Chapter 1
Principles of Semiconductor Physics

The understanding of electrochemical processes at semiconductor electrodes nat-
urally depends on the knowledge of semiconductor physics. This chapter presents
a brief introduction to this field; only those subjects relevant to semiconductor
electrochemistry are included here. For detailed information, the reader is re-
ferred to the standard textbooks on semiconductor physics by Kittel [1], Smith [2],
Moss [3], and Pankove [4].

1.1
Crystal Structure

A crystalline solid can be described by three vectors &, b, and ¢, so that the crystal
structure remains invariant under translation through any vector that is the sum
of integral multiples of these vectors. Accordingly, the direct lattice sites can be
defined by the set

R =ma+ nb + pc (1.1)

where m, n, and p are integers [1].

Various unit cells of crystal structures are shown in Figure 1.1. Most of the im-
portant semiconductors have diamond or zincblende lattice structures which be-
long to the tetrahedral phases, that is, each atom is surrounded by four equidis-
tant nearest neighbors. The diamond and zincblende lattices can be considered as
two interpenetrating face-centered cubic (f.c.c.) lattices. In the case of a diamond
lattice structure, such as silicon, all the atoms are silicon. In a zincblende lattice
structure, such as gallium arsenide (the so-called III-V compound), one sublattice
is gallium and the other is arsenic. Most other III-V compounds also crystallize in
the zincblende structure [5]. Various II-VI compounds, such as CdS, crystallize
in the wurtzite structure, and others in the rock salt structure (not shown). The
wurtzite lattice can be considered as two interpenetrating hexagonal close-packed
lattices. In the case of CdS, for example, the sublattices are composed of cadmium
and sulfur. The wurtzite structure has a tetrahedral arrangement of four equidis-
tant nearest neighbors, similar to a zincblende structure. The lattice constants and
structures of the most important semiconductors are given in Appendix A.3.
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Simple cubic Body-centrered cubic  Face-centered cubic
(P, etc) (Na, W, etc) (Al, Au, etc)

Diamond Zincblende
(C, Ge, Si, etc) (GaAs, GaP, etc)

Figure 1.1 Important unit cells (taken from [7]).

It is also common to define a set of reciprocal lattice vectors a*, b*, ¢*, such as

b-c . c-a . a-b
=) ; b =2 ;=2
“ nu-b-c T[a-b-c ¢ T[a-b-c

(1.2)

so that a - a* = 21m; a - b* = 0 and so on. The general reciprocal lattice vector is
given by

G=ha" +kb* +Ic* (1.3)

where £, k, [ are integers.

According to the definitions given by Egs. (1.1)—(1.3), the product G- R = 2m X
integer. Therefore, each vector of the reciprocal lattice is normal to a set of planes
in the direct lattice, and the volume 1% of a unit cell of the reciprocal lattice is
related to the volume of the direct lattice V_ by

y - e’
V.

C

(1.4)

where V,=a-b - c.

It is convenient to characterize the various planes in a crystal by using the Miller
indices /1, k, [. They are determined by first finding the intercepts of the plane with
the basis axis in terms of the lattice constants, and then taking the reciprocals of
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Figure 1.2 Miller indices of some important planes in a cubic crystal.

these numbers and reducing them to the smallest three integers having the same
ratio. The three integers are written in parentheses (kkl) as Miller indices for a
single plane or a set of parallel planes. One example is given in Figure 1.2 where the
Miller indices of some planes in a cubic crystal are shown. Planes that intercepted,
for example, the x-axis on the negative side would be characterized by (/1k[). For
directions perpendicular to the corresponding planes, one uses the Miller indices
in brackets, that is, [1k!].

Some physical properties of semiconductor electrodes depend on the orienta-
tion of the crystal, and surface properties vary from one crystal plane to the other.
It is, therefore, very important in studies of surface and interface effects that the
proper surface is selected. A semiconductor crystal can be cut by sawing or by
cleavage.

Cleavage, in particular, is a common technique for preparing clean surfaces in
an ultrahigh vacuum. Unfortunately, however, only a few surface planes can be
exposed by cleavage. The easiest planes in silicon and germanium are (111) and
their equivalents. In contrast, gallium arsenide cleaves on (110) planes. Accord-
ingly, the most interesting planes, which consist of a Ga surface (111) or an As
surface (111), cannot be produced by cleavage.

1.2
Energy Levels in Solids

Before the energy bands of semiconductors can be described, the following basic
quantities must be introduced.

A free electron in space can be described by classical relations as well as by
quantum mechanical methods. Combining both methods, the wavelength A of
the electron wave is related to the momentum p by

PR (15)

p mv
in which /% is the Planck constant, m is the electron mass, and v is the electron
velocity. The electron wave can also be described by the wave vector defined by
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the relation

21
k=—=— 1.6
= (16)
Combining Egs. (1.5) and (1.6), one obtains
21
k=— 1.7
: (17)
The kinetic energy of a free electron is then given by
2
E= lmv2 __n K? (1.8)
2 8n2m

The parabolic relation between the energy and the wave vector k is illustrated in
Figure 1.3.

In a metal, the electrons are not completely free. A quantum mechanical treat-
ment of the problem leads to the consequence that not all energy values are al-
lowed. The corresponding wave vectors are now given by

k=12 1.9
D (19)
in which L is the length of a metal cube and # is any nonzero integer. Inserting

Eq. (1.9) into Eq. (1.8), one obtains

hoo,

= — 1.10
8mlL? " ( )

The relation between the energy and the wave vector is still parabolic, but the en-
ergy of the electron can only attain certain values. Since, however, the range of the
allowed k values is proportional to the reciprocal value of L, the range of the en-
ergy values is very small for a reasonable size of metal, so that the E—k dependence
is still a quasi-continuum.

The band structure of crystalline solids is usually obtained by solving the
Schrédinger equation of an approximate one-electron problem. In the case of

4E

Figure 1.3 Parabolic dependence of the energy of a free electron vs wave vector.
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nonmetallic materials, such as semiconductors and insulators, there are essen-
tially no free electrons. This problem is taken care of by the Bloch theorem. This
important theorem assumes a potential energy profile V(r) being periodic with
the periodicity of the lattice. In this case the Schrodinger equation is given by

h2

[_2_n2v2 + V(r)] Yik(r) = E Wi(r) (1.11)

The solution to this equation is of the form
Yi(r) = &4 U, (kr) (1.12)

where U, (k, r) is periodic in r with the periodicity of the direct lattice, and # is
the band index. Restricting the problem to the one-dimensional case, the lattice
constant is a, b, or ¢ (see Eq. (1.1)). If N is an integral number of unit lattice cells,
then k = 1/a is the maximum value of k for » = N. This maximum occurs at
the edge of the so-called Brillouin zone. A Brillouin zone is the volume of k space
containing all the values of k up to 1t/a. Larger values of k lead only to a repetition
of the first Brillouin zone.

Accordingly, it is only useful to determine the band structure within the
first Brillouin zone. The solution of the Schrédinger equation (see Egs. (1.11)
and (1.12)) leads to two energy bands separated by an energy gap, as shown in
Figure 1.4. The energy profile of the conduction band (upper curve) still appears
parabolic (at least near the minimum), but it may deviate considerably from a
parabolic E-k relation. In order to continue to use the relation derived for free
electrons (Eq. (1.8)), the electron mass is adjusted to provide a good fit. We then
have, instead of Eq. (1.8),

W,

E= k 1.13
8m2m* ( )

4 E
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Figure 1.4 Electron energy vs wave vector in a semiconductor.
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in which m* is the effective mass. Differentiating this equation, the effective mass
is given by

. K 1
m = ———-
41 *E /A k>

This means that the effective mass is determined by the second derivative of the
E—-k curve, that is, by its curvature. From this, it follows that the width of an energy
band is larger for a small value of m* and smaller for a large m* value. The width
can be determined by optical investigation and the effective mass by cyclotron
resonance measurements.

According to Eq. (1.14), the negative curvature of the valence band would mean
a negative electron mass, which is physically not acceptable. It has therefore been
concluded that occupied orbitals in the valence band correspond to holes. A hole
acts in an applied electric or magnetic field as though it were a particle with a pos-
itive charge. This concept has been experimentally proved by Hall measurements
(see Section 1.6). However, it only makes sense if nearly all energy states are filled
by electrons. It should be further mentioned that the effective mass of holes may
be different from that of electrons. A selection of values is listed in Appendix A .4.

The band structure of solids has been studied theoretically by various research
groups. In most cases, it is rather complex as shown for Si and GaAs in Fig-
ure 1.5. The band structure, E(k), is a function of the three-dimensional wave
vector within the Brillouin zone. The latter depends on the crystal structure and
corresponds to the unit cell of the reciprocal lattice. One example is the Brillouin
zone of a diamond type of crystal structure (C, Si, Ge), as shown in Figure 1.6.
The diamond lattice can also be considered as two penetrating f.c.c. lattices. In
the case of silicon, all cell atoms are Si. The main crystal directions, I" = L([111]),
I' - X([100]) and I' — K([110]), where I is the center, are indicated in the Bril-
louin zone by the dashed lines in Figure 1.6. Crystals of the zincblende structure,
such as GaAs, can be described in the same way. Here one sublattice consists of
Ga atoms and the other of As atoms. The band structure, E(k), is usually plotted
along particular directions within the Brillouin zone, for instance from the center
I' along the [111] and [100] directions as shown in Figure 1.5.

In all semiconductors, there is a forbidden energy region or gap in which energy
states cannot exist. Energy bands are only permitted above and below this energy
gap. The upper bands are called the conduction bands, while the lower ones are
called the valence bands. The bandgaps of a variety of semiconductors are listed
in Appendix A 4.

According to Figure 1.5, the conduction as well as the valence band consists of
several bands. Some valence bands are degenerated around k=0 (the I" point).
Since the curvature differs from one band to another, each band is associated
with a different effective mass (see also Appendix A.4). Rather flat energy pro-
files correspond to heavy holes (high effective mass), and steep profiles to light
holes (small effective mass). In the case of GaAs, the maxima of all valence bands
and the minimum of the lowest conduction band occur at k=0, that is, in the
center of the Brillouin zone (I point) (Figure 1.5). The corresponding bandgap

(1.14)
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Figure 1.5 Energy band structure of Si and GaAs. Compare with Figure 1.4 (after [11]).
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Figure 1.6 Brillouin zone for face-centered cubic lattices
with high symmetry points labeled (after [6]).

(1.4 eV for GaAs) is indicated. In the band structure of many semiconductors,
however, the lowest minimum of the conduction band occurs at a different wave
vector (k # 0) from the maximum of the valence band (k = 0). For instance, in the
case of silicon, the lowest minimum of the conduction band occurs at the edge of
the Brillouin zone (X point) (Figure 1.5). If both the conduction band minimum
and the valence band maximum occur at k=0, the energy difference, E,, is a so-
called direct bandgap. If the lowest conduction band minimum is found at k # 0,
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E, is termed an indirect bandgap. The consequences of these differences in band
structure will be discussed in Section 1.3. During the course of this book, only the
lowest edge of the conduction band (E.) and the upper edge of the valence band
(E,) are considered (as illustrated in Figure 1.9 in Section 1.3).

1.3
Optical Properties

The simplest method for probing the band structure of semiconductors is to mea-
sure the absorption spectrum. The absorption coefficient, «, is defined as

1, 1

a==In— 1.15

SIn- (1.15)
in which d is the thickness of the sample, and I and ], are the transmitted and the
incident light intensities, respectively. Since the refractive index of semiconduc-
tors is frequently quite high, accurate measurements require the determination of
the transmission coefficient, T, as well as the reflection coefficient, R. For normal
incidence, they are given by

_ (1= R*)exp(-4nd /)

T= 1— R2exp(—8md/1) (116)
_ (- n)? + k2
A+ 2+ k2 (1.17)

where A is the wavelength, 7 is the refractive index, and & is the absorption con-
stant. The latter is related to the absorption coefficient « by

_ ank

=7

(1.18)
By analyzing the 7" and A or the R and A data at normal incidence, or by measuring
R and T at different angles of incidence, both # and a can be obtained.

The fundamental absorption refers to a band-to-band excitation which can be
recognized by a steep rise in absorption when the photon energy of the incident
light goes through this range. Since, however, optical transitions must follow cer-
tain selection rules, the determination of the energy gap from absorption mea-
surements is not a straightforward procedure.

Since the momentum of photons, /1/1, is small compared with the crystal mo-
mentum, /1/a (a is the lattice constant), the momentum of electrons should be
conserved during the absorption of photons. The absorption coefficient a(/1v) for
a given photon energy is proportional to the probability, P, for transition from the
initial to the final state and to the density of electrons in the initial state as well as to
the density of empty final states. On this basis, a relation between the absorption
coeflicient a and the photon energy E,,;, can be derived [2, 4]. For a direct band—
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Figure 1.7 Optical transitions in semiconductors with an indirect bandgap.

band transition, for which the momentum remains constant (see Figure 1.7), it
has been obtained for a parabolic energy structure (near the absorption edge):

@~ (Epy, — Eg'V? (1.19)

in which E, is the bandgap. Accordingly, a plot of (a Eph)2 vs E,p, should yield
a straight line and E, can be determined from the intercept. However, this pro-
cedure does not always yield a straight line. Therefore, some scientists define E,
at that photon energy where & = 10* cm™'. High a values of up to 10° cm™! have
been found for direct transitions. Electrons excited into higher energy levels of the
conduction band (transition 1a in Figure 1.9) are thermalized to the lower edge of
the conduction band within about 10712 to 10713 s.

As already mentioned in the previous section, the lowest minimum in the con-
duction band energy frequently occurs not at k=0, but at other wave numbers
as shown for silicon in Figure 1.5. The law of conservation of momentum ex-
cludes here the possibility of the absorption of a photon of energy close to the
bandgap. Photon absorption becomes possible, however, if a phonon supplies the
missing momentum to the electron as illustrated in Figure 1.7. Since such an indi-
rect transition requires a “three-body” collision (photon, electron, phonon) which
occurs less frequently than a “two-body” collision, the absorption coefficient will
be considerably smaller for semiconductors with an indirect gap. This becomes
obvious when the absorption spectra of semiconductors are measured; a selec-
tion is given in Figure 1.8. For instance, GaAs and CulnSe, provide examples of a
direct bandgap, that is, the absorption coefficient rises steeply near the bandgap
and reaches very high values. Si and GaP provide typical examples of an indirect
transition. In the case of Si, one can recognize in Figure 1.8 that @ remains at a
very low level for a large range of photon energies (GaP not shown). For indirect

9
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Figure 1.8 Absorption spectra of various semiconductors.

transitions, the relation between a and E, is given in [2,7] as
@~ (Ey —Ep)° (1.20)

The interpretation of the interband transition is based on a single-particle model,
although in the final state two particles, an electron and a hole, exist. In some
semiconductors, however, a quasi one-particle state, an exciton, is formed upon
excitation [4, 8]. Such an exciton represents a bound state, formed by an elec-
tron and a hole, as a result of their Coulomb attraction, that is, it is a neutral
quasi-particle, which can move through the crystal. Its energy state is close to the
conduction band (transition 3 in Figure 1.9), and it can be split into an indepen-
dent electron and a hole by thermal excitation. Therefore, a sharp absorption peak
just below the bandgap energy can usually only be observed at low temperatures,
whereas at room temperature only the typical band—band transition is visible in
the absorption spectrum. The situation is different in organic crystals [9] and also
for small semiconductor particles (see Chapter 9).

Various other electronic transitions are possible upon light excitation. Besides
the band—band transitions, an excitation of an electron from a donor state or an
impurity level into the conduction band is feasible (transition 2 in Figure 1.9).
However, since the impurity concentration is very small, the absorption cross-
section and therefore the corresponding absorption coefficient will be smaller by
many orders of magnitude than that for a band—band transition. At lower pho-
ton energies, that is, at £, < Eg, an absorption increase with decreasing E,;, has
frequently been observed for heavily doped semiconductors. This absorption has
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Figure 1.9 Optical transitions in a semiconductor.

1.4 Density of States and Carrier Concentrations

been related to an intraband transition (transition 4 in Figure 1.9), and is approx-
imately described by the Drude theory [4]. This free carrier absorption increases

with the carrier density. It is negligible for carrier densities below about 10! cm =2,

1.4

Density of States and Carrier Concentrations

3

Semiconductor single crystals grown from extremely pure material exhibit a low
conductivity because of low carrier density. The latter can be increased by orders
of magnitude by doping the material. The principal effect of doping is illustrated
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Figure 1.10 Doping of a semiconductor crystal (Ge):

(a) n-type doping; (b) p-type doping.

11



12

1 Principles of Semiconductor Physics

Cd++ S: Cd++ S: Cd++

2Electrons S  Cd** _»__  Cd*  S°
trapped -7

inanion” """
vacancy  Cd**  §=  Cd* S Cd*

S= Cd** S= Cd** S

Figure 1.11 Imperfections in a compound semiconductor (CdS).

in Figure 1.10, taking germanium as an example. Figure 1.10a shows intrinsic Ge
which contains a negligibly small amount of impurities. Each Ge atom shares its
four valence electrons with the four neighboring atoms forming covalent bonds.
By doping the material with arsenic, n-type germanium is formed (Figure 1.10a).
The arsenic atom with five valence electrons has replaced a Ge atom and an elec-
tron is donated to the lattice. This additional electron occupies one level in the
conduction band. Similarly, p-type germanium is made by doping with a trivalent
atom such as indium. This atom with three valence electrons substitutes for a Ge
atom, an additional electron is transferred to indium leaving a positive hole in the
Ge lattice (Figure 1.10b). In principle, compound semiconductors are doped in
the same way. In this case, however, doping can also occur by unstoichiometry,
as illustrated for n-type CdS in Figure 1.11. The bonding is partly ionic and ad-
ditional free electrons occur if a sulfur atom is missing; if a sulfur vacancy, V, is
formed the material becomes n-type.

The additional electrons and holes occupy energy states in the conduction and
valence bands, respectively. Before discussing the rules of occupation of energy
levels, the energy distribution of the available energy states must first be derived,
as follows.

In momentum space, the density of allowed points is uniform. Assuming that
the surfaces of constant energy are spherical, then the volume of k space between
spheres of energy E and E + AE is 41k? dk (see [4]). Since a single level occupies
a volume of 813/ V (V = crystal volume) in momentum space and there are two
states per level, the density of states is given by

2 2
NEYE = K qie = K g (1.21)
813 2

It has been assumed here that the volume is unity (e.g., 1 cm?). Inserting Eq. (1.13),
one obtains

1
2n2h3

N(E)dE = @m*y*/*EV* dE (1.22)
where E is measured with respect to the band edge. This equation is valid for the
conduction and valence bands. The energy states can be occupied by electrons in
the conduction band and by holes in the valence band. According to Eq. (1.22),
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Figure 1.12 Density of energy states near the band edges of a semiconductor vs energy.
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Figure 1.13 Band structure and energy distribution of the density of states of silicon, as calcu-
lated for a large energy range. Dotted distribution is occupied by electrons (from [6]).

the density of states per energy interval increases with the square root of the en-
ergy from the bottom of the corresponding band edge as illustrated in Figure 1.12
(electron and hole energies have opposite signs). Since the reduced masses may be
different for electrons and holes, the slopes of the curves are also different. These
curves are based on the parabolic shape of the E-k relation as assumed near the
minimum. The density of states looks very different when it is measured over a
much larger energy range as shown in Figure 1.13.

13
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The total density of energy states up to a certain energy level is obtained by
integration of Eq. (1.22). The result is

1

N(E) = 3n2h3

2m* )32 E3? (1.23)

1.4.1
Intrinsic Semiconductors

The number of electrons occupying levels in the conduction band is given by

n= J N(E)f(E)dE (1.24)
E

in which f(E) is the Fermi-Dirac distribution as given by

1
S = T p(E — EnJ kD) (1.25)

where Ep is the Fermi level. The integral in Eq. (1.24) cannot be solved analyti-
cally. Nevertheless, the integral must have a limited value because the density of
states increases with increasing energy whereas f(E) decreases. Equation (1.24)
can only be solved by assuming that (E—E;)/(kT) > 1. In this case, the following
has been obtained [2]:

Ec B EF
n=N_exp| — T (1.26)

in which N is the density of energy states within few kT above the conduction
band edge and is given by

N - 202mm? kT)>?

c - (1.27)

According to Eq. (1.27), one obtains N, ~ 5 x 10! cm™ for the density of states
within 7 kT above the lower edge of the conduction band, assuming an effective
mass of m* = 1 X m, (m, = electron mass in free space). Since semiconduc-
tors with doping of less than 1 x 10*” cm™ are used in most investigations and
applications, the majority of the energy levels remain empty.

Similarly, we can obtain the hole density near the top of the valence band. We
have, then

E

v

p= J N(E)X1 - f(E)dE (1.28)

—0o0

Using the same approximations as above, we obtain

=N E, — Er (1.29)
p=Nyop | —= :



1.4 Density of States and Carrier Concentrations

where the density of states, N, around the top of the valence band is given by

2(2ﬂm;kT)3/2

g e (1.30)

in which m} is the effective hole mass.

In order to preserve charge neutrality in an intrinsic semiconductor, the elec-
tron and hole densities must be equal. The position of the Fermi level can then be
calculated from Egs. (1.26) and (1.29). We then have

E.+E N,
Ep=—e o KT (2
2 2 \N,
_E+E, kT <Mi>3/2

+ —1In
m*
e

5 5 (1.31)

Accordingly, the Fermi level E; is close to the middle of the energy gap, or for
m; = my it is exactly at the middle of the gap. The intrinsic carrier density can be
obtained by multiplying Eqs. (1.26) and (1.29), that is,

E, )
np = NN, exp <——> =n; (1.32)

The product of # and p is constant and the corresponding concentration is n =
p = n;, that s, is the intrinsic electron density. Equation (1.32) is called the “mass
law” of electrons and holes, in comparison with chemical equilibria in solutions.
The intrinsic concentration can be calculated from Eq. (1.32) if the densities of
states are known. Assuming that m /m, = 1, then n; ~ 10" cm™ for a bandgap
of E, = 1 eV, thatis, n; is a very small quantity. In the case of intrinsic material, the
electron hole pairs are created entirely by thermal excitation. Since this excitation
becomes very small for large bandgaps, #; decreases with increasing bandgaps as
proved by Eq. (1.32). Equation (1.32) which is also valid for doped semiconduc-
tors, is of great importance because when one carrier density (e.g., #) is known
then the other (here p) can be calculated. Examples are given in Appendix A.5.

1.4.2
Doped Semiconductors

When a semiconductor is doped with donor or acceptor atoms (see Figure 1.10),
then corresponding energy levels are introduced within the forbidden zone, as
shown on the left side of Figure 1.14. The donor level is usually close to the con-
duction band and the acceptor level close to the valence band. A donor level is
defined as being neutral if filled by an electron, and positive if empty. An accep-
tor level is neutral if empty, and negative if filled by an electron. Depending on
the distance of the donor and acceptor levels with respect to the corresponding
bands, electrons are thermally excited into the conduction band and holes into
the valence band.

15
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Figure 1.14 Band diagram, density of states, and Fermi distribution.

In the presence of impurities, the Fermi level must adjust itself to preserve
charge neutrality. The latter is given for an n-type semiconductor by

n=Nj+p (1.33)

in which N is the density of ionized donors. The latter is related to the occupied
donor density N, by the Fermi function, that is,

1

+ _ _ — —
Np == f)Np =Np |1 -7 + exp((Ep — Ep)/(KT))

(1.34)

Introducing Egs. (1.28), (1.30), and (1.34) into Eq. (1.33), the Fermi level, Eg, can
be calculated. According to Eq. (1.34), it is clear that all donors are completely
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ionized if the Fermi level occurs below the donor level, as shown on the right side
of Figure 1.14. On the other hand, if the donor concentration is increased then the
electron density also rises. In this case, E; may be located between E_ and Ep, but
then not all of the more highly concentrated donors are ionized. Similar relations
can be derived for acceptor states in a p-type semiconductor.

At extremely high impurity concentrations, the Fermi level may pass the band
edge. In this case, the semiconductor becomes degenerated, and most of the re-
lations derived above are no longer applicable. The semiconductor then shows a
metal-like behavior.

1.5
Carrier Transport Phenomena

When an electric field of strength £ is applied across a crystal, electrons and holes
are forced to move in the material. The corresponding current density is given by

j=0& (1.35)

in which o is the conductivity, the reciprocal value of the resistivity p. For semi-
conductors with both electrons and holes as carriers, the conductivity is deter-
mined by

o= e(pyn+ pu,p) (1.36)

in which e is the elementary charge, and y,, and y,, are the mobilities of electrons
and holes, respectively. For doped semiconductors, the first or second term within
the brackets dominates. According to Eq. (1.36), the conductivity can be varied by
many orders of magnitude by increasing the doping.

The mobility is a material constant. Values for some typical semiconductors are
given in Appendix A.5. Electron and hole mobilities are typically in the range be-
tween 1 and 1000 cm? V~!s! These values are many orders of magnitude higher
than the mobility of molecules and ions in solution (~ 107%-10"3 cm? V~!s71).
The presence of acoustic phonons and ionized impurities leads to carrier scatter-
ing which can significantly affect the mobility. The mobility y; ( ,, or ), deter-
mined by interaction with acoustic phonons, as shown in [2, 7], is given by

i ~ (m*)™>2 32 (1.37)

Accordingly, the mobility decreases with temperature. The mobility influenced by
scattering of electrons (or holes) at ionized impurities can be described [2, 7] by

i ~ (m* )y VANTITR? (1.38)

in which N; is the density of impurity centers (N or N,). In contrast with
phonon scattering, mobility increases with temperature for impurity scattering.
This makes it possible to distinguish experimentally between these two scattering
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Figure 1.15 Arrangement for measuring carrier concentrations by the Hall effect (from [7]).

processes. For the complete equations and their derivation, the reader is referred
to [2, 7].

The carrier diffusion coefficient, D, for electrons and Dp for holes, is another

important parameter associated with mobility. It is given by
D, = ij//tn ; D, = ij//tp (1.39)

It should be emphasized that a carrier transport can only be described by Ohm’s
law (Eq. (1.35)) if sufficient empty energy levels exist in the corresponding energy
band and a minimum carrier density is present in the material. On the other hand,
in the case of an intrinsic high bandgap semiconductor, the carrier density may be
negligible so that only those carriers carry the current which are injected into the
crystal via one contact. In this case, we have a space charge limited current which
is proportional to £2 (Child’s law).

The most common method for measuring the conductivity is the four-point
probe technique [10]. Here a small current / is passed through the outer two
probes and the voltage V' is measured between the inner two probes (s is the
distance between two probes). When such a measurement is performed with a
semiconductor disk of diameter 2r and a thickness w, the resistivity is given by

n VvV

-V 1.40
P21 (1.40)

provided that 2r > s. The advantage of this method is that the conductivity can
be measured without there being ohmic contacts between the semiconductor and
the outer probes.

In order to measure the carrier concentration directly, a method is applied
which uses the Hall effect. The simplest setup is shown in Figure 1.15. Here a
voltage is applied to a semiconducting sample in the x-direction and a magnetic
field is applied along the z-direction. The resulting Lorentz effect causes a force
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Figure 1.16 Excitation and recombination of electrons.

on the charge carriers, in the y-axis; this leads to an accumulation of electrons at
the top side of an n-type sample and of holes at the bottom of a p-type sample.
This effect causes a voltage V4 in the y-direction which is given by

Vig = Ryl B,w (1.41)

in which B, is the magnetic field, w the thickness of the sample, and Ry; the Hall
coefficient.
The latter is defined by

1 1
R = —)y— - 5 R =r— -t 142
n=—r—(n-type); Ry Vep(P ype) (1.42)

where r is a constant depending on the scattering mechanism [2]. The corre-
sponding mobility values can be obtained by using Eq. (1.36).

1.6
Excitation and Recombination of Charge Carriers

If the equilibrium of a semiconductor is disturbed by excitation of an electron
from the valence to the conduction band, the system tends to return to its equi-
librium state. Various recombination processes are illustrated in Figure 1.16. For
example, the electron may directly recombine with a hole. The excess energy may
be transmitted by emission of a photon (radiative process) or the recombination
may occur in a radiationless fashion. The energy may also be transferred to an-
other free electron or hole (Auger process). Radiative processes associated with
direct electron—hole recombination occur mainly in semiconductors with a direct
bandgap, because the momentum is conserved (see also Section 1.2). In this case,
the corresponding emission occurs at a high quantum yield. The recombination
rate is given by

R,, = Conp (1.43)

in which Cj is a constant. During excitation the carrier density is increased by An
and Ap, where An = Ap. Taking an n-type material as an example (1, > p,),
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and using light intensities which are such that An <« ny, and Ap > p,, then we
have

R,, = ConyAp (1.44)
The lifetime is defined as 7 = An/R,,,, so that

r=_1 (1.45)
Cong

Accordingly, the recombination rate as well as the lifetime of a band—band recom-
bination process depends strongly on the carrier density.

In the case of semiconductors with an indirect gap, recombination occurs pri-
marily via deep traps (Figure 1.16). Here, an electron is first captured by the trap;
in a second step the trapped electron recombines with the hole. It has been found
that the recombination probability is much higher for a two-step process than for
a single recombination process. This two-step process can be analyzed as follows.

The trapping rate for electrons from the conduction band into traps is propor-
tional to the electron density in the conduction band and to the number of empty
traps. We have then

Rc=C,(1— f)Nn (1.46)

in which N, is the trap density, f, denotes the fraction of traps occupied by elec-
trons and C,, is given by

Ch = Yulm (1.47)

where y, is the electron capture cross-section and vy, the carrier thermal velocity
equal to (3kT /m*)!/2. The rate of excitation of electrons from the trap into the
conduction band is given by

R, = C! fN, (1.48)

C’ can be related to C,, by analyzing the equilibrium state which is determined
by R. = R,. Applying this condition, we have
no (1- 1)
C, = Cnf—to =G,
in which 7, and f? are the electron density and the fraction of occupied traps at
equilibrium, respectively, with £ being given by

" (1.49)

1

= 1.50
L+ exp(E, — Ep)/(kT)) (1.50)

fO

The carrier density for a Fermi level located just at the trap level (E; = E,) is given

by
Ec _ Et
n; = N_exp (1.51)

kT
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Combining Egs. (1.28) and (1.51), one can show that 7, is equal to the second term
in Eq. (1.49), that s,

=g (1= 1) () (1.52)

Using Eqs. (1.46)—(1.49), we can derive the overall flow of electrons into the traps
as given by

R, =y, v N = fon — fim] (1.53)

By analogy, a similar expression can be derived for the net capture rate of holes,
R,. We then have

R, =y, vuN [ fip — (A= fopil (1.54)

In the case of stationary illumination, the electron and hole flow must be equal
(R = R, = R,). Applying this condition to Eqs. (1.53) and (1.54), f; can be deter-
mined. Inserting the resulting equation into Eq. (1.50), one obtains

YnYpUm(np — n2)N;

= 1.55
Yalm+n)+y,(p+ py) (1.55)

This is the so-called Shockley—Read equation describing recombination via traps.
It also plays an important role in the description of recombination processes via
surface states, as discussed in Chapter 2. In the above equation one may also re-
place n; and p, by the relations

E -E
m = mexp | — (1.56a)
E —E
Py =1 eXp\ — (1.56b)

which can be derived using Egs. (1.28) and (1.30).
There are various techniques for measuring the lifetime of excited carriers,
which cannot be described here. Details are given by Sze [7].

1.7
Fermi Levels under Nonequilibrium Conditions

At equilibrium, the Fermi level, that is, the electrochemical potential is constant
throughout the semiconductor sample (Figure 1.17a). In addition, the density of
electrons and holes can be calculated simultaneously from Eqgs. (1.28) and (1.30) if
the position of the Fermi level within the bandgap is known. If the thermal equi-
librium is disturbed, for instance by light excitation, then the electron and hole
densities are increased to above their equilibrium value and we have np > n?

i
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Figure 1.17 Quasi-Fermi levels of electrons and holes (a), at equilibrium (b), and (c) under
illumination.

Accordingly, the electron and hole density are not determined by the same Fermi
level. It is useful to define quasi-Fermi levels, Er,, and Eg,, one for electrons and
another for holes, as given by

N,

Eg,=E.—In <—“> (1.57a)
’ n
N,

EEP = Ev +1In <7> (157]))

so that formally the original relations between carrier densities and Fermi level
remain the same.

Let us consider a light excitation of electrons and holes (An = Ap) within a
doped n-type semiconductor so that An <« n, and Ap > p,. Then the Fermi
level of electrons, Eg,, remains unchanged with respect to the equilibrium case,
whereas that of holes, EF,p’ is shifted considerably downwards, as illustrated in
Figure 1.17 b. In many cases, however, the excitation of electron—hole pairs occurs
locally near the sample surface because the penetration of light is small. Then
the splitting of the quasi-Fermi levels is large near the surface. Since the carriers
diffuse out of the excitation range and recombine, the quasi-Fermi level of holes
varies with distance from the excitation area (Fig. 1.17 ¢).

The quasi-Fermi levels play an important role in processes at the semiconduc-
tor—liquid interface, because the relative position of the quasi-Fermi level with
respect to that in solution yields the thermodynamic force which drives an elec-
trochemical reaction (see Section 7.3.5(b)).





