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Introduction

Technological practice today, particularly in the spring-manufacturing, automotive
and aerospace industries, is hardly imaginable without mechanical surface treat-
ments. The origins of these processes date back to ancient history. [1.1] states that
in the city of Ur, gold helmets were hammered and thus mechanically enhanced,
as early as 2700 BC. The knights of the Crusades used the same method to rein-
force their swords when shaping them. The first modern-day applications, again,
are to be found in military technology, but also in railroad technology. [1.1] reports
that in 1789, the outer surfaces of artillery gun barrels were hammered in order to
improve their strength, and by 1848, train axles and bearing bolts were evened out
by rolling. Until that point, the methods had been intrinsically connected to the
skill and experience of the craftspeople, who used strict confidentiality in passing
on their knowledge in order to keep their competitive advantage.

It was only in the 1920s and -30s that surface treatment evolved into technical
processing methods. F�ppl’s seminal treatises of 1929 [1.2, 1.3] establish the cor-
relation between mechanical surface treatment and increased fatigue strength,
indicating significantly higher fatigue strength in surface-rolled samples than in
polished samples. Consequently, F�ppl’s group [1.4] extended their examinations
to include notched components and found that the fatigue strength increased by
20–56 % in the case of deep-rolled thread rods. These findings were confirmed by
Thum [1.5] in his systematic examination of the relation of rolling and fatigue
strength, published in 1932. Thum also found that resistance to corrosion fatigue
[1.6, 1.7] and fretting fatigue [1.8] increased.

An alternative to deep rolling emerged in the form of shot peening. Its precur-
sor was developed in 1927 by Herbert [1.9], a process he termed “cloudburst”, in
which large quantities of steels balls are “rained” onto component surfaces from a
height of 2–4 meters. Herbert observed increases of hardness, but did not give
any indications regarding contingent increases of fatigue strength. In his afore-
mentioned [1.2, 1.3] paper of 1929, F�ppl showed that samples treated with a ball-
shaped hammer also exhibit significantly higher fatigue life under cyclic stress
than polished samples do. In 1935, Weibel [1.10] independently proved that sand-
blasting increases the fatigue strength of wires. This additional precursor of pres-
ent-day shot peening methods builds on the British patent taken out by the Amer-
ican, Tilgham [1.11], in 1870, which was originally geared at drilling, engraving
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and matting of iron and other metals and deals with surface treatment using sand
accelerated by pressurized air, steam, water or centrifugal force. In 1938, Frye and
Kehl [1.12] proved the positive effect of blast cleaning treatments on fatigue
strength, and in 1939 v. Manteuffel [1.13] found higher degrees of fatigue strength
in sandblasted springs than in untreated springs. Crucial systematic examinations
were published in the US in the early 1940s. Working at Associated Springs Co.,
Zimmerli [1.14] used shot peening to increase the fatigue strength of springs and
analyzed the influence of peening parameters. At General Motors, Almen [1.15,
1.16] demonstrated fatigue strength improvements in engine components and
achieved increased reproducibility of the peening process by introducing the
Almen strips named after him. In 1948, fatigue strength improvements were
proven also for shot peened components under conditions of corrosion [1.17].

The development of special methods brought an additional impetus for the
technical application of mechanical surface treatment processes. Straub and May
[1.18] were the first to report increases of fatigue strength in springs which were
shot peened under pre-stress. While they presented models in which the state of
residual stress was to be shifted toward higher compressive residual stress by
means of tensile prestressing, this was not proven until 1959, when Mattson and
Roberts [1.19] analyzed residual stress states after �strain peening’ combined with
tensile or compressive prestrains. Today, this method is called stress peening and
is predominantly used on springs [1.20–1.25], but also on piston rods [1.26, 1.27].
Supplying thermal energy simultaneous or consecutive to the actual peening pro-
cess constitutes an approach for increasing the effect of the mechanical surface
treatment even further. Warm peening, i.e. shot peening at high workpiece tem-
peratures, was first suggested in a 1973 Japanese patent [1.28] to achieve increased
fatigue strength in springs by using the “Cottrell effect”. In the meantime, appli-
cations in the spring manufacturing industry have been examined [1.29–1.35] and
fundamental research by the V�hringer and Schulze group [1.36–1.38], in particu-
lar, has been pushing toward a deeper understanding of the processes and an opti-
mization of warm peening. Conventional shot peening and consecutive annealing
was examined more closely by the teams of Scholtes [1.39] as well as V�hringer
and Schulze [1.41] as an alternative method. These examinations show that appro-
priately selected annealing temperatures and times are able to achieve effects
comparable to warm peening, while complexity is reduced. Wagner and Gregory
[1.42–1.46] increased the density of nuclei for re-crystallization or precipitation in
the surface layers of titanium and aluminum alloy workpieces which is effective
during annealing after shot peening or rolling, and thus enables fine grain forma-
tion and selective or preferred surface hardening. These procedures, too, allow for
considerable increases of fatigue strength at room temperature or higher tempera-
tures. A completely new method has been developing since the 1970s in the form
of laser shock treatment. However, it has attained technical relevance only gradu-
ally. Its importance has started to increase since suitable laser technologies have
become available and the enhancement process has been transferred from labora-
tory lasers, which are irrelevant for technical applications, to industrially applic-
able lasers [1.47–1.52].
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In the course of method development, at first the question remained which sur-
face changes of the workpieces the observed increases in fatigue strength could be
attributed to. Samples manufactured by machining were used to prove and to
quantitatively record the influence of surface topography on fatigue strength.
Houdremont and Mail�nder [1.53] demonstrated that the difference in roughness
between polished and coarsely cut surfaces leads to fatigue strength changes
which become more pronounced the greater the strength of a material is. Siebel
and Gaier [1.54] in 1956 stated a factor for roughness that expresses the effect on
fatigue strength and decreases linearly with the logarithm of roughness. At first,
an intense and controversial debate centered on whether the cause for fatigue
strength increases was to be found in the effects of mechanical workhardening, as
postulated by F�ppl and his team [1.2, 1.3], or the effects of the induced compres-
sive residual stress states, as Thum and his team [1.5, 1.55] assumed. Fig. 1.1
summarizes the essential approaches. Today it is commonly accepted knowledge
that the inhomogeneous plastic deformations required for generating residual
stresses always involve local alterations of the material state, which may affect a
component’s fatigue strength. However, the residual stress stability within the
given operating conditions of a component determines whether the residual
stresses are to be treated as loading stresses, in which case they are predominant
in comparison with the effect mentioned first. Both effects may be taken into
account in the so-called concept of the local fatigue limit [1.56, 1.57] and be super-
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Fig. 1.1: Approaches for the explanation of changes in fatigue
behaviour due to mechanical surface treatments
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posed with the aforementioned roughness effects and those of additional potential
phase transformations.

Mechanical surface treatment processes commonly used today may be roughly
divided into cutting and non-cutting methods. The main focus of cutting methods
is on shaping, while achieving optimal surface layer states for later use is only a
secondary objective. Therefore, study is restricted to describing non-cutting meth-
ods which serve to enhance the surface layer state with respect to the future appli-
cation. Fig. 1.2 shows a systematized compilation of these methods. The methods
indicated are subdivided into those without or with relative movement between
the tools and the workpiece and those with a static or an impulsive tool impact.
The description of methods without relative movement is limited to impulsive
impact, which has a repetitive irregular pattern in shot peening and a repetitive
regular pattern in laser shock treatment. Among the methods involving relative
movement, the focus is on the rolling movement of deep rolling. The aforemen-
tioned process modifications are always included in the description. As indicated
earlier, it is crucial for the effects of mechanical surface treatment on component
properties that the modifications imparted on the surface layer state are as stable
as possible and are not reduced significantly during loading. This applies, in par-
ticular, to the residual stress states created. Therefore, the following description of
the individual methods and the surface layer alterations they cause goes on to
examine their stability during thermal, quasi-static and cyclic loading and combi-
nations thereof. In addition to the experimental results and the causes, the focus
is also on approaches toward a quantitative modeling of the changes of the surface
layer state. In conclusion, the effects of mechanical surface treatments on cyclic
loading behavior are discussed systematically and integrated into quantitative
model approaches, as well.
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