyDs’ cavity, removal of the polar hydration shell of the apolar guest molecule, entry of the guest into the empty CyD cavity where it is stabilized mainly by weak but numerous van der Waals attractive interactions, restoration of the structure of water around the exposed part of the guest, and integration of this with the hydration shell of host macrocycle. Thus, a change in both enthalpic and entropic contributions occurs in complex formation that depends on the host- and guest-induced fit [90], the solvent used, and numerous other factors. On the other hand, in the solid state the magnitude of the crystal forces is comparable with the forces keeping the complex together. Thus, as exemplified by 4@5 (R1 = R2 = R3 = Me) [10], they can influence the complex’s structure and dynamics which is considerable even in the solid state. To summarize: CyD complexes are very difficult to study since (1) for poorly soluble species the complexation process can be much more effective for impurities (present in minute amount in the solution) than for the guest under investigation; (2) the process depends heavily on the experimental conditions (pH, cosolvent, temperature, etc.); (3) the complexes can involve species of different stoichiometries, e.g. dimethylnaphthalenes 23a–g and 23h [40], or an additional solvent molecule can enter the cavity as a second guest resulting in ternary complex formation [91, 92] (interestingly, complexes of even higher stoichiometry, involving two CyDs, one pyrene, and two cyclohexanol guest molecules [92] are known); (4) the experimental results for a CyD complex can depend on the technique used since the CyD complexes are held together by weak forces (one example of this kind was shown in Fig. 1.3 [10]); (5) Reliable theoretical studies for CyD complexes are extremely difficult to obtain since, as discussed in detail in Chapter 11, these large systems are characterized by energy surfaces exhibiting numerous very shal-
low local minima separated by low energy barriers [93, 94]. The size of the system and its n-fold degeneracy (n = 6, 7, 8 for α-, β-, or γ-CyD, respectively) also make it difficult to compare X-ray geometrical parameters for, for example, complexes with different guests. As discussed in detail in Section 1.4, one can either attempt to analyze the values of all internal parameters (e.g. of 126 bond lengths in α-CyD, etc.) in the series, which gives a very nontransparent picture, or compare the values of, for instance, the C2O2 bond length averaged over all saccharide rings, losing a lot of information by such an approach.

1.3 Cyclodextrin Nonrigidity [94, 95]

On the basis of X-ray studies [7–9], for tens of years CyDs structure was thought to resemble a rigid truncated cone of the high C₆, C₇, or C₈ symmetry for α-, β-, or γ-CyD, respectively, with a planar ring of glycosidic oxygen atoms [8, 96, 97]. Numerous experimental and theoretical data are incompatible with the concept of rigid CyDs. First of all, a general analysis of these systems shows that there is no physical reason for the rigidity, since the macrocycles are built of relatively rigid glucopyranose rings connected by ether C–O bonds, characterized by a low barrier to internal rotation of ca. 1 kcal mol⁻¹ [98]. This reasoning was supported by model molecular mechanics calculations on α-CyD [93] showing that (a) the usually depicted structure with planar rings formed by glycosidic oxygen atoms does not correspond to the energy minimum and (b) the energy hypersurface exhibits several energy minima separated by low barriers. With regard to CyD complexes, they are held together by weak intermolecular interactions which somewhat limit the macrocycle’s mobility but cannot endow the macrocycle with considerable rigidity.

It should be emphasized that a rigid structure for CyDs is also incompatible with the ease of formation of inclusion complexes of various shapes, since the latter implies an effective fitting of the host and guest to each other [90]. Most experimental proofs of the nonrigidity of CyDs come from NMR studies not only in solution but even in the solid state. If CyDs were not flexible then the spectra of complexes with aromatic guests in solution should exhibit several signals for, e.g. H₃ CyD protons on different glucopyranose rings pointing into the cavity (Fig. 1.2). This is not the case [99]. Moreover, NMR studies in the solid state show that the rings included in the CyD cavity can exhibit a rapid flip around the C1C4 axis. One example is provided by 27@2 for which ²H NMR spectra are incompatible with the rigid structure [50]; similar evidence has been obtained on the basis of ¹³C NMR spectra [100, 101]. The rapid inversion of cis-decalin 33 in the complex with 2 at room temperature frozen at 233 K, observed in both ¹H and ¹³C NMR spectra [102, 103], is also incompatible with CyD rigidity.

The very fast internal movement of native CyDs and of most of their derivatives, leading to the observation of averaged structures by most experimental techniques, is frequently overlooked. In addition to the temperature-dependent process of self-inclusion of substituent(s) [104–107], we were able to find only two studies of substituted CyDs in which movement of the macrocycles was at least partly frozen [104, 108]. Some other experimental results proving CyD flexibility using NMR
and/or other methods [109–114] (discussed in more detail in Ref. [95] have also been reported. Raman studies of H/D and/or D/H exchange rates and those of H₂¹⁷O in the solid CyD hydrates also indirectly proved the nonrigidity of CyDs [115, 116]. Interestingly, in spite of the time and space averaging characteristic of X-ray and neutron diffraction, arguments in favor of the nonrigidity of native CyDs have been also recently reported on the basis of these techniques. For instance, neutron diffraction study of powder and single-crystal samples of β-CyD crystallized from D₂O shows 11 lattice D₂O molecules occupying 16 positions while deuteron nuclear resonance spectra of the same species exhibited only a single exchange-averaged doublet, proving nonrigidity by showing that D₂O molecules freely move between these sites in a time less than 10⁻⁶ s [117]. Similarly, the positional disorder of 6 water molecules included in the cavity of β-CyD crystal containing 11 H₂O molecules per oligosaccharide and the orientational disorder (flip-flop, Fig. 1.7) exhibited by the hydroxyl groups also point to CyD nonrigidity [118].

On the basis of X-ray analysis, methylated or acetylated CyDs are sometimes considered to be more flexible than the native ones (see Chapter 7). Such a conclusion seems unfounded since X-ray diffraction can yield straightforwardly only the structure of the macrocyclic ring averaged over time and space, not its mobility. As a matter of fact, native CyDs are more flexible, and thus more difficult to freeze, than permethylated ones. This fact is frequently overlooked since the above mentioned averaging is not taken into account. As shown above, NMR spectra in solution and in the solid state are much more sensitive to CyD flexibility and clearly prove their nonrigidity.

The shape and flexibility of CyDs larger than γ-CyD (n > 8) are briefly discussed in Section 13.4. Of course, they must be influenced by the macrocycle ring size and should be different for those with n = 9 or 10 from the giant ones with n = 50 or 100. It is interesting to note that for n = 26 the macrocyclic ring is twisted, with hydrogen bonds linking the hydroxyl groups on opposite sides of the ring [119]. Some interesting observations on the considerable flexibility of large CyDs are also given in Section 13.4.

1.4 Models of Chiral Recognition by Cyclodextrins

As saccharides, CyDs are chiral and exhibit chiral recognition, that is they form diastereomeric complexes, usually of different stability, with enantiomeric species.
The latter observation is of importance in particular for separation science and the pharmaceutical industry owing to the usually different pharmacological activity of enantiomers of a chiral compound [34] as evidenced, for instance, by the action of (+)- and (−)-ascorbic acid 34 in humans [120, 121]. The second enantiomer of a chiral drug, usually present as 50% impurity, can even be harmful. Therefore, the administration of drugs in the form of one enantiomer that exhibits the desired pharmacological activity is of vital importance for the pharmaceutical industry. The possibility of differentiating between natural enantiopure fragrances and their synthetic racemic counterparts is also of value for the cosmetic industry [122]. Therefore, the ability to predict which enantiomer forms a stronger complex with a particular CyD and to estimate the energy difference between these diastereomeric complexes is of particular significance for the pharmaceutical and some branches of the cosmetic industry as well as for separation science. However, these energy differences are usually very small. As stated in Chapter 6, a difference as small as 10 cal is sufficient to achieve a satisfactory chromatographic resolution today. The impossibility of formulating any model of chiral recognition allowing one to make the predictions so desirable for the commercial applications is a consequence of these small energy differences combined with the flexibility of CyDs and the complexity of complexation process. The situation was probably most precisely formulated long ago by Pirkle and Pochapsky [123] in their review on chiral recognition, although it was not devoted to CyD research. Their statements are long but so precise that they should be cited explicitly:

Owing to the nature of chromatographic processes, relatively small values of ΔAG suffice to afford observable chromatographic separations. A value of 50 small calories (note that today the limit is 10 not 50, HD) affords a separation of 1.09, easily observable on a high-efficiency HPLC system. There is justifiable skepticism concerning the validity of any mechanism purporting to explain such small energy differences, despite a strong tendency among workers in the field to advance chiral recognition rationales, even when comparatively few data are available upon which to base such a rationale. . . . Typically, chromatographic separation of enantiomers involves solution interactions between CSP (i.e. chiral stationary phase, HD) and analyte for which free energies are small with respect to kT. This implies that the molecules are relatively free to tumble with respect to each other and exert relatively little mutual conformational control. . . . It is es-
sentially to recognize that it is the weighted time average of all possible solution interactions that is important for determining retention and enantioselectivity.

These statements determine the author’s whole attitude to models of chiral recognition, presented below, based both on experimental data and/or on calculations.

The following models used for the prediction of chiral recognition by CyDs have been proposed and/or applied to explain the recognition:

 This most frequently invoked model of chiral recognition proposed that three pairs of point-to-point interactions between a solute and a selector can explain enantioselectivity of the chiral stationary phase, CSP. Such an approach is incompatible with the properties of three-dimensional (3D) space and the foundations of molecular chirality since, as pointed out by Prelog and Helmchen [12] and Dodziuk and Mirowicz [13], three points do not form a chiral figure in 3D space. Interestingly [123], a chiral stationary phase developed by Baczuk and coworkers [124] using a three-points recognition model based on l-arginine to separate the l-enantiomer of the antiparkinson’s drug DOPA (dihydroxyphenylalanine, Fig. 1.8) [124] separated the DOPA enantiomers but, contrary to the Dalgleish model, the d-enantiomer was found to be mostly retained on the l-CSP, indicating that the mechanism of action was not that originally proposed. It is noteworthy that, in spite of its incorrectness, the three-points model of chiral recognition has been and is still used to rationalize experimental results on chiral recognition by CyDs [125–128]. Bentley [129] commented on the model stating that four-points interactions are necessary. However, he claimed that with a drug (or substrate) approaching the receptor (or enzyme) surface from only one direction [an assumption that should be proved in a general case, HD] from the exterior but not the interior of the protein three-point attachment (interactions between six centers) suffices. In addition, it should be stressed that in the case of CyDs the host–guest interactions cannot usually be described as point-
to-point ones (e.g. for pinene 35 complexes with 1). Moreover, the Dalgleish description is sometimes inappropriately used. For instance, in Ref. [126] the whole aromatic ring is treated as a point.

2. A model relating the lower symmetry and greater flexibility of permethylated α-5 (R1 = R2 = R3 = Me), β- and γ-CyDs, with their supposedly better chiral recognition has been proposed [130, 131]. It should be stressed that (i) as discussed in the previous section, X-ray analysis can provide data on the average molecular symmetry, not on the flexibility and (ii) the model has been founded on very few established X-ray structures of the complexes involving both enantiomers, and does not find support in chromatographic studies. The studies involving the latter method show that, in general, permethylated hosts are not better chiral selectors than native parent CyDs 1–3 [132, 133]. The problems with the description of geometrical parameters characterizing the structures of CyD complexes with enantiomeric guests are worth mentioning here since they are not always realized:

(a) Different numbers of crystalline water are often observed for such complexes. For instance, the complexes of R- and S-mandelic acid 36 with permethylated α-CyD 5f were found in the form of di- and trihydrate, respectively [131].

(b) The difficulty of analyzing geometrical parameters in such big systems have been mentioned earlier. For them one can either compare all numerous bond lengths, bond angles, etc. losing transparency or one can compare one type of parameter in two (or more) structures, e.g. the distance between glycosidic oxygen atoms on neighboring rings O4n–O4n+1 in the complexes of fenoprofen 37 with β-CyD [134]. The data collected in Table 1.2 (obscured
by the existence of two guest molecules in the complexes involving a β-CyD capsule in the crystal) visualize the problem showing that mean values are practically the same while individual ones differ considerably.

3. The requirements for efficient chiral recognition formulated in 1987 [135] demanded inclusion complex formation with a tight fit of the included guest in the host cavity (implying the formation of a strong complex) and the formation of a strong interaction of the hydroxyl groups at the CyD cavity entrance with a guest stereogenic center as the conditions. The first requirement of inclusion complex formation was later lifted. It seems that, in general, the tight fit implying the formation of strong complexes can be unfavorable for enantiodifferentiation, as evidenced by the case of α-pinene 35 the enantiomers of which form stronger complexes with β-CyD 2 than with α-CyD 1 although they are discriminated by the latter host [136].

4. As concerns the formation of hydrogen bonds between the host and guest as a condition of effective chiral recognition, numerous examples of chiral hydrocarbons effectively discriminated by CyDs [102, 137, 136] clearly show that this condition does not hold. Interestingly, by studying chiral recognition of several terpenes by CyDs Sybilska and coworkers [138] showed that for this specific group of compounds the condition for efficient separation could be the formation of 1:2 complexes of these guests with two CyD host molecules forming a head-to-head, head-to-tail or tail-to-tail capsule (Fig. 1.9) in which a guest enantiomer is located.

5. Computational models. Easy access to computers and user-friendly program packages as well as the beauty of molecular models have resulted in a plethora of theoretical papers aiming at a rationalization of chiral recognition by CyDs. Computational studies of CyDs and their complexes, and in particular those referring to chiral recognition, are described in Chapter 11 in some detail. Here it should suffice to say that such calculations are mostly treated as operations on a

<table>
<thead>
<tr>
<th>O4n−O4n+1</th>
<th>(R)-37@CyD1</th>
<th>(R)-37@CyD2</th>
<th>(S)-37@CyD1</th>
<th>(S)-37@CyD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O41−O42</td>
<td>430 (2)</td>
<td>433 (2)</td>
<td>425 (1)</td>
<td>430 (2)</td>
</tr>
<tr>
<td>O42−O43</td>
<td>442 (1)</td>
<td>444 (1)</td>
<td>459 (3)</td>
<td>456 (3)</td>
</tr>
<tr>
<td>O43−O44</td>
<td>439 (3)</td>
<td>446 (3)</td>
<td>426 (1)</td>
<td>426 (2)</td>
</tr>
<tr>
<td>O44−O45</td>
<td>435 (1)</td>
<td>433 (2)</td>
<td>433 (2)</td>
<td>428 (2)</td>
</tr>
<tr>
<td>O45−O46</td>
<td>432 (2)</td>
<td>434 (2)</td>
<td>435 (2)</td>
<td>445 (2)</td>
</tr>
<tr>
<td>O46−O47</td>
<td>435 (2)</td>
<td>438 (2)</td>
<td>453 (2)</td>
<td>447 (3)</td>
</tr>
<tr>
<td>O47−O41</td>
<td>446 (2)</td>
<td>446 (3)</td>
<td>424 (2)</td>
<td>426 (2)</td>
</tr>
<tr>
<td>Mean value</td>
<td>437 (2)</td>
<td>438 (2)</td>
<td>436 (2)</td>
<td>437 (2)</td>
</tr>
</tbody>
</table>
black box. Therefore, their reliability is practically never checked in the situation when the results obtained do depend on the assumed parameterization and their accuracy is much lower than the value of the energy difference for the complexes involving enantiomeric guests they aim to reproduce.

References

4 Villiers, A. Comp. Rend. 1896, 112, 536.
19 Peroche, S.; Parrot-Lopez, H.
20 Tarushi, K.; Shimokawa, K.; Fujita, K.
21 Djeddaini-Pilard, F.; Azaroual-Bellanger, N.; Gosnat, M.; Vernet, D.; Perly, B.
22 Venema, F.; Rowan, A. E.; Nolte, R. J. M.
24 O. S.; Takasaki, B. K.
25 Czarniecki, M. F.; Breslow, R.
26 Breslow, R. In Inclusion compounds; Atwood, J. L., Davies, J. E. D.,
27 Breslow, R.; Campbell, P.
28 Trainor, G. L.; Breslow, R.
29 Breslow, R.; Dong, S. D.
30 Komiyama, M. In Comprehensive
Supramolecular Chemistry; J., S., Ed.;
31 Murakami, Y.; Kikuchi, J.-I.;
Hisaeda, Y.; Hayashida, O.
32 Dodziuk, H. Introduction to Supra-
molecular Chemistry, Kluwer: Dordrecht,
33 Han, M.; J; Yoo, K. S.; Chang, J. Y.;
2000, 39, 347.
34 Leffingwell, J. C.
36 Dispeyrier, A.
Breivik, K.; Folling, M.; Hodor, A.;
Skardal, R.; Andreassen, A.;
Kjershus, J.; Ueland, T.; Kjershus, E.;
Yndestad, A.; Froiland, S. S.;
Aukrust, P.
Circulation 2004, 110, 3349 Suppl. S.
References

