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1.1
Cellular Solids — Scaling of Properties

Michael F. Ashby

1.1.1
Introduction

Cellular solids — ceramics, polymers, metals — have properties that depend on both
topology and material. Of the three classes, polymer foams are the most widely
investigated, and it is from these studies that much of the current understanding
derives. Recent advances in techniques for foaming metals has led to their intense
study, extending the understanding. Of the three classes, ceramic foams are the
least well characterized. Their rapidly growing importance as filters, catalyst sup-
ports, membranes, and scaffolds for cell growth has stimulated much recent work,
making this book both relevant and timely.

The underlying principles that influence cellular properties are common to all
three classes. Three factors dominate (Fig. 1):

e The properties of the solid of which the foam is made.

¢ The topology (connectivity) and shape of the cells.

e The relative density p/p, of the foam, where p is the density of the foam and
ps that of the solid of which it is made.
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Fig. 1 Design variables. The properties of cellular materials
depend on the material of the cell walls, the cell topology, and
the relative density 5/ p,.. The contents of the boxes are explained
in the text.
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This chapter summarizes these principles, providing an introduction to the more
specialized chapters that follow.

1.1.2
Cellular or “Lattice” Materials

A lattice is a connected network of struts. In the language of structural engineering,
a lattice truss or space frame means an array of struts, pin-jointed or rigidly bonded
at their connections, usually made of one of the conventional materials of construc-
tion: wood, steel, or aluminum. Their purpose is to create stiff, strong, load-bearing
structures using as little material as possible, or, where this is useful, to be as light
as possible. The word “lattice” is used in other contexts: in the language of crystal-
lography, for example, a lattice is a hypothetical grid of connected lines with three-
dimensional translational symmetry. The intersections of the lines define the atom
sites in the crystal; the unit cell and symmetry elements of the lattice characterize
the crystal class.

Here we are concerned with lattice or cellular materials. Like the trusses and
frames of the engineer, these are made up of a connected array of struts or plates,
and like the crystal lattice, they are characterized by a typical cell with certain sym-
metry elements; some, but not all, have translational symmetry. But lattice materials
differ from the lattices of the engineer in one important regard: that of scale. That of
the unit cell of lattice materials is one of millimeters or micrometers, and it is this
that allows them to be viewed both as structures and as materials. At one level, they
can be analyzed by using classical methods of mechanics, just as any space frame is
analyzed. But at another we must think of the lattice not only as a set of connected
struts, but as a “material” in its own right, with its own set of effective properties,
allowing direct comparison with those of monolithic materials.

Historically, foams, a particular subset of lattice-structured materials, were studied
long before attention focused on lattices of other types. Early studies assumed that
foam properties depended linearly on relative density p/p; (i.e., the volume fraction
of solid in the material), but for most foams this is not so. A sound understanding
of their mechanical properties began to emerge in the 1960s and 1970 with the work
of Gent and Thomas [1] and Patel and Finnie [2]. Work since then has built a com-
prehensive understanding of mechanical, thermal, and electrical properties of
foams, summarized in the texts “Cellular Solids” [3], “Metal Foams, a Design Guide”
[4], and a number of conference proceedings [5-9]. The ideas have been applied with
success to ceramic foams, notably by Green et al. [10-13], Gibson et al. [14-17], and
Vedula et al. [18, 19].

The central findings of this body of research are summarized briefly in Section
1.1.3. One key finding is that the deformation of most foams, whether open- or
closed-cell, is bending-dominated — a term that is explained more fully below. A con-
sequence of this is that their stiffnesses and strength (at a given relative density) fall
far below the levels that would be expected of stretch-dominated structures, typified
by a fully triangulated lattice. To give an idea of the difference: a low-connectivity
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lattice, typified by a foam, with a relative density of 0.1 (meaning that the solid cell
walls occupy 10 % of the volume) is less stiff by a factor of 10 than a stretch-domi-
nated, triangulated lattice of the same relative density.

In this section we explore the significant features of both bending- and stretch-
dominated structures, using dimensional methods to arrive at simple, approximate
scaling laws for mechanical, thermal, and electrical properties. Later chapters deal
with these in more detail; the merit of the method used here is that of retaining
physical clarity and mathematical simplicity. The aim is to provide an overview, set-
ting the scene for what is to come.

1.1.3
Bending-Dominated Structures

Figure 2 is an image of an open-cell foam. It typifies one class of lattice-structured
material. It is made up of struts connected at joints, and the characteristic of this
class is the low connectivity of the joints (the number of struts that meet there).

Fig.2 A typical cellular structure. The topology of the cells
causes the cell edges to bend when the structure is loaded. Even
when the cells are closed, the deformation is predominantly
bending because the thin cell faces buckle easily.

Cell edge

Open
cell face

—

Fig. 3 An idealized cell in an open-cell foam.
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Figure 3 is an idealization of a unit cell of the structure. It consists of solid struts
surrounding a void space containing a gas or fluid. Lattice-structured materials
(often called cellular solids) are characterized by their relative density, which for the
structure shown here (with t < L) is

P (ty

Ps (L) (1)
where p is the density of the foam, p; is the density of the solid of which it is made,
L is the cell size, and ¢ is the thickness of the cell edges.

1.1.3.1
Mechanical Properties

Figure4 shows the compressive stress—strain curve of bending-dominated lattice.
The material is linear-elastic, with modulus E up to its elastic limit, at which point
the cell edges yield, buckle, or fracture. The structure continues to collapse at a

Densification

Onset of plasticity,
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or crushing
Absorbed_ pengification

/
energy U

. strain g :
Modulus E \ !

1

Plateau stress G,

Stress, ¢

Strain, ¢

Fig. 4 Stress—strain curve of a cellular solid, showing the
important parameters.

J J Cell edge

bending

28

] —

Fig. 5 When a low-connectivity structure is loaded, the cell
edges bend, giving a low modulus.
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nearly constant stress (plateau stress G,) until opposite sides of the cells impinge (densi-
fication strain £,), when the stress rises steeply. The three possible collapse mechanisms
compete; the one that requires the lowest stress wins. The mechanical properties are
calculated in the ways developed below, details of which can be found in Ref. [3].

A remote compressive stress o exerts a force F « oL” on the cell edges, causing
them to bend, as shown in Fig.5, with bending deflection J. A strut of length L,
loaded at its midpoint by a force F, deflects by a distance ¢

FI®

b B 2)

where E; is the modulus of the solid of which the strut is made, and I=t*/12 the
second moment of area of the cell edge of square cross section ¢x t. The compressive
strain suffered by the cell as a whole is then ee2d/L. Assembling these results
gives the modulus E = o /e of the foam as

7 <\ 2
E. <£> (bending-dominated behavior). (3)
E. \ps

Since E = E, when p = p,, we expect the constant of proportionality to be close to
unity — a speculation confirmed both by experiment and by numerical simulation.

A similar approach can be used to model the collapse load, and thus the plateau
stress of the structure. The cell walls yield, as shown in Fig.6, when the force
exerted on them exceeds their fully plastic moment

o, t

My =~ (4)
where 0, is the yield strength of the solid of which the foam is made. This moment
is related to the remote stress by Me< FLo< oL’ Assembling these results gives the
failure strength g :

G, 5\ ? . . :
2 (L (bending-dominated behavior). (5)
Oys

Ps

™ Plastic
hinges at

T corners
F

-~ ——

Fig.6 Foams made of ductile materials collapse by plastic
bending of the cell edges.
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Fig. 7 An elastomeric foam collapses by elas- Fig. 8 A brittle foam collapses by successive
tic buckling of the cell edges. fracturing of the cell edges. Ceramic foams

generally show this collapse mechanism.

The constant of proportionality has been established both by experiment and by
numerical computation; its value is approximately 0.3.

Elastomeric foams collapse not by yielding but by elastic buckling, and brittle
foams by cell-wall fracture (Figs.7 and 8). As with plastic collapse, simple scaling
laws describe this behavior well. A strut of length L buckles under a compressive
load F,, the Euler buckling load, where

E I Et
Fy o 2 o 2 (6)
Since F=o0F? the stress that causes the foam to collapse by elastic buckling g,
scales as
6, ~\ 2
Fd oc <£> (buckling-dominated behavior). (7)
N pS

More sophisticated modeling gives the constant of proportionality as 0.05. Cell
walls fracture when the bending moment exceeds that given by Eq.(4) with oy
replaced by 0., the modulus of rupture of a strut. The crushing stress therefore
scales in the same way as the plastic collapse stress, giving

o

~\ 3/2
. o< (p) (fracturing-dominated behavior) (8)

Ps
with a constant of proportionality of about 0.2.

Densification when the stress rises steeply is a purely geometric effect: the oppo-
site sides of the cells are forced into contact and further bending or buckling is not
possible. If we think of compression as a strain-induced increase in relative density,
then simple geometry gives the densification strain &, as

- ()
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where pui/ps is the relative density at which the structure locks up. Experiments
broadly support this estimate, and indicate a value for the lock up density as
pcrit/ps =0.6.

Foamlike lattices are often used for cushioning, packaging, or to protect against
impact, by utilizing the long, flat plateau of their stress—strain curves. The useful
energy that they can absorb per unit volume U (Fig. 4) is approximated by

U=6,é (10)

where G, is the plateau stress — the yield, buckling, or fracturing strength of Equa-
tions (6), (7), or (8), whichever is least.

This bending-dominated behavior is not limited to open-cell foams with struc-
tures like that of Fig. 2. Most closed-cell foams also follow these scaling laws, at first
sight an unexpected result because the cell faces must carry membrane stresses
when the foam is loaded, and these should lead to a linear dependence of both stift-
ness and strength on relative density. The explanation lies in the fact that the cell
faces are very thin; they buckle or rupture at stresses so low that their contribution
to stiffness and strength is small, and the cell edges carry most of the load.

1.1.3.2
Thermal Properties

Cellular solids have useful heat-transfer properties. The cells are sufficiently small
that convection of the gas within them is usually suppressed. Heat transfer through
the lattice is then the sum of that conducted though the struts and that through the
still air (or other fluid) contained in the cells. On average one-third of the struts lie
parallel to each axis, and this suggests that the conductivity might be described by

~ 1 P P
108 (- )

Here the first term on the right describes conduction through the solid cell walls
and edges (conductivity A5) and the second that through the gas contained in the
cells (conductivity Ag; for dry air Ag=0.025 W m™' K™). This is an adequate approxi-
mation for very low density foams, but it obviously breaks down as p/p, approaches
unity. This is because joints are shared by the struts, and as p/p, rises, the joints
occupy a larger and larger fraction of the volume. This volume scales as t*/L* or, via
Eq. (1), as (p/p;)**, so we need an additional term to allow for this:

3 0) ) (- @)

which now correctly reduces to 4 = A, at p = p,. The term associated with the gas,
often negligible, becomes important in foams intended for thermal insulation, since
these have a low relative density and a conductivity approaching 4.

The thermal diffusivities of lattice structures scale in a different way. Thermal dif-
fusivity is defined as

9
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A

a = —— 13
Jc (13)

where C, is the specific heat in ] kg™ K. The specific heat Cp of a cellular structure
is the same as that of the solid of which it is made (because of its units). Thus,
neglecting for simplicity any conductivity through the gas, we find the thermal dif-
fusivity a to be

<\ 1/2
a- -1 1+2<ﬁ> A (14)
pC, 3 Ps Ps Cps

a surprising result, since it is almost independent of relative density.
The thermal expansion coefficient of a cellular material is less interesting: it is
the same as that of the solid from which it is made.

1.1.33
Electrical Properties

Insulating lattices are attractive as structural materials with low dielectric constant,
which falls towards 1 (the value for air or vacuum) as the relative density decreases:

E=1+ (s — 1) <ﬁ> (15)
Ps

where &, is the dielectric constant of the solid of which the cell walls are made.

Those that conduct have electrical conductivities that follow the same scaling law as

the thermal conductivity (Eq. (11) with thermal conductivities replaced by electrical

conductivities); here the conductivity of the gas can usually be ignored.

1.1.4
Maxwell’s Stability Criterion

If lattice-structure materials with low strut connectivity, like those of Figs.2 and 3,
have low stiffness because the configuration of their cell edges allows them to bend,
might it not be possible to devise other configurations in which the cell edges are
made to stretch instead? This thinking leads to the idea of microtruss lattice structures.
To understand these we need Maxwell’s stability criterion, a deceptively simple yet
profoundly fundamental rule [20].

The condition for a pin-jointed frame (i.e., one that is hinged at its joints) made
up of b struts and j frictionless joints, like those in Fig.9, to be both statically and
kinematically determinate (i.e., it is rigid and does not fold up when loaded) in two
dimensions, is:

M=b-2j+3=0. (16)

In three dimensions the equivalent equation is
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a b c

Fig.9 The pin-jointed frame in a) folds up tension — it is a stretch-dominated structure. The
when loaded — it is a mechanism. If its joints frame in c) is over-constrained; if the
are welded together the struts bend (as in horizontal bar is shortened, the vertical one is
Fig.5) — it becomes a bending-dominated struc- put into tension even when no external loads
ture. The triangulated frame in b) is stiff when are applied (giving a state of self-stress).

loaded because the transverse strut carries
M=b-3j+6=0. (17)

If M <0, as in Fig.9a, the frame is a mechanism; it has one or more degrees of
freedom, and — in the directions that these allow displacements — it has no stiffness
or strength. If its joints are locked (as they are in the lattice structures that concern
us here) the bars of the frame bend when the structure is loaded, as in Fig.5. If,
instead, M=0, as in Fig. 9b, the frame ceases to be a mechanism. If it is loaded, its
members carry tension or compression (even when pin-jointed), and it becomes a
stretch-dominated structure. Locking the joints now makes little difference because
slender structures are much stiffer when stretched than when bent. There is an
underlying principle here: the structural efficiency of stretch-dominated structures
is high; that of bending-dominated structures is low.

Fig. 9c introduces a further concept, that of self-stress. It is a structure with M >0.
If the vertical strut is shortened, it pulls the other struts into compression, which is
balanced by the tension it carries. The struts carry stress even though there are no
external loads on the structure. The criteria of Egs. (14) and (15) are necessary condi-
tions for rigidity, but are not in general sufficient conditions, as they do not account
for the possibility of states of self-stress and mechanisms. A generalization of the
Maxwell rule in three dimensions is given by Calladine [21]:

M=b-3j+6=s-m (18)

where s and m are the number of states of self-stress and of mechanisms, respec-
tively. Each can be determined by finding the rank of the equilibrium matrix that
describes the frame in a full structural analysis [22]. A just-rigid framework (a lattice
that is both statically and kinematically determinate) has s=m=0. The nature of
Maxwell’s rule as a necessary rather than sufficient condition is made clear by exam-
ination of Eq. (16): vanishing of the left-hand side only implies that the number of
mechanisms and states of self-stress are equal, not that each equals zero.

1
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Maxwell’s criterion gives insight into the design of lattice materials, and reveals
why foams are almost always bending-dominated [23-25]. Examples of some idea-
lized cell shapes are shown in Fig. 10. Isolated cells that satisfy Maxwell’s criterion
and are rigid are labeled “YES”, while “NO” means the Maxwell condition is not sat-
isfied and that the cell is a mechanism. It is generally assumed that the best model
for a cell in a foam approximates a space-filling shape. However, none of the space-
filling shapes (indicated by numbers 2, 3, 4, 6, and 8) are rigid. In fact no single
space-filling polyhedral cell has M>0. Space-filling combinations of cell shapes, by
contrast, exist that have M >0; for example, the tetrahedron and octahedron in com-
bination fill space to form a rigid framework.

Maxwell’s criterion gives a prescription for designing stretch-dominated lattices,
which we now examine.

Q !
L N
— l“““‘w i

1.YES 2.NO 3.NO 4.NO 5.YES

T
!
A
X
N

Fig. 10 Polyhedral cells. Those that are space filling (24, 6, 8)
all have M <0, that is, they are bending-dominated structures.

1.1.5
Stretch-Dominated Structures

Figure 11 shows an example of a microtruss lattice structure. For this structure
M=18; it has no mechanism and many possible states of self-stress. It is one of
many structures for which M0, and its mechanical response is stretch-dominated.
In this section we review briefly the properties of stretch-dominated microtruss lat-
tice materials, using the same approach as that of Section 1.1.3.
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Fig. 11 A microtruss structure with M >0, together with its unit cell.

Consider the tensile loading of the material. Since it has no mechanisms, the
structure first responds by elastic stretching of the struts. On average one-third of its
struts carry tension when the structure is loaded in simple tension, regardless of the
loading direction. Thus

E 1(p , .

2.2 (L (stretch-dominated behavior). (19)

E 3 \p

The elastic limit is reached when one or more sets of struts yields plastically,
buckles, or fractures; the mechanism with the lowest collapse load determines the
strength of the structure as a whole. If the struts are plastic, the collapse stress — by

the same argument as before — is

I 1 <£> (plastic stretch-dominated behavior). (20)
Oys 3 \ps
This is an upper bound since it assumes that the struts yield in tension or com-
pression when the structure is loaded. If the struts are slender, they may buckle
before they yield. Then, following the same reasoning that led to Eq. (7), the “buck-
ling strength” scales as

~ S\ 2
% oc <p£> (buckling-dominated behavior). (21)
N N

The only difference is the magnitude of the constant of proportionality, which
depends on the details of the connectivity of the strut. But remembering that buckling
of a strut depends most importantly on its slenderness t/L, and that this is directly
related to relative density, we do not expect the dependence on configuration to be
strong. In practice elastomeric foams always fail by buckling; rigid polymer and metallic
foams buckle before they yield when p/p, <0.05 and p/p, <0.01, respectively.

Failure can also occur by strut fracture. A lattice structure made from a ceramic
or other brittle solid will collapse when the struts start to break. Stretch domination
means that the struts carrying tension will fail first. Following the argument that led
to Eq. (18) we anticipate a collapse stress d.- that scales as

13
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Oz (ﬁ> (stretch-fracture-dominated behavior) (22)

O’CKS S

where o, is now the tensile fracture strength of the material of a strut. Here the
constant of proportionality is less certain. Brittle fracture is a stochastic process, de-
pendent on the presence and distribution of defects in the struts. Depending on the
width of this distribution, the failure of the first strut may or may not trigger the
failure of the whole.

The main thing to be learnt from these results is that both the modulus and initial
collapse strength of a stretching-dominated lattice are much greater than those of a
bending-dominated cellular material of the same relative density. This makes
stretch-dominated cellular solids the best choice for lightweight structural applica-
tions. But because the mechanisms of deformation now involve “hard” modes (ten-
sion, compression) rather than “soft” ones (bending), initial yield is followed by plas-
tic buckling or brittle collapse of the struts, which leads to post-yield softening
(Fig.12). This makes them less good for energy-absorbing applications, which
require a stress—strain curve with a long, flat plateau. This post-yield regime ends
and the stress rises steeply at the densification strain, given, as before, by Eq. (9).

Onset of plasticity, Densification
buckling
or crushing

Post-yield softening

Stress, o

Densification
N strain € B
Modulus E \ ]

Strain, ¢

Fig. 12 Schematic stress—strain curve for a stretch-dominated
structure. It has high stiffness and high initial strength, but can
show post-yield softening.

These results are summarized in Figs. 13 and 14, in which the relative modulus
E / E, and strength ¢/0,are plotted against relative density p/p,. They show the envel-
opes within which the currently-researched cellular structures lie. In Fig. 13, the two
broken lines show the locus of relative stiffness as the relative density changes for
ideal stretch- and bending-dominated lattices made of the material lying at the point
(1,1). Stretch-dominated, prismatic microstructures have moduli that scale as p/p,
(slope 1); bending-dominated, cellular microstructures have moduli that scale as
(p/p;)* (slope 2). Honeycombs, a prime choice as cores for sandwich panels and as
supports for exhaust catalysts, are extraordinarily efficient; if loaded precisely paral-
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lel to the axis of the hexagons, they lie on the “ideal-stretch” line. In directions nor-
mal to this they are exceptionally compliant. Foams, available in a wide range of den-
sities, epitomize bending-dominated behavior. If ideal, their relative moduli would
lie along the lower broken line. Many do, but some fall below. This is because of the
way they are made [4]; their structure is often heterogeneous, strong in some places,
weak in others; the weak regions drag down both stiffness and strength. Woven struc-
tures are lattices made by three-dimensional weaving of wires; at present these are
synthesized by brazing stacks of two-dimensional wire meshes, giving configura-
tions that are relatively dense and have essentially ideal bending-dominated proper-
ties. There is potential for efficient low-density lattices here; it requires the ability to
weave three-dimensional meshes. Pyramidal lattices have struts configured as if
along the edges and base of a pyramid — Fig. 11 is an example. They are fully trian-
gulated and show stretch-dominated properties but lie by a factor of 3 below the
ideal line. Kagome lattices — the name derives from that of Japanese weaves — are
more efficient; they offer the lowest mass-to-stiffness ratio.

Strength (Fig. 14) has much in common with stiffness, but there are some differ-
ences. The “ideals” are again shown as broken lines. Stretch-dominated, prismatic
microstructures have strengths that scale as p/p, (slope 1); bending dominated scale
as (p/p.)*"* (slope 1.5). Honeycombs, even when compressed parallel to the hexagon

10
Modulus-Density
L Woven
1.0 Ideal stretch-dominated structL\JIres _-" 7
® behaviour ’4“/4]
e% -~ s
n 10-1 Honeycqmbs, - - - =
% /lle to axis _ - = 7
”
3 \ ="
e - = 154
2| e ”

g1ty -
O Kagome and P Ideal
o pyramidal P bending-dominated

10-3 L lattices P \ behaviour

P s Foams
”
P
10.4 - | | 1 I | | | 1 11
0.01 0.02 0.05 0.1 0.2 0.5 1

Relative density p/pg

Fig. 13 Relative modulus against relative density on logarith-
mic scales for cellular structures with different topologies. Bend-
ing-dominated structures lie along a trajectory of slope 2, and
stretch-dominated structures along a line of slope 1.
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10
Strength-Density
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'8 IF’yr_amldal - o
1 attices - -~
< 107 - Kagome - :—: T =
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= -
a>) 104 | -
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10 ’Honeycombs, Foams
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Relative density p/pg

Fig. 14 Relative strength against relative density on logarithmic
scales for cellular structures with different topologies. Bending-
dominated structures lie along a trajectory of slope 1.5, and
stretch-dominated structures along a line of slope 1.

axis, fall below the ideal because the thin cell walls buckle easily. Metallic foams,
similarly underperform - none reach the ideal bending-dominated performance
line, a consequence of their imperfections. The current generation of woven struc-
tures lies on the bending-dominated ideal. As with stiffness, pyramidal and Kagome
lattices offer near-ideal stretch-dominated performance.

The bending/stretching distinction influences mechanical properties profoundly,
but has no effect on thermal or electrical properties. At the approximate level we seek
in this overview, they are adequately described by Egs. (11)—(13).

1.1.6
Summary

Structural engineers have known and used latticelike structures for generations, but
it is only in the last 20 years that an understanding of materials with a lattice-like
structure has emerged. Many of these respond to stress in precisely the way engi-
neers seek to avoid — by bending deformation of the struts that make up the struc-
ture. As materials, these are interesting for their low stiffness and strength, and the
large strains they can accommodate — properties that are attractive in cushioning,
packaging, and energy absorption and in accommodating thermal shock. But if stiff-
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ness and strength at low weight are sought, the lattice must be configured in such a
way that bending is prevented, leaving strut-stretching as the dominant mode of
deformation. This suggests the possibility of a family of microtruss structured mate-

rials, many as yet unexplored.

With this introduction, we are ready to explore the design and characterisation of
ceramic cellular materials in more detail in the chapters that follow.
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