Contents

Preface XVII
List of Contributors XIX
Abbreviations XXVII

Part I Molecular Switching 1

1 Multifunctional Diarylethenes 3
 C. Chad Warford, Vincent Lemieux, and Neil R. Branda
 1.1 Introduction 3
 1.2 Electrochemical Ring-Closing and Ring-Opening of DTEs 4
 1.2.1 Electrochemical Behaviour of DTEs 4
 1.2.2 Fully Functional Photo- and Electrochromic DTEs 14
 1.3 Using Dithienylethenes to Modulate How Chemicals React or Interact with Others 14
 1.3.1 Control of Chemical Behaviour through Photoswitching 14
 1.3.2 Controlling Molecular Interactions and Reactions Using the Steric Differences in the DTE Photoisomers 16
 1.3.3 Controlling Molecular Reactions and Interactions Using the Electronic Differences in the DTE Photoisomers 19
 1.3.4 A Specific Approach to Using the Changes in Location of π-Bonds to Control Reactivity 21
 1.4 Gated Photochromism 24
 1.4.1 ‘Gated’ Photochromism Based on Steric Effects 24
 1.4.2 Intramolecular ‘Gating’ 25
 1.4.3 Intermolecular ‘Gating’ 25
 1.4.4 Gating Based on Electronic Effects 27
 1.5 Reactivity-Gated Photochromism Using the Functional Group Effect 31
 1.6 Conclusion 32
 References 32
4 Transition Metal-Complexed Catenanes and Rotaxanes as Molecular Machine Prototypes 97
Christian Tock, Julien Frey, and Jean Pierre Sauvage
4.1 Introduction 97
4.2 Copper-Complexed [2]Catenanes in Motion: the Archetypes 98
4.2.1 A Copper-Complexed [2]Catenane in Motion with Two Distinct Geometries 98
4.2.2 A Copper-Complexed [2]Catenane in Motion with Three Distinct Geometries 99
4.3 Fighting the Kinetic Inertness of the First Copper-Based Machines; Fast-Moving Pirouetting Rotaxanes 102
4.4 Molecular Motions Driven by Chemical Reactions – Use of a Chemical Reaction to Induce the Contraction/Stretching Process of a Muscle-Like Rotaxane Dimer 106
4.5 Electrochemically Controlled Intramolecular Motion within a Heterodinuclear Bismacrocycle Transition-Metal Complex 111
4.6 Ru(II)-Complexes as Light-Driven Molecular Machine Prototypes 112
4.7 Conclusion and Prospective 116
References 116

5 Chiroptical Molecular Switches 121
Wesley R. Browne and Ben L. Feringa
5.1 Introduction 121
5.2 Molecular Switching 122
5.2.1 Chiroptical Switches Based on Overcrowded Alkenes 126
5.2.1.1 Enantiomeric Photochromic Switches 127
5.2.1.2 Diastereomeric Photochromic Switches 128
5.2.2 Azobenzene-Based Chiroptical Switching 128
5.2.3 Diarylethene-Based Chiroptical Switches 134
5.3 Chiral Fulgides 138
5.3.1 Redox-Based Chiroptical Molecular Switching 139
5.3.2 Miscellaneous Chiroptical Switches 143
5.3.3 Chiroptical Switching of Luminescence 144
5.4 Light-Driven Molecular Rotary Motors 145
5.4.1 First- and Second-Generation Motors 146
5.4.2 Light-Driven Motors on Surfaces 159
5.4.3 Transmission of Molecular Chiroptical Switching from Bicomponent Molecules to Polymers 164
5.5 Liquid Crystals 167
5.6 Gels 171
5.7 Conclusions and Perspectives 172
References 173
6 Multistate/Multifunctional Molecular-Level Systems: Photochromic Flavylium Compounds 181
Fernando Pina, A. Jorge Parola, Raquel Gomes, Mauro Maestri, and Vincenzo Balzani

6.1 Introduction 181
6.2 Energy Stimulation 182
6.3 Photochromic Systems 182
6.4 Bistable and Multistable Systems 184
6.5 Nature of the Species Involved in the Chemistry of Flavylium Compounds 186
6.5.1 Thermodynamics of Flavylium Compounds 188
6.6 Thermal Reactions of the 4′-Methoxyflavylium Ion 189
6.7 Photochemical Behaviour of the 4′-Methoxyflavylium Ion 191
6.7.1 Continuous Irradiation 191
6.7.2 Pulsed Irradiation 192
6.8 Flavylium Ions with OH Substituents 193
6.9 Flavylium Ions with Other Substituents 195
6.10 Energy-Level Diagrams 198
6.11 Chemical Process Networks 200
6.11.1 Write-Lock-Read-Unlock-Erase Cycles 203
6.11.2 Reading without Writing in a Write-Lock-Read-Unlock-Erase Cycle 206
6.11.3 Micelle Effect on the Write-Lock-Read-Unlock-Erase Cycle 208
6.11.4 Permanent and Temporary Memories 210
6.11.5 Oscillating Absorbance Patterns 211
6.11.6 Colour-Tap Effect 211
6.11.7 Logic Operations 212
6.11.8 Multiple Reaction Patterns 215
6.11.9 Upper-Level Multistate Cycles 216
6.11.10 Multiswitchable System Operated by Proton, Electron and Photon Inputs 219
6.11.11 Nonaqueous Media and Steps towards Solid-State Devices 221
6.12 Conclusions 222
Acknowledgements 222
References 223

7 Nucleic-Acid-Based Switches 227
Eike Friedrichs and Friedrich C. Simmel
7.1 Molecular Switches Made from DNA and RNA 227
7.2 Switchable Ribozymes 229
7.2.1 Ribozyme Switching by Antisense Interaction 230
7.2.2 Ribozyme Deactivation by Steric Hindrance 231
7.2.3 Ribozyme Activation by Complex Stabilization 231
7.2.4 Ligand-Induced Stabilization of the Ribozyme Domain 231
7.3 Regulatory RNA Molecules 232
7.3.1 Riboswitches 232
7.3.2 Synthetic RNA Regulatory Switches 234
7.4 Sensor Applications 236
7.4.1 Switches are Sensors 236
7.4.2 Sensor-Construction Requirements 236
7.4.3 Signal Amplification for Lowering Detection Limit 238
7.5 DNA Computing 240
7.6 DNA Machines 241
7.6.1 Prototype Machines Based on the i-Motif Transition 241
7.6.2 Tweezers – a Prototype System for Reversible Switching Devices 242
7.6.3 Switchable Aptamers 243
7.6.4 Devices Based on Double-Crossover Motifs 243
7.6.5 Walkers – towards DNA-Based Motors 245
7.7 Switchable Molecular Networks and Materials 247
7.8 Conclusion and Outlook 248
Acknowledgements 249
References 249

Part II Switching in Containers, Polymers and Channels 257

8 Switching Processes in Cavitands, Containers and Capsules 259
Vladimir A. Azov and François Diederich
8.1 Introduction 259
8.2 Switchable Covalently Constructed Cavitands and Container Molecules 261
8.2.1 Characterization of Vase and Kite Conformations in the Solid State and in Solution 262
8.2.2 Cavitand Immobilization on Surfaces and Switching at Interfaces 266
8.2.3 Synthetic Modifications of the Upper Rim 268
8.2.4 Modular Construction of Extended Switches with Giant Expansion–Contraction Cycles 272
8.2.5 Electrochemically Triggered Switching 274
8.2.6 Switching Molecular Containers 276
8.2.7 Cucurbit[n]urils 282
8.3 H-Bonded Molecular Capsules 283
8.3.1 Glycoluril-Derived H-Bonded Capsules 284
8.3.3 Multicomponent Self-Assembled Molecular Containers 290
8.4 Assembly and Disassembly of Metal-Ion-Coordination Cages 290
8.5 Conclusions 293
Acknowledgements 293
References 294
9 Cyclodextrin-Based Switches 301
He Tian and Qiao-Chun Wang
9.1 Introduction 301
9.2 In and Out Switching 304
9.3 Back and Forth Switching 306
9.4 Displacement Switching 310
9.5 Coordination Switching 313
9.6 Rearrangement Switching 314
9.7 Conclusion and Perspective 316
Acknowledgement 317
References 317

10 Photoswitchable Polypeptides 321
Francesco Ciardelli, Simona Bronco, Osvaldo Pieroni, and Andrea Pucci
10.1 Photoresponsive Polypeptides 321
10.2 Light-Induced Conformational Transitions 324
10.2.1 Azobenzene-Containing Polypeptides 324
10.2.2 Spiropyran-Containing Polypeptides 335
10.2.3 Thioxopeptide Chromophore 339
10.3 Photostimulated Aggregation–Disaggregation Effects 342
10.4 Photoeffects in Molecular and Thin Films 344
10.5 Photoresponsive Polypeptide Membranes 347
10.6 Summary and Recent Developments 350
10.7 Towards More Complex Biorelated Photoswitchable Polypeptides 354
References 356

11 Ion Translocation within Multisite Receptors 361
Valeria Amendola, Marco Bonizzoni, and Luigi Fabbrizzi
11.1 Introduction 361
11.2 Metal-Ion Translocation: Changing Metal’s Oxidation State 362
11.3 Metal-Ion Translocation: Changing through a pH Variation the
Coordinating Properties of One Receptor’s Compartment 366
11.4 The Simultaneous Translocation of Two Metal Ions 381
11.5 Redox-Driven Anion Translocation 386
11.6 Anion Swapping in a Heteroditopic Receptor, Driven by a
Concentration Gradient 392
11.7 Conclusions and Perspectives: Further Types of Molecular
Machines? 396
References 397

12 Optically Induced Processes in Azopolymers 399
Cleber R. Mendonça, Débora T. Balogh, Leonardo De Boni, David S. dos
Santos Jr., Valtencir Zucolotto, and Osvaldo N. Oliveira Jr.
12.1 Introduction 399
12.2 Azoaromatic Compounds: Synthesis, Functionality and Film Fabrication 400
12.3 Applications 401
12.3.1 Optical Storage 401
12.3.1.1 Optically Induced Birefringence 401
12.3.2 Optical Storage Experimental Setup 402
12.3.2 Nonlinear Optical Properties of Azochromophores 406
12.3.2.1 Two-Photon-Induced Birefringence 408
12.3.2.2 Coherent Control of the Optically Induced Birefringence 411
12.3.3 Photoinscription of Surface-Relief Gratings 412
12.4 Final Remarks and Prospects 417
Acknowledgements 417
References 417

13 Photoresponsive Polymers 423
Zouheir Sekkat and Wolfgang Knoll
13.1 Introduction 423
13.2 Photo-Orientation by Photoisomerization 423
13.2.1 Introduction 423
13.2.2 Photoisomerization of Azobenzenes 425
13.2.3 Photo-Orientation by Photoisomerization 427
13.2.3.1 Base Ground Work 427
13.2.3.2 Theory of Photo-Orientation 429
13.2.3.2.1 Purely Polarized Transitions Symmetry 430
13.2.3.2.2 Phenomenological Theory and General Equations 431
13.2.3.2.3 Dynamical Behaviour of Photo-Orientation 434
13.2.3.2.4 Early Time Evolution of Photo-Orientation 436
13.2.3.2.5 Steady State of A \(\leftrightarrow\) B Photo-Orientation 437
13.2.4 Photo-Orientation of Azobenzenes: Individualizable Isomers 439
13.2.4.1 Reorientation within the trans \(\rightarrow\) cis Photoisomerization 440
13.2.4.2 Reorientation within the cis \(\rightarrow\) trans Thermal Isomerization 443
13.2.5 Photo-Orientation of Azo Dyes: Spectrally Overlapping Isomers 444
13.2.6 Photo-Orientation of Photochromic Spiropyrans and Diarylethenes 448
13.2.6.1 Photoisomerization of Spiropyrans and Diarylethenes 449
13.2.6.2 Spectral Features of Photo-Orientation 450
13.2.6.3 Photo-Orientation Dynamics and Transitions Symmetry 450
13.3 Photoisomerization and Photo-Orientation of Azo Dye in Films of Polymer: Molecular Interaction, Free Volume and Polymer Structural Effects 458
13.3.1 Introduction 458
13.3.2 Photoisomerization of Azobenzenes in Molecularly Thin Self-Assembled Monolayers: Photo-Orientation and Photomodulation of the Optical Thickness 460
13.3.2.1 Photoisomerization of Azo-SAMs 460
13.3.2.2 Photo-Orientation in Molecularly Thin Layers (Smart Monolayers) 460
13.3.2.3 Photomodulation of the Optical Thickness of Molecularly Thin Layers 463
13.3.4 Polymer Structural Effects on Photo-Orientation 473
13.3.4.1 Photoisomerization and Photo-Orientation of High-Temperature Azo-Polyimides 473
13.3.5 Photoisomerization and Photo-Orientation of Flexible Azo-Polyurethanes 479
13.3.6 Pressure Effects on Photoisomerization and Photo-Orientation 486
13.4 Photoisomerization Effects in Organic Nonlinear Optics: Photoassisted Poling and Depoling and Polarizability Switching 491
13.4.1 Introduction 491
13.4.2 Photoassisted Poling 492
13.4.3 Photoinduced Depoling 498
13.4.4 Polarizability Switching by Photoisomerization 500
13.5 Conclusion 503
Acknowledgements 504
Appendix 13.A Quantum-Yield Determination 505
Rau’s Method 505
Fischer’s Method 506
Appendix 13.B Derivation of Equations for Determination of Anisotropy 507
Appendix 13.C From Molecular to Macroscopic Nonlinear Optical Properties 509
References 511

14 Responsive Molecular Gels 517
Jaap de Jong, Ben L. Feringa, and Jan van Esch
14.1 Introduction 517
14.1.1 Responsive Chemical Gels 517
14.1.2 Responsive Physical Gels 518
14.1.3 Triggering Signals and Anticipated Responses 519
14.2 Chemoresponsive Gels 520
14.2.1 Chemoresponsive Gels by Host–Guest Complexation 521
14.2.2 Metal-Ion and Anion-Responsive Gels 527
14.2.3 Gel-Sol Phase Transitions Triggered by pH Changes 531
14.2.4 Chemoresponsive Gel Systems 538
14.2.5 Enzyme-Responsive Gel Systems 540
14.3 Physicoresponsive Gels 544
14.3.1 An Unusual Temperature-Responsive LMOG Gel 545
14.3.2 Responses to Mechanical Stress 545
14.3.3 Light-Responsive Gels 549
14.4 Conclusions 558
References 559

15 Switchable Proteins and Channels 563
Matthew Volgraf, Matthew Banghart, and Dirk Trauner
15.1 Introduction 563
15.2 Photoswitch Characteristics 564
15.2.1 Common Photoswitches 566
15.3 Photoswitch Incorporation 567
15.3.1 Bioconjugation Techniques 567
15.3.2 Unnatural Amino Acids 568
15.4 Designing Photoswitchable Proteins 569
15.5 Photoswitchable Enzymes 571
15.5.1 Random Modification of Enzyme Surfaces 571
15.5.2 Photochromic Amino Acids 572
15.5.3 Modification of Cysteine Mutants 575
15.5.4 Photoswitchable Affinity Labels (PALs) 578
15.6 Photoswitchable Ion Channels 579
15.6.1 The Nicotinic Acetylcholine Receptor (nAChR) 579
15.6.2 Gramicidin A 580
15.6.3 The Voltage-Gated K\(^+\) Channel 581
15.6.4 The Ionotropic Glutamate Receptor (iGluR) 583
15.6.5 \(\alpha\)-Hemolysin 585
15.6.6 The Mechanosensitive Channel of Large Conductance (MscL) 587
15.7 Future Challenges 588
15.8 Concluding Remarks 590
References 591

Part III Molecular Switching in Logic Systems and Electronics 595

16 Reading and Powering Molecular Machines by Light 597
Vincenzo Balzani, Monica Semeraro, Margherita Venturi, and Alberto Credi
16.1 Introduction 597
16.2 Basic Concepts 598
16.2.1 Molecular Motions in Artificial Systems: Terms and Definitions 598
16.2.2 Energy Supply and Monitoring Signals 600
16.2.3 Other Features 602
16.3 Interlocked Molecular Species as Nanoscale Machines 602
16.4 Molecular Machines Monitored by Light 604
16.4.1 An Acid–Base Controllable Molecular Shuttle 604
16.4.2 Molecular Elevators 607
16.5 Molecular Machines Powered and Monitored by Light 611
16.5.1 Pseudorotaxane Threading–Dethreading Based on Photoisomerization Processes 611
16.5.2 Pseudorotaxane Threading–Dethreading Based on Photoinduced Proton Transfer 614
16.5.3 Molecular Shuttles Based on Photoinduced Electron Transfer 617
16.6 Conclusion and Perspectives 622
Acknowledgements 623
References 624

17 Photoinduced Motion Associated with Monolayers 629
Kunihiro Ichimura and Takahiro Seki
17.1 Introduction 629
17.2 Background to Photoinduced Motion of Monolayers 630
17.3 Photoswitchable Flat Monolayers 631
17.3.1 LB Films 631
17.3.2 SAMs Formed by Silylation 633
17.3.3 SAMs by the Au-Thiol Method 635
17.3.4 SAMs from Cyclic Amphiphiles 639
17.4 Photoswitchable Surfaces with Controlled Roughness 641
17.4.1 Background and Theory 641
17.4.2 Rough Surfaces Covered with Thin Photochromic Films 642
17.5 Light-Guided Liquid Motion 645
17.6 Photoinduced Motion on Water Surface 651
17.6.1 Photomechanical Effects in Monolayers 651
17.6.2 Dynamic Pattern Propagation and Collective Reorientation by Light 652
17.6.3 Photoresponse of Molecules with Unconventional Architecture 653
17.6.3.1 Urea Derivatives 653
17.6.3.2 Metal-Coordinated Macrocycles 653
17.6.3.3 Dendrimers and Dendrons 653
17.7 Photoinduced Morphology and Switching at Nanometre Levels 656
17.7.1 Azobenzene Derivatives 656
17.7.2 Spiropyran Derivatives 657
17.8 Photoinduced Morphologies in Two-Component Systems 658
17.9 2D Block-Copolymer Systems 660
17.9.1 Monolayers of Photoresponsive Block-Copolymers 660
17.9.2 Thin Films of Block-Copolymers 661
17.9.3 Incorporation of Hierarchical Structures in Relief Structures 662
17.10 Summary 665
References 665

18 Molecular Logic Systems 669
A. Prasanna de Silva, Thomas P. Vance, Boontana Wannalerse, and Matthew E.S. West
18.1 Introduction 669
Contents

20.4 Experimental Methods 734
20.4.1 Scanning Tunnelling Microscopy 734
20.4.2 Metal–Molecule–Metal Devices 737
20.4.2.1 Devices Based on Self-Assembled Monolayers 737
20.4.2.2 Devices Using Nano-Objects as Intermediates 738
20.4.3 Single-Molecule Junctions 739
20.5 Transport Studies on Switchable Molecules 742
20.5.1 Extrinsic Switching 742
20.5.2 Interlocked Molecular Switches 747
20.5.3 Tautomerization 752
20.5.4 Photochromic Switches 756
20.5.4.1 Diarylenethenes 756
20.5.4.2 Azobenzenes 763
20.6 Conclusions and Outlook 766
Acknowledgements 766
References 768
Index 779