Index

a
additives 3, 198
annealing 193
applications
– biosensors 189, 213
– biotechnology 58, 189
– Bragg mirrors 165
– drug delivery 12, 189
– film displays 83
– microcavity resonators 165
– microelectromechanical systems (MEMS) 112
– optical filters 102
– rainbow chips 106
atomic force microscopy (AFM) 12, 105f., 139
– asymmetric electrode etching 105f.
– porous silicon from p-type wafer 54

b
band
– conduction 21f., 25
– energy 24f.
– gap 21, 176
– stop 84
– valence 21f., 25
BET (Brunauer–Emmett–Teller) adsorption method, see characterization methods
biocompatibility 189, 199, 212f.
biomolecule conjugation, see conjugation of biomolecules
bonds
– Si–X 2, 189f., 200f.
Bragg stack, see photonic crystals
Bruggeman model, see characterization methods
byproducts 199

C
CCD (charge coupled device) 22
– spectrometer 140ff.
cell
– fabrication materials 44f.
– gas dosing 241ff.
– large etch 229, 231f.
– power supply 44f., 65f.
– safety precautions 48ff.
– small etch 229, 231f.
– standard etch 105, 179, 206, 229f.
– three-electrode 6f.
– two-electrode 5f., 43
combination methods
– Barret–Joyner–Halenda (BJH) adsorption method 167, 170
– Broekhof–de Boer (BdB) adsorption method 167
– Bruggeman model 149, 154ff.
– Brunauer–Emmett–Teller (BET) adsorption method 12f., 167f., 170, 196
– fast Fourier Transform (FFT) 151ff.
– Fourier transform infrared (FTIR) 176ff.
– infrared (IR) spectroscopy 176ff.
– optical reflectance measurements 133, 139f., 197
– Raman spectroscopy 176
– reflectometric interference Fourier transform spectroscopy (RIFTS) 143, 150f.
– scanning electron microscopy (SEM) 138
– spectroscopic liquid infiltration (SLIM) method 134f., 143, 149, 151, 154f.
– transmission electron microscopy (TEM) 138

Michael J. Sailor.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
charge
 – carriers 21f., 36, 175
 – carrier recombination 24, 175
 – transport 26
 – tunneling 57
cleaning silicon wafers 51
conductivity 21, 24, 57
conjugation of biomolecules
 – attachment of PEG 212f.
 – biomodification of hydrocarbonized porous silicon 213f.
 – carbodiimide coupling reagents 211f.
 – silanol-based coupling 215ff.
cracks 59, 105, 189, 198
crystal face selectivity 18
current
 – blocked 29, 63
 – corrosion 17
 – density 16, 19, 27, 48, 58f., 92
 – leakage 27
 – photo- 29
current–potential curve 7, 10
crystalline silicon, see silicon
d
DAC (digital to analog converter) 78f.
diode
 – ideal law 27, 29
 – photo- 22
 – Schottky 36f.
dissolution
 – electrochemical 13
 – silicon 2
 – silicon oxide in basic media 3
 – silicon oxide in HF solutions 3, 121
DMM (digital multimeter) 38, 57f.
dopants 22f., 30
 – density 92
 – segregation 59
doped
 – low- 79
 – n-type 13f., 19, 23, 25, 37ff.
 – p-type 8, 13, 23, 25, 37ff.
ed
electric field distribution 18
electrochemical
 – anaerobic 206
 – anodization 68
 – corrosion reaction 3, 6, 8f., 16, 27
 – catalyzed 73
 – metal-assisted stain etch 73f, 74ff.
 – photoetching 111f.
 – power supply 78ff.
 – programmed 78ff.
 – reaction stoichiometry 17, 56
 – reliability 72
 – reproducibility 61, 72
 – side 105f.
 – stain 68, 193
 – time resolution 79f.
 – waveform superposition method 104
electrochemical
 – grafting 206f.
electrocorrosion reaction, see
 – electrochemical corrosion reaction
 – electrode
 – asymmetric configuration 104ff.
 – counter- 6, 8, 10, 26, 44, 59, 69, 104ff.
 – gate 22
 – reference 7
 – saturated calomel 7
 – working 6, 8, 59
 – electron 21ff.
 – –hole pairs 28, 59
 – transfer kinetics 9, 192
electropolishing 7ff., 106
enthalpies 2
equilibrium constant 24
etch cell, see cell
etching, see electrochemical etching
f
Fabry–Pérot fringes 91, 101, 139, 143, 147, 150, 154f.
 – layer 145ff.
Faraday’s constant 56f.
fast Fourier Transform (FFT), see
crystallization methods
Fermi
 – energy 22
 – level 21
flakes 59, 198
fluorescence spectra 174
freestanding films, see lift-off films
Index

g
gas adsorption measurement 12f., 167f., 170, 196

h
half-reactions 5ff.
HF (hydrofluoric acid) 3
– electrolyte 5, 51
– safety precautions 48f., 235ff.
hole 8, 10, 21ff.
– conduction 22
– valence band 16f., 19
hot-probe method 36
hydrosilylation 200, 203f., 217f.
– thermal 200, 203f.
– microwave-assisted 204f.

i
impurity 22f., 51
index of refraction 156ff.
infrared (IR) spectroscopy, see characterization methods
interface
– air/porous silicon 91, 103, 144
– bio- 207
– passive 175
– pore/silicon 83
– semiconductor/electrolyte 25
– silicon/bulk silicon 103, 120, 144
– silicon/crystalline silicon 10, 13, 17, 91
– silicon/electrolyte 38, 63, 79
– silicon/metal 39
– silicon/porous silicon 103, 120, 144
– silicon/solution 104
interfacial transport 27
ionization constant 4

k
Kelvin equation 168
Kohlraush–Williams–Watts stretched exponential model 174f.

l
layer
– double 71, 79, 84, 87, 150, 162ff.
– multi- 71, 89f., 150
– refractive index 83, 88
– single 43, 101, 151, 162, 165
– spatially modulated 77ff.
– transparent 144
lifetime
– emission 174f.
– nonexponential excited state 173f.
lift-off films 10, 17, 121ff.
– hydrogen-terminated 126
liquid junctions
– current–voltage curve at n-type Si 28f.
– current–voltage curve at p-type Si 26f.
– energetics at n-type Si 28
– p-type Si 26f.
luminescence
– bands 172
– macroporous silicon 60ff.

m
macropores 12ff.
masks, see patterning
mass transfer effects 59
mesopores 12ff.
– double layer by programmed electrochemical etch 85ff.
– preparation from a p⁺⁺-type wafer 53ff.
metal-assisted etch, to form nanowires 73f.
mattelization reactions 218f.
microparticles 120
micropores 12f., 53
Miller indices 18, 20
modulation
– nanostructures 111
– porosity 83, 85, 95, 111
– refractive index 83f., 88

n
nanocrystallites 59
nanofibers 209f.
nanoparticles 73, 121, 196
– core/shell (Si/SiO₂) 126f.
nanopores 123f.
nanowires 57, 73, 73ff.
– optical absorption spectra 170
– quantum confinement 170
– vapor–liquid–solid (VLS) growth 74
Newton’s rings 154
nucleophile 5, 17, 207
nucleophilic attack 18
Nyquist–Shannon theorem 80

o
ohmic contact 38ff.
– mechanical abrasion 40
– metal evaporation 39
open circuit potential (OCP) 8
oxidation
 – aqueous solution 193ff.
 – dimethyl sulfoxide (DMSO) 192, 195ff.
 – four-electron electrochemical 8ff.
 – gas-phase oxidants 190
 – organic species 195
 – rapid thermal (RTO) 192, 196
 – two-electron electrochemical 8ff.
 – thermal 164, 167, 192

p
 patterning 77, 108ff.
 – after etching approach 110
 – before etching approach 110
 – physical masks 108ff.
 peeling 105
photoelectrochemical etching
 – back side illumination 69f., 111
 – front side illumination 66ff.
 – n-type silicon wafer 65f.
photoexcitation 22, 59, 63
photoluminescence (PL) 59, 120, 127, 170ff.
 – instrumentation 173
 – mechanisms 171f.
 – steady-state spectra 170ff.
 – time-resolved spectra 173
 – tunability 171
photonic devices 71, 80, 83ff.
 – Bragg reflector 96f.
 – Bragg stacks 83f., 94ff.
 – films 119ff.
 – microcavities 94f., 165
 – multilayered 1-D 89
 – multi-line spectral filters 94f., 100f.
 – reflectivity spectrum 101, 103f.
photoreactance 109f.
polarization memory 174
 pore
 – bottoms 13
 – branching 19
 – crystallographic 18f.
 – current 19
 – diameter 57, 77, 87, 104, 111
 – expansion chemistry 197
 – formation 13f.
 – modulation 83
 – morphologies 13f., 18, 64, 67
 – size 12, 58
 – texture 14
 porosity 4, 11, 87, 104ff.
 – average 88
 – closed 12
 – depth profile 103
 – gradient 77, 85f., 104ff.
 – gravimetric determination 134ff.
 – high 105
 – open 11, 155
 – total 12
porous glass membrane 7

q
quantum confinement effects 18, 57, 59, 127, 170, 174, 176

r
recombination, see charge carrier
reflectivity spectrum 101, 103f., 133
reflectometric interference Fourier transform spectroscopy (RIFTS), see characterization methods
reproducibility
 – electrochemical etching 57, 69
 – thermal oxidation 189
resistivity
 – four-point experiment 30ff.
 – rugate filter 91
 – silicon wafer 29f., 31ff.
 – rugate filter 83ff.
 – color-graded 107f.
 – current–porosity 94
 – refractive index–porosity 92f.
 – spectral band width 92ff.
rugate spectral peak wavelength 88

s
scanning electron microscopy (SEM) 12, 138f.
 – branched macroporous morphology 68
 – cross-sectional 19, 68, 71, 138, 157
 – double layer 84
 – effect of dopant on pore texture 13
 – effect of surface cleaning on pore morphology 60f.
 – high resolution (HR-SEM) 12
 – n-type porous silicon 71
 – photonic crystal particle 111
 – plan-view imaging 139
 – silicon nanowires 73
 – stain-etched silicon powders 71
Schlenk line 200ff.
Schottky barrier 36
 – band structure 20
 – crystalline 3, 19, 191
Index

- hydrides 4f.
- intrinsic 23
- orientation 19
silicon oxide (SiO₂)
- insolubility 4
- water-soluble forms 4 silicon
- powders 68
- unit cell 19
silicon wafer 10, 28ff.
- cleaning 51f., 60f.
- cleaving 34f.
- crystal orientation 30f.
- dopant type 30f.
- refractive index 83, 88, 92f.
- resistivity 29f., 31ff.
- single-crystal 104
- thickness 31, 87, 104f.
- thickness gradient 105 skeleton
- index of refraction 156ff.
- index on porosity 158f.
space-charge region 19f.
spectral barcodes 110, 120 spectroscopic liquid infiltration (SLIM), see characterization methods
surface
- area 59
- crust layer 60
- hydrophilic 204, 215
- hydrophobic 204
- radicals 214f.
- to-volume ratio 175
- traps 175

thermal
- carbonization 208ff.
- degradation 208f.
- oxidation 164, 167, 192 thermally carbonized porous silicon (TCPSi) 208f.
- thickness 31, 87, 104f., 134ff.
- effective optical (EOT) 147
- gradient 105, 138
- gravimetric determination 134ff.
transmission electron microscopy (TEM), see characterization methods transparent porous silicon layer 144

ultrasonication 120ff.
- cleaner 125f.
- fracture 119, 122f.
unit cell of silicon 19
UV light 59, 67, 112, 173

water splitting potential 9