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1.1

Introduction

Experimental fabrication and measurement are rapidly approaching the nanoscale

(see, e.g. Refs. [1–4]). With this comes the potential for many important discov-

eries in both the physical and life sciences, with particularly intense attention

in the fields of medicine and biology [5]. As Richard Feynman famously predicted

in the early 1960s, there is indeed plenty of room at the bottom [6, 7]. A par-

ticularly promising avenue of research with the potential to make significant con-

tributions is that involving what we will call biofunctionalized nanoelectromechan-

ical systems [(BIO)NEMS]. This is a large and burgeoning field, and we do not

attempt to present a survey, but rather we have picked an interesting example of a

(BIO)NEMS device in order to highlight the dominant physics and types of model-

ing issues that arise.

This is not to imply that molecular-scale science is something new – scientists

and engineers have been manipulating atoms and molecules for decades. (For an

interesting discussion about where nanotechnology fits in with molecular science,

see Ref. [8].) However, one new and exciting feature is the ability to fabricate

micro- and nanoscale structures that can be used to manipulate, interact and sense

biological systems at the single-molecule level.

For a better perspective of the length scales in question it is useful to place

micro- and nanometers on biological scales; a human hair has a diameter of about

1 mm, a red blood cell has a diameter of about 10 mm (1 mm ¼ 1� 10�6 m), the

diameter of the bacteria Escherichia coli is about 1 mm, the diameter of the protein

lysozyme is about 5 nm (1 nm ¼ 1� 10�9 m) and the diameter of a single hydro-

gen atom is about 0.1 nm. When viewed in this context, a device with a character-

istic length scale of 100 nm falls in the middle of these biological length scales, i.e.

the device is quite large compared to single atoms, yet quite small when compared

to single cells or large molecules. It is important to consider this when modeling

these systems, as we illustrate below.

The force landscape descriptive of biological and chemical interactions occurs at

the piconewton scale (1 pN ¼ 10�12 N). Biologically relevant force magnitudes are
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related to the breaking and manipulation of chemical bonds. For example it takes

hundreds of piconewtons to break covalent bonds, and on the order of 10 pN to

break a hydrogen bond or to describe the entropic elasticity of a polymer (see, e.g.

Refs. [9, 10]).

The dominant biological time scales of small numbers of molecules are also dic-

tated by their chemical interactions. The time scales of chemical reactions vary over

many orders of magnitude, e.g. protein conformational changes can take of the

order of milliseconds, binding reactions such as those that occur between tran-

scription factors and genes or between enzymes and substrates are of the order

of seconds, covalent bond modifications such that occur with phosphorylation is

of the order of minutes, and new protein synthesis in a cell can take tens of

minutes.

With these biological length, force and time scales in mind it becomes clear that

a major challenge facing the successful development of a single-molecule biosen-

sor is to measure on the order of tens of piconewtons on microsecond time scales.

Despite the rapid advancement of new technologies such as surface plasmon reso-

nance [11], optical tweezers [12, 13], microneedles [14, 15] and scanning force mi-

croscopy [16–19], detailed knowledge of the real-time dynamics of biomolecular in-

teractions remains a current challenge.

An attractive device with the potential to measure the biophysical properties of

a single molecule is based upon the dynamics of nanoscale cantilevers in fluid.

In discussing the physics and modeling of (BIO)NEMS we will focus on this type

of device. In some aspects this device can be thought of as the miniaturization of

atomic force microscopy (AFM) which depends upon the response of micron-scale

cantilevers. The invention of AFM [20] has revolutionized surface science, paving

the way for direct measurements of intermolecular forces and topographical map-

ping with atomic precision for a wide array of materials, including semiconduc-

tors, polymers, carbon nanotubes and (CNTs) biological cells (see Refs. [21, 22]

for current reviews). AFM is most commonly performed in one of three different

driven modalities; contact mode, noncontact mode and tapping mode. In contact

mode, the cantilever remains in contact with the surface and direct measurements

are made based upon the cantilever response as it interacts with the sample. De-

spite its great success, contact-mode microscopy raises concerns about strong ad-

hesive forces, friction and the damage of soft materials. In response to these issues

emerged the noncontact- and tapping-mode modalities which are often referred to

as dynamic AFM [23–28].

In noncontact mode, an oscillating cantilever never actually makes impact with

the surface, yet its response alters due to an interaction between the cantilever tip

and surface forces. The noncontact mode allows the measurement of electric, mag-

netic and atomic forces. In tapping mode, the cantilever oscillates near the sample

surface making very short intermittent contact. Commonly the oscillation ampli-

tude is held fixed through a feedback loop and as the cantilever moves over topo-

graphical features of the sample, the change in deflection is measured and related

to the surface features. As a result of this minimal impact, and by greatly reducing

the effects of adhesion and friction, the tapping mode has become the method of
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choice for high-resolution topographical measurements of soft and fragile materi-

als that are difficult to examine otherwise.

We would like to focus here upon something quite different – the stochastic dy-

namics of a passive cantilever in fluid. By passive we mean that the cantilever is

not being dragged along a surface or forced to tap a surface, but that the cantilever

is simply immersed in the fluid. However, recall that at microscopic length scales

there is a sea of random thermal molecular noise. Experimental measurement is

often limited by this inherent thermal noise; however, with current technology

this noise can be exploited to make extremely sensitive experimental measure-

ments [29] including the highly sensitive measurements to be made by gravita-

tional wave detectors [30].

The basic idea is illustrated in Fig. 1.1. A small cantilever placed in fluid will ex-

hibit stochastic dynamics due to the continual buffeting by water molecules that

are in constant thermal motion (Brownian motion). In Fig. 1.1, all of the cantile-

vers will exhibit such oscillations; the four dark lines around each cantilever tip

are meant to indicate these oscillations and their degree of shading represents

the relative magnitude of these oscillations. One way to measure such oscillations

in the laboratory would be through the use of optical methods. The cantilever on

the far left is bare and is simply a reference cantilever placed in fluid. The adjacent

cantilevers suggest various detection modalities that could also be considered. The

fundamental idea is that in the presence of a biomolecule, either attached directly

to a single cantilever or between the a cantilever and something else, the cantilever

response will change. Measuring this change can then be used to detect the pres-

ence of a single biomolecule or, in more prescribed situations, details of the re-

sponse will yield information about the dynamics of the molecule being probed.

An important advantage of this approach is that small cantilevers have large res-

onant frequencies, allowing the measurement of these dynamics on natural chem-

ical time scales. In fact, nanoscale cantilevers immersed in water can have reso-

nant frequencies in the megahertz range. The last cantilever on the right shows

the case where the target biomolecule is bound between the cantilever and a very

large molecule. The purpose of this would be to take advantage of its large surface

area and, as a result, its increased fluid drag to enhance the change in response.

An additional complication is that the stochastic dynamics of cantilevers placed

in an array, such as those shown in Fig. 1.1, will become coupled to one another

through the resulting fluid motion. In other words, if one cantilever moves this

Figure 1.1. Schematic illustrating possible single-molecule

detection modalities using small-scale cantilevers immersed in

fluid.
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will cause the fluid to move, which will cause the adjacent cantilevers to move and

vice versa. At first this may appear as just another component of background noise

to contend with. However, it is interesting to point out that this correlated noise

can be exploited to significantly increase the sensitivity of these measurements.

Consider measuring the cross-correlation of the fluctuations between two cantile-

vers in fluid supporting a tethered biomolecule. By examining only the correlated

motion of the two cantilevers we have effectively eliminated the random uncorre-

lated component of the noise acting on each cantilever. In fact, this approach has

been used to measure femtonewton forces (1 fN ¼ 10�15 N) on millisecond time

scales between two micron-scale beads placed in water [12]. Additionally, this

approach was used to quantify the Brownian fluctuations of an extended piece of

DNA tethered between the beads leading to the resolution of some long-standing

issues concerning the dynamics of single biomolecules in solution [13].

Whatever the manner in which the measurements will actually be made in the

laboratory, it will be essential to have a firm understanding of the complex and

sometimes counterintuitive physics at work on the these scales in order to inter-

pret them (for an excellent introduction to the modeling of micro- and nanoscale

systems, see Ref. [31]).

The purpose of this chapter is to shed some light upon this for the particularly

illustrative case where the Brownian noise of small cantilevers in fluid is exploited

for potential use as a single-molecule biosensor. Before these measurements can

be made and understood, the following questions must be answered:

(a) What are the stochastic dynamics of an array of nanoscale cantilevers im-

mersed in fluid in the absence of the target biomolecules?

(b) How much analyte will arrive at the sensor and what are the time scales for its

capture?

(c) Successful measurements will require the discernment between the noise

when the biomolecule is attached and the background noise. What signal pro-

cessing schemes can be used to make these measurements?

We address these questions in the following sections.

1.2

The Stochastic Dynamics of Micro- and Nanoscale Oscillators in Fluid

1.2.1

Fluid Dynamics at Small Scales

The dynamics of fluid motion at small scales contains many surprises when com-

pared with what we are accustomed to in the macroscopic world. In fact most of

life involves the interactions of small objects in fluidic environments (see Ref. [32]

for an introduction or Refs. [33, 34] for a detailed discussion).

At the molecular scale a fluid is clearly composed of individual molecules. How-
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ever, most fluid analysis is done assuming that the fluid is a continuum. What this

implies is that at any particular point in space (no matter how small) the properties

of the fluid (velocity, pressure, etc.) are well defined and well behaved. Another way

to think of this is that for any experimental measurement in question we assume

that our probe is effectively sampling the average behavior of many molecules.

As our domain of interest becomes smaller it is clear that this assumption will

eventually break down. This raises the difficult question – at which point does the

continuum approximation become invalid? An approximate answer can be pro-

vided by physical reasoning. In the continuum limit one would like the mean free

path of collisions of the fluid molecules to be much smaller that a characteristic

fluid length scale. This idea is captured by the Knudsen number Kn ¼ l=L, where
l is the mean free path and L is a characteristic length scale. For the case of water,

and of liquids in general, the molecules are always in very close contact with one

another and the characteristic mean free path can be approximated by the diameter

of a single molecule. For water this yields lQ 0:3 nm.

For the stochastic oscillations of small cantilevers we will use the cantilever half-

width w=2 as the characteristic length. This is because while a cantilever oscillates

most of the fluid flows around spanwise over the cantilever. Assuming the cantile-

ver has a width of w ¼ 1 mm and is immersed in water yields KnQ 6� 10�4. Since

Knf 1 this indicates that the continuum approximation is good for the fluid dy-

namics even at these small scales. A quantitative understanding of when the con-

tinuum approximation breaks down and what the effects will be is currently an

active and exciting area of research with many open questions (see, e.g. Ref. [35]).

The classical equations of fluid dynamics in the continuum limit are the well-

known Navier–Stokes equations (see Ref. [36] for a thorough treatment):

Ro

q~uu

qt
þ Ru~uu �~‘‘~uu ¼ �~‘‘pþ ‘2~uu; ð1Þ

~‘‘ �~uu ¼ 0 ð2Þ

Equation (1) is an expression of the conservation of momentum (we have neglected

the body force due to gravity). Equation (2) expresses the conservation of mass

for an incompressible fluid. We have written the equations in nondimensional

form using L, U and T as characteristic length, velocity and time scales, respec-

tively. Two nondimensional parameters Ro and Ru emerge in Eq. (1) that multiply

the two inertial terms on the left-hand side.

It is worthwhile discussing these two parameters in more detail, which will lend

some insight into the dominant physics at small scales in fluids. The parameter:

Ru ¼
UL

nf
ð3Þ

expresses the ratio between convective inertial forces and viscous forces (where nf
is the kinematic viscosity of the fluid, for water nf A1� 10�6 m2 s�1). This is the
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velocity-based Reynolds number. It is clear that for micron or nanoscale devices

both the characteristic velocity and length scales become quite small, resulting in

what is commonly referred to as the low Reynolds number regime. A precise defi-

nition of what is meant by ‘‘low’’ is not clear. For perspective, Fig. 1.2 illustrates

the Reynolds numbers for some particular cases of interest. Note the vast range of

phenomena that occurs over 10 orders in magnitude of the Reynolds number. As

the Reynolds number decreases, the effects of viscosity dominate inertial effects.

For example, if a 1-mm microorganism swimming in water at 10 mm s�1 suddenly

turns off its source of thrust, say by flagellar or cilia motion, it will come to rest in

the fraction of an angstrom. This is nothing like what we are used to on the macro-

scale. An important consequence when Ru f 1 is that the nonlinear convective in-

ertial term ~uu �~‘‘~uu becomes negligible. As a result, the equations become linear,

greatly simplifying the analysis. The parameter:

Ro ¼ L2

nfT
ð4Þ

expresses the ratio between inertial acceleration forces and viscous forces. Notice

that if we take the characteristic velocity to be simply L=T, the frequency and

the velocity-based Reynolds numbers become equivalent. However, it is useful

not to make this assumption here because we want to consider further the case

where the oscillations are imposed externally and the inverse frequency of these

oscillations is taken as the time scale. The result is the frequency-based Reynolds

number,

Ro ¼ ow2

4nf
ð5Þ

where again we have used the cantilever half-width, w=2, as the characteristic

length scale.

The frequency-based Reynolds is the appropriate Reynolds number to describe

micro- or nanoscale cantilevers immersed in fluid. Let us consider further the

type of cantilever currently under consideration for the next generation of biosen-

Figure 1.2. Examples of different phenomena occurring over a

range of 10 orders of magnitude in the velocity-based Reynolds

number, Ru.
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sors. Approximate values for the cantilever geometry are a width wQ 1 mm, height

hQ 100 nm, resonant frequency oQ 2p� 1 MHz and we will assume water is the

working fluid. As we show later, the maximum cantilever deflection due to Brow-

nian motion will be of the order of 0:01h (and often much less depending upon the

particular geometry in question). Using these numbers the characteristic velocity is

U ¼ 0:01ho, which yields a velocity-based Reynolds number of Ru ¼ 3� 10�3.

Since Ru f 1, the nonlinear inertial term can be neglected. However, the

frequency-based Reynolds number is Ro ¼ 1:6. As a result, the first inertial term

must be kept in Eq. (1), making the resulting linear analysis more difficult. The

governing equations are now:

Ro

q~uu

qt
¼ �~‘‘pþ ‘2~uu ð6Þ

~‘‘ �~uu ¼ 0 ð7Þ

These equations are known as the time-dependent Stokes equations. In what

follows we will drop the subscript o on Ro and assume that R represents the

frequency-based Reynolds number. Although these equations are linear it is still a

formidable challenge to derive an analytical solution for all but the simplest scenar-

ios. One such example is when the cantilever is modeled as an oscillating two-

dimensional (2-D) cylinder (discussed in more detail in Section 1.2.3). However,

even in simple cases the fluid-coupled motion of arrays of oscillating objects still

presents a challenge. This is in addition to the fact that most experimental geome-

tries are not simple, which further complicates the analysis (e.g., see Fig. 1.3). This

has led to the development of an experimentally accurate numerical approach to

calculate the stochastic dynamics of small-scale cantilevers [37] (discussed below).

Figure 1.3. Schematic of a proposed cantilever geometry for

use as a single-molecule biosensor (not drawn to scale): l ¼ 3

mm, w ¼ 100 nm, l1 ¼ 0:6 mm, b ¼ 33 nm. The cantilever is

silicon with a density rs ¼ 2330 kg m�3, Young’s modulus

Es ¼ 125 GPa and spring constant, k ¼ 8:7 mN m�1 [2, 41].
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1.2.2

An Exact Approach to Determine the Stochastic Dynamics of Arrays of Cantilevers of

Arbitrary Geometry in Fluid

At first sight the determination of the stochastic dynamics of an array of fluid-

coupled nanoscale oscillators appears quite challenging. Considering the nature of

the equations (a system of coupled partial differential equations) and the complex

geometries under consideration for experiments, the appeal of a numerical solu-

tion is apparent. However, the important question then arises of how to carry out

such a numerical investigation? One approach that may come to mind is to per-

form stochastic simulations of the precise geometries in question that resolves the

Brownian motion of the fluid particles as well as the motion of the cantilevers. In

principle, this could be done in the context of a molecular dynamics simulation.

However, this would be extremely difficult, if possible at all. Two major problems

with this approach are:

(a) There are simply too many molecules. A small box with side length of L ¼ 10

mm will contain of the order of 1013 water molecules. For low Reynolds num-

ber flows fluid disturbances are long range and will be of the order of microns

even if the oscillators are nanoscale. The length scale of the fluid disturbance

scales as approximately
ffiffiffiffiffiffiffiffi
nf=o

p
. This length scale describes the distance from

the oscillating cylinder over which the bulk of the fluid momentum is able to

diffuse.

(b) There are vastly disparate time scales. For every oscillation of the cantilever,

many water collisions will have had to occur. On average, a water molecule

undergoes a collision every picosecond (1 ps ¼ 1� 10�12 s). However, the can-

tilever oscillates about once per microsecond. In other words, a million water

molecules collide with the cantilever for every single cantilever oscillation –

imposing considerable overhead upon our numerical scheme. To make matters

worse, in order to get good statistics the numerical solution will have to run for

many cantilever oscillations or, equivalently, many numerical simulations will

have to be run for different initial conditions and averaged.

However, there is a much better approach if one exploits the fact that the system

is in thermodynamic equilibrium. This allows the use of powerful ideas from statis-

tical mechanics and, in particular, the fluctuation–dissipation theorem, which

relates equilibrium fluctuations with the way a system, that has been slightly per-

turbed out of equilibrium, returns to equilibrium. In other words, if one under-

stands how a systems dissipates near equilibrium, one understands how that

same system fluctuates at equilibrium. The fluctuation–dissipation theorem was

originally discussed by Callen and Greene [38, 39]; also see Chandler [40] for an

accessible introduction.

It has recently been shown that the fluctuation–dissipation theorem allows for

the calculation of the stochastic equilibrium fluctuations of small-scale oscillators

using only standard deterministic numerical methods [37]. For the case of small
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cantilevers in fluid, the dissipation is mostly due to the viscous fluid altough inter-

nal elastic dissipation of the cantilever could be included if desired.

We will introduce the use of this approach for the case of two opposing cantile-

vers as shown in Fig. 1.7(a). Consider one dynamic variable to be the displacement

of the cantilever on the left x1ðtÞ. This is a classical system, so x1ðtÞ will be a func-

tion of the microscopic phase space variables consisting of 3N coordinates and

conjugate momenta of the cantilever, where N is the number of particles in the

cantilever. We now take the system to a prescribed excursion from equilibrium and

observe how the system returns to equilibrium, which, in effect, quantifies the dis-

sipation in the system. A particularly convenient way to accomplish this is to con-

sider the situation where a force f ðtÞ has been applied to the cantilever on the left

at some time in the distant past and is removed at time zero. The step force is rep-

resented by:

f ðtÞ ¼ F1 for t < 0

0 for tb 0

�
ð8Þ

This force couples to x1ðtÞ causing a deflection in the cantilever. For this case the

Hamiltonian of the system H is given by:

H ¼ H0 � fx1 ð9Þ

We only consider the case of small f so the response of x1ðtÞ remains in the linear

regime. In the linear response regime, the change in the average value of a second

dynamical quantity X2ðtÞ (here we will use the displacement of the cantilever on

the right, which is again a function of the 3N coordinates and conjugate momenta)

from its equilibrium value in the absence of f is given by:

DX2ðtÞ ¼
F1

kBT
hdx1ð0Þdx2ðtÞi0 ð10Þ

where kB is Boltzmann’s constant (kB ¼ 1:38� 10�23 J K�1) and T is the absolute

temperature. The equilibrium fluctuations are given by:

dx1 ¼ x1 � hx1i0 ð11Þ

dx2 ¼ x2 � hx2i0 ð12Þ

where the average h i0 denotes the equilibrium average in the absence of the force

f . However, for our case the cantilevers fluctuate about an equilibrium of zero de-

flection, hx1i0 ¼ hx1i0 ¼ 0, which then implies that dx1 ¼ x1 and dx2 ¼ x2. The
average behavior of the cantilever deflection in the linear response regime is:

DX2ðtÞ ¼ X2ðtÞ � hx2ðtÞi0 ð13Þ
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However, as just mentioned, hx2ðtÞi0 ¼ 0, which also implies DX2ðtÞ ¼ X2ðtÞ and
yields:

X2ðtÞ ¼
F1

kBT
hx1ð0Þx2ðtÞi0 ð14Þ

Using this result we can calculate a general equilibrium cross-correlation function

in terms of the linear response as:

hx1ð0Þx2ðtÞi0 ¼
kBT

F1
X2ðtÞ ð15Þ

Similarly, the autocorrelation of the fluctuations is given by:

hx1ð0Þx1ðtÞi0 ¼
kBT

F1
X1ðtÞ ð16Þ

where X1ðtÞ is the average behavior of the deflection of the cantilever in which the

force was applied. The spectral properties of the correlations can be found by tak-

ing the cosine Fourier transform of the auto- and cross-correlation functions. This

yields the noise spectra, G11ðnÞ and G12ðnÞ, given by:

G11ðnÞ ¼
ðy
0

hx1ð0Þx1ðtÞi cosðotÞ dt; ð17Þ

G12ðnÞ ¼
ðy
0

hx1ð0Þx2ðtÞi cosðotÞ dt ð18Þ

where n is the frequency defined by o ¼ 2pn. The noise spectra are important be-

cause they are precisely what would be measured in an experiment.

This result is exact with the only assumptions being classical mechanics and lin-

ear behavior. Equations (15) and (16) are extremely useful in that they relate the

stochastic cantilever dynamics on the left-hand side to its deterministic response to

the removal of a step force on the right-hand side. In other words, Eq. (16) relates

the equilibrium fluctuations of the cantilever to its average deflection as it returns

to equilibrium from a prescribed excursion to a nonequilibrium state.

With this in mind, the remaining challenge is to calculate the deterministic

quantities X1ðtÞ and X2ðtÞ for use in Eqs. (15) and (16). Since the dynamic variables

of interest are macroscopic (after all they are the cantilever deflections X1 and X2),

they can be calculated using the deterministic macroscopic equations which gov-

ern the fluid and solid dynamics. This can be from analytics, simplified models or

large-scale numerical simulation.

To summarize, the scheme consists of the following steps in a deterministic

calculation:
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(a) Apply an appropriate force f that is constant in time and small enough so that

the response remains linear. An appropriate force is one that couples to the

variable of interest X1. After applying the force, allow the system to come to

steady state.

(b) Turn off the force at a time labeled t ¼ 0.

(c) Measure some dynamical variable X2ðtÞ (which might be the same as X1 to

yield an autocorrelation function) to yield the correlation function of the equi-

librium fluctuations via Eqs. (15) and (16).

For the case of small cantilevers in fluid, the fluid motion can be calculated us-

ing the incompressible Navier–Stokes equations and the dynamics of the solid

structures can be computed from the standard equations of elasticity. Using the so-

phisticated numerical tools developed for such calculations it is possible to find ac-

curate results for realistic experimental geometries that may be quite complex, e.g.

the triangular cantilever design often used in commercial AFM or the paddle geo-

metries currently under investigation for use as detectors of single biomolecules as

shown in Fig. 1.3.

1.2.3

An Approximate Model for Long and Slender Cantilevers in Fluid

Let us first consider a long and slender cantilever ðLgw; hÞ that is fixed at its base

and free at its tip with the simple beam geometry as shown in Fig. 1.4. This con-

figuration is particularly useful because this geometry is commonly used for AFM.

A simplified and effective model analysis is available for this case [42, 43]. In this

model, the dynamics of the beam motion is described using classical elasticity

theory:

m
q2wðy; tÞ

qt2
þ EI

q4wðy; tÞ
qy4

¼ Ff ðy; tÞ ð19Þ

where wðy; tÞ is the displacement of the beam as a function of distance y along the

length of the beam and time t, m is the mass per unit length of the cantilever, E is

Young’s modulus, I is the moment of inertia of the cantilever, and Ff is the force

acting on the cantilever due to the fluid. In this expression we have neglected inter-

nal dissipation in the elastic body, tensile forces leading to a stressed or strained

Figure 1.4. Schematic of a simple cantilevered beam of length L,

width w and height h.
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state when the cantilever is at equilibrium and gravity forces (it is straightforward

to show that small cantilevers do not bend significantly in a gravitational field). It

is important to note that Eq. (19) is coupled with the fluid equations Eqs. (6) and

(7) through the force Ff , and that the coupled system of equations are linear. The

equations governing beam dynamics are well studied and well understood (see Ref.

[44] for an excellent reference on the theory of elasticity). The viscous dissipation

in a low Reynolds number fluid is quite large and will dominate any other modes

of dissipation such as internal elastic dissipation in the beam itself.

This leaves the important question of how to determine the flow field. Since the

beam is long and slender, most of the fluid will interact with the beam by flowing

around the sides as opposed to flowing over the beam tip. In this case one can as-

sume that the cantilever is infinite in length and consider only the flow over a 2-D

cross-section of the beam [42]. It can then be shown that it is a small correction to

then assume that the usually rectangular cross-section of the beam is cylindrical.

This is particularly convenient because an analytical solution for the flow field

over an oscillating cylinder is available. In fact, the fluid problem was fist solved

in 1851 by Stokes; however, for a modern treatment, see Ref. [45].

Since the fluidic damping dominates the cantilever motion we can further sim-

plify the analysis by considering only the fundamental mode of the beam dynamics

(the higher harmonics will be damped out by the fluid). This additional simplifica-

tion aids in clarifying the approach without significantly affecting the results (for

the analysis using the full beam equation, see Ref. [42]). The equation of motion

describing the fundamental mode of a beam immersed in fluid then becomes:

me €xx þ kx ¼ Ff þ FB ð20Þ

where x represents the deflection of the cantilever tip, me is the effective mass

of the beam in vacuum, k is the effective spring constant of the beam and FB is

the random force due to Brownian motion. Notice that Ff contains both the fluid

damping as well as the fluid loading due to the additional fluid mass that the beam

‘‘carries’’ as it moves.

It is convenient to transform into frequency space by taking the Fourier trans-

form of this equation to give:

ð�meo
2 þ kÞx̂x ¼ F̂Ff þ F̂FB ð21Þ

where:

F̂Ff ¼ mcyl; eo
2GðoÞx̂x ð22Þ

and:

mcyl; e ¼ 0:243mcyl ¼ 0:243rl
p

4
w2L

� �
ð23Þ
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which is the effective mass of a fluid cylinder of radius w=2, where rl is the fluid

density. The prefactor of 0.243 ensures that mode-shape mass is equivalent for the

mass of the cantilever, the fluid loaded mass and the fluid damping. The Fourier

transform convention we are using is:

x̂xðoÞ ¼
ðy
�y

xðtÞe�iot dt ð24Þ

xðtÞ ¼ 1

2p

ðy
�y

x̂xðoÞe iot ð25Þ

Here, GðoÞ is the hydrodynamic function and is defined to be:

GðoÞ ¼ 1þ 4iK1ð�i
ffiffiffiffiffi
iR

p
Þffiffiffiffiffi

iR
p

K0ð�i
ffiffiffiffiffi
iR

p
Þ

ð26Þ

where K1 and K0 are Bessel functions. Note that by this definition the arguments

on the right-hand side are R and not the frequency o. The cantilever is effectively

loaded by the fluid which can be characterized by an effective mass, m f , larger than

me that takes into account the fluid mass that is also being moved. The fluid also

damps the motion of the cantilever, which can be expressed as an effective damp-

ing gf . Relations for m f and gf can be found by expanding GðoÞ into its real and

imaginary parts Gr and Gi in Eq. (21), and rearranging such that:

�m f ðoÞo2x̂x � iogf ðoÞx̂x þ kx̂x ¼ F̂FB ð27Þ

to give:

m f ¼ 0:243mcð1þ T0GrÞ@GrðoÞ ð28Þ

gf ¼ 0:243mcyloGi @oGiðoÞ ð29Þ

Notice that both the fluid loaded mass of the cantilever and the fluidic damping are

functions of frequency. The ratio of the mass of the fluid-loaded cantilever to the

effective mass of the cantilever in vacuum, me, as a function of frequency is shown

in Fig. 1.5. The cantilever has a mass of nearly 20 times the effective value at

RQ 1. Over 4 orders of magnitude in frequency the mass changes by a factor of

about 200. The fluidic damping is shown in Fig. 1.5. There is a slight frequency

dependence, over 4 orders of magnitude in frequency the damping changes by

a factor of 7, which is much less than the frequency dependence of the mass

loading.

From the fluctuation–dissipation theorem the spectral density of the fluctuating

force, GFBðnÞ, can be related to the dissipation due to the fluid and is given by:

GFBðnÞ ¼ 4kBTmeT0oGiðoÞ ð30Þ
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where T0 is the ratio of the mass of fluid contained in a cylindrical volume of ra-

dius w=2 to the mass of the cantilever. The analysis of Ref. [42] does not take into

account the frequency dependence of the damping and assumes that the numera-

tor is constant. Although the frequency dependence of the damping is not large as

shown in Fig. 1.5, it should be accounted for. Solving for the spectral density of the

displacement fluctuations, GxðnÞ, from Eqs. (21) and (30) yields:

Figure 1.5. (a) The ratio of the mass of a

fluid-loaded cantilever to the effective mass of

the cantilever in vacuum as a function of the

frequency-based Reynolds number. (b) The

fluidic damping of a cantilever immersed in

fluid as a function of the frequency-based

Reynolds number. Shown is the

nondimensional damping g� ¼ RGiðRÞ.
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GxðnÞ ¼
4kBT

k

1

o0

~ooT0GiðR0 ~ooÞ
½ð1� ~oo2ð1þ T0GrðR0 ~ooÞÞÞ2 þ ð~oo2T0GiðR0 ~ooÞÞ2�

where ~oo ¼ o=o0 is the frequency relative to the vacuum resonance frequency

o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
and R0 is the frequency-based Reynolds number using o0. Using the

equipartition of energy theorem and applying it to the cantilever’s potential energy,

we arrive at:

1

2
khx2i ¼ 1

2
kBT ð31Þ

Using this we scale GxðnÞ in Eq. (31) such that:

ðy
0

jx̂xðoÞj2 do ¼ kBT

k
ð32Þ

The value of o at the maximum value of jx̂xðoÞj2 yields a theoretical prediction of

the fundamental frequency in fluid of . Once of is known, an approximation for

the quality factor of the oscillator, Q , is:

QA
1
T0
þ GrðoÞ
GiðoÞ

ð33Þ

Equation (33) is valid only for Q l 1=2 because it neglects to account for the fre-

quency dependence of the mass and fluid loading in Eq. (27) (by considering only

the explicit frequency dependence) which become very important for highly over-

damped cantilevers (i.e. Rk 1).

Using what we have discussed so far let us quantify the stochastic dynamics of

an AFM placed in water. We consider a cantilever with the simple beam geometry

as shown in Fig. 1.4. The cantilever dimensions are length L ¼ 197 mm, width

w ¼ 29 mm and height h ¼ 2 mm. These are chosen so that we can compare with

the analytical and experimental results of Ref. [43]. From beam theory, the effective

spring constant of a cantilever is:

k ¼ 3EI

L3
ð34Þ

which, for the cantilever in question, yields k ¼ 1:3 mN m�1. Using the approach

described in Section 1.2 we use a step force F1 ¼ 26 nN and calculate the deter-

ministic response of the cantilever, X1ðtÞ, as it returns to equilibrium. For detailed

information on the particular computation algorithm we used to solve the deter-

ministic fluid–solid equations, see Refs. [46, 47]. The value of hx1ð0Þx1ð0Þi1=2 is

interesting in that it yields the magnitude of the deflections that would be expected
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in an experiment. For this case we find that hx1ð0Þx1ð0Þi1=2 ¼ 3:16� 10�21 m2.

This indicates that the deflection of the cantilever due to Brownian motion in an

experiment is about 0.056 nm or about 0.003% of the thickness of the cantilever –

an extremely small value even on an atomistic scale. Multiplying this quantity by

the spring constant gives an estimate of the force sensitivity of 73.1 pN, which is

clearly too large to be used as a biological force detector (recall biological force

scales are around 10 pN). The noise spectrum is shown in Fig. 1.6, where there is

good agreement with the approximate analytical theory available for this case.

1.2.4

The Stochastic Dynamics of a Fluid-coupled Array of (BIO)NEMS Cantilevers

We now use this approach to find the auto- and cross-correlation functions for the

equilibrium fluctuations in the displacements of the tips of two nanoscale cantile-

vers with the experimentally realistic geometries depicted in Fig. 1.3. For this case

we would like to emphasize that no analytical expressions or simplified models are

currently available. However, we can again use full numerical simulations and ex-

ploit the fluctuation theorem, which remains exact.

Figure 1.6. The noise spectrum as calculated

from full finite element deterministic numerical

simulation (solid line) and the noise spectrum

from the approximate analytical theory (dashed

line) for an AFM immersed in water (for

experimental results see cantilever c2 in Ref.

[43]). The full numerical simulations include all

of the cantilever modes including two that are

shown in the frequency range of the figure

identified by the two peaks in the simulation

results. The analytical model only considers the

fundamental mode of the cantilever oscillation

resulting in only one peak. Note that more

modes could be included if desired; however,

as shown in the figures, the higher-frequency

modes are strongly damped and will not be

significant in experiment. The micron-scale

cantilever used for this calculation is of the

geometry shown in Fig. 1.4, and has a length

l ¼ 197 mm, width w ¼ 29 mm and height

h ¼ 2 mm. The applied step force is

F1 ¼ 26 nN.
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To do this we again calculate the deterministic response of the displacement of

each cantilever tip, which we call X1ðtÞ and X2ðtÞ after switching off at t ¼ 0 a small

force applied to the tip of the first cantilever, F1, given by Eq. (8). Various possible

cantilever configurations are shown in Fig. 1.7(a–c); however, we will only consider

the case where two cantilevers face one another end-to-end as shown in Fig. 1.7(c).

Again, the equilibrium auto- and cross-correlation functions for the fluctuations

x1 and x2 are given by Eqs. (15) and (16), and the noise spectra G11ðnÞ and G12ðnÞ
are given by Eqs. (17) and (18). The cantilever autocorrelation function and the two

cantilever cross-correlation function are shown in Fig. 1.8(b and c, respectively).

The value of hx1ð0Þx1ð0Þi is 0.471 nm2, indicating that the deflection of the canti-

lever due to Brownian motion in an experiment would be 0.686 nm or about 2.3%

of the thickness of the cantilever. Multiplying this quantity by the spring constant

gives an estimate of the force sensitivity of 6 pN; therefore, a (BIO)NEMS cantile-

ver with this geometry is capable of detecting the breakage of a single hydrogen

bond, indicating its potential as a single-molecule biosensor. The cross-correlation

of the Brownian fluctuations of two facing cantilevers is small compared with the

individual fluctuations. The largest magnitude of the of the cross-correlation is

�0.012 nm2 for s ¼ h and �0.0029 nm2 for s ¼ 5h. The noise spectra for both the

one- and two-cantilever fluctuations are shown in Fig. 1.9(a and b).

The variation in the cross-correlation behavior with cantilever separation as

shown in Fig. 1.8(c) can be understood as an inertial effect resulting from the non-

zero Reynolds number of the fluid flow. The flow around the cantilever can be sep-

arated into a long-range potential component that propagates instantaneously in

Figure 1.7. Schematic showing various

cantilever configurations. In all configurations

the step force F1 is released at t ¼ 0, resulting

in the cantilever motion referred to by X1ðtÞ.
The motion of the neighboring cantilever is

X2ðtÞ and is driven through the response of the

fluid. (a) Two cantilevers with ends facing, (b)

side-by-side cantilevers and (c) cantilevers

separated along the direction of the

oscillations.
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the incompressible fluid approximation and a vorticity containing component that

propagates diffusively with diffusion constant given by the kinematic viscosity nf .

For step forcing, it takes a time tv ¼ s2=nf for the vorticity to reach distance s. For
small cantilever separations the viscous component dominates, for nearly all times,

Figure 1.8. Predictions of the auto- and cross-

correlation functions of the equilibrium fluctua-

tions in displacement of the cantilevers shown

in Figs. 1.3 and 1.7(a). The step force applied

to the tip of the first cantilever is F1 ¼ 75 pN.

(a) Autocorrelation and (b) cross-correlation of

the fluctuations (5 separations are shown for

s ¼ h; 2h; 3h; 4h and 5h, where only s ¼ h and

5h are labeled, and the remaining curves lie

between these values in sequential order).

Figure 1.9. (a) The noise spectrum G11ðnÞ and
(b) the noise spectrum G12ðnÞ as a function of

cantilever separation s for two adjacent

experimentally realistic cantilevers. Five

separations are shown for s ¼ h; 2h; 3h; 4h and

5h, where only s ¼ h and 5h are labeled, and

the remaining curves lie between these values

in sequential order.
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and results in the anticorrelated response of the adjacent cantilever in agreement

with [12]. However, as s increases, the amount of time where the adjacent cantile-

ver is only subject to the potential flow field increases, resulting in the initial corre-

lated behavior.

The complex fluid interactions between individual cantilevers in an array are still

an area of active research. Nevertheless, using the thermodynamic approach de-

scribed here it is now possible to describe quantitatively, with experimental accu-

racy, the stochastic dynamics of micro- and nanoscale oscillators in fluid. A com-

pelling feature about these results is that the proposed experiments are just

beyond the reach of current technologies, making the theoretical results that

much more important, as the insight gained will be critical in guiding future

efforts.

1.3

The Physics Describing the Kinetics of Target Analyte Capture on the Oscillator

Now that we have developed the methods necessary to understand the stochastic

dynamics of small cantilevers in fluid we turn to the physics describing the capture

of target analyte. In order to provide analyte specificity, cantilever surfaces are gen-

erally functionalized to contain an array of receptor molecules complementary to

the target analyte (ligand). This functionalization is carried out by constructing a

self-assembling monolayer (SAM), consisting of alkanethiol chains, to which spe-

cific receptor molecules are linked. Among other things, the overall performance

of (BIO)NEMS cantilever-type sensors will depend on the analyte–receptor capture

kinetics and we now discuss a number of issues related to this problem. The basic

situation for analyte binding to the functionalized surface of a cantilever is shown

in Fig. 1.10.

The binding of analyte from bulk solution to a fixed array of receptors located on

a cantilever tip can be described by the kinetic equations relevant to the case of li-

gand binding to cell surface-bound receptors [48–50], i.e.:

dB

dt
¼ ½konLoRo � ðkonLo þ koff ÞB� 1þ konðRo � BÞ

kþ

� ��1

ð35Þ

where B is the number of analyte–receptor bound complexes, Lo is the analyte con-
centration and Ro is the total number of receptors in the functionalized array. This

model equation describes the reversible biochemical reaction:

Rþ L T B ð36Þ

The parameters kon and koff are the usual forward and reverse rate constants for

analyte–receptor binding, and kþ is the so-called diffusion rate constant, which

for the case at hand is just kþ ¼ 4pDac. The quantity D is the analyte diffusion co-

efficient and ac is a length which characterizes the size of the functionalized area,
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e.g. its width. Defining new variables, u ¼ B=Ro and t ¼ koff t, this equation may be

put into the more useful nondimensional form:

du

dt
¼ K 0 � ð1þ K 0Þu

½1þ bð1� uÞ� ð37Þ

with dimensionless parameters K 0 ¼ Lokon=koff and b ¼ Rokon=kþ. This rather

simple kinetic equation describes the analyte–receptor binding under reaction-

diffusion conditions, where the parameter b indicates the extent to which the bind-

ing is reaction limited ðbf 1Þ or diffusion limited ðbg 1Þ.
To give the reader some quantitative insight into this problem, consider the case

of biotin–streptavidin ligand–receptor binding. The functionalized region of the

cantilever tip is taken to have an area of 1 mm2, with a total of 104 receptors linked

to the SAM surface. Note that receptor densities achievable using SAM construc-

tion are several orders of magnitude larger than those observed for specific recep-

tors found on biological cell surfaces. The forward binding rate constant is approx-

imately kon ¼ 5� 106 M�1 s�1, with a reverse rate constant of koff @ 10�3 s�1. In

Figure 1.10. (a) The side view of a single cantilever. (b) A

schematic placing the cantilever in a via. Fluid flows through

the via and around the cantilever shown as a rectangular box in

the center. (c) A closeup view of a cantilever tip that has been

biofunctionalized.
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addition, we find that kþA1012 M�1 s�1; thus, b ¼ 0:05 and the ligand–receptor

binding process is essentially reaction limited. In fact, for cantilever-type devices

designed for detection of biomolecules, we find that the capture process is almost

invariably reaction limited. This means that the capture kinetics is dominated by

the kon and koff rates of the analyte–receptor pair.

There are two issues of importance when it comes to evaluating the performance

of these devices:

(a) The ultimate sensitivity, which will depend on the total number of analytes

captured on the cantilever surface;

(b) The time required to achieve a specified sensitivity, which is determined by the

capture kinetics.

If no other processes of significance are involved in analyte capture, then ultimate

sensitivity can be estimated from a steady-state solution of the model equation

given above. Thus, at steady-state, the fraction of total surface receptors that are

bound by analyte is given by:

us ¼
LoKa

ð1þ LoKaÞ
ð38Þ

where Ka is the analyte–receptor binding affinity. However, depending on the

actual analyte–receptor rate constants and the analyte concentration, this may take

a considerable time to achieve.

In addition to the basic model equation describing the capture of analyte from

bulk solution to surface-bound receptors, there are at least two additional processes

that should be considered in connection with sensor performance evaluation:

(a) The effects of background contaminant biomolecules;

(b) possible surface-enhanced analyte–receptor binding.

Interference by contaminant biomolecules may arise from two distinct mecha-

nisms. The first of these is by competitive binding with the surface receptors, thus

lowering the number of receptors available for analyte capture. Competitive bind-

ing effects may be analyzed by using a straightforward extension of the basic model

equation discussed above. Results of such analyses show that these effects may

generally be neglected even for background biomolecule concentrations approach-

ing 10 times the analyte concentration. This is of course largely due to the fact that

binding affinities for such biomolecules are 1–3 orders of magnitude smaller than

the analyte–receptor binding affinities. The second mechanism involves non-

specific binding of contaminant biomolecules to the SAM surface itself and would

be important if analyte detection were accomplished by mass-loading effects. Even

though achievable receptor surface densities for these devices approach 1012 cm�2,

a molecule in solution still ‘‘sees’’ mostly bare SAM surface. Thus, contaminant

biomolecules may become attached to the cantilever through nonspecific surface
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binding. If one treats the alkanethiol end groups as discrete binding sites on the

SAM surface, then this problem may be handled by a model equation analogous

to the analyte–receptor capture kinetics equation.

Since the concept was first introduced by Adam and Delbruck [51], the possibil-

ity of so-called surface-enhanced ligand–receptor binding has been studied by a

number of investigators [48, 52, 53]. This mechanism involves a two-step process:

(a) Nonspecific binding of ligand from bulk solution to a surface;

(b) Ligand–receptor binding following 2-D diffusion along the surface.

Although this process may easily be modeled by a pair of coupled kinetic equa-

tions, actual quantitative assessment is made difficult by the lack of reliable values

for the relevant parameters, i.e. surface nonspecific binding rate and the so-called

collision-coupling rate constant, kc [48]. The parameter kc is the rate constant for a

surface-diffusing ligand to bind with a surface-bound receptor and is a difficult

quantity to measure experimentally. Nevertheless, it may be useful to attempt to

estimate the magnitude of this effect for a particular device implementation since

it can result in significant enhancement of the analyte capture efficiency for certain

combinations of parameters.

Without considering the parameters of a fully specified sensor it is difficult to

give general estimates for cantilever capture performance. However, if we consider

the kon, koff rates of the biotin–actin system described above, then the binding

affinity will be Ka ¼ 5� 109 M�1. Thus, the steady-state receptor coverage is

expected to be 33% for an analyte concentration of 0.1 nM. While this represents

a very substantial capture efficiency, it should be noted that for these parameter

values it will take many 10s of seconds to approach this coverage. This simple ex-

ample points up an important issue that often arises when attempting to imple-

ment specific sensors of this type: One must usually make a trade-off between

achievable sensitivity and the time required to make a measurement. A number

of applications of these sensors require that detection of the presence of analyte

be accomplished in times that are less than 1 s; not infrequently one wishes to

achieve millisecond (or less) detection times.

So far the discussion has assumed that analyte transport to the cantilever is

accomplished by diffusion only; however, most proposed cantilever sensor imple-

mentations involve the use of a microfluidic system to provide constant flow of

analyte in a carrier fluid. Thus, in principle, one must consider analyte capture

in the context of a reaction–diffusion–convection problem and examine the impact

of convection on analyte capture efficiency. Given the previous discussion regard-

ing the reaction rate-limited nature of the analyte capture process, one expects

that convection will not have a significant impact on capture efficiency. We can

also arrive at this conclusion based on two different fluid dynamics arguments. If

one can show that diffusion effects dominate over convection effects in the system,

then our previous argument regarding the reaction-limited character of the process

still holds and convection cannot contribute significantly to analyte capture. A di-

mensionless parameter, the Peclet number:
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Pe ¼ LU

D
ð39Þ

measures the relative importance of convective flow versus diffusive transport;

here, L is a characteristic length of the system, U is the flow velocity and D is the

diffusion coefficient. For example, if we take L ¼ 1 mm, U ¼ 10 ms�1, and D ¼ 100

mm2 s�1, then we have Pe ¼ 0:1, and diffusion is the dominant transport process.

We may also observe that for laminar flow perpendicular to the cantilever surface a

diffusion boundary layer of thickness d is formed. This boundary layer thickness is

given approximately by:

dALð1=PeÞ1=3 ð40Þ

For the parameter values just used this yields a diffusion boundary layer thickness

of about 2.2 mm; thus, at this flow rate essentially all analyte transport to the canti-

lever surface must be by diffusion. Of course one may also consider significantly

increasing the fluid flow velocity; however, nanoscale cantilevers can easily be dam-

aged by high flow rates. Even if the flow velocity is not high enough to actually dam-

age a cantilever, it can result in a ‘‘bending bias’’ of the cantilever which can interfere

with detection of binding events. We should point out, however, that these argu-

ments should be re-examined when considering specific sensor implementations.

The use of mass-action-derived kinetic equations for the purpose of analyzing

analyte capture performance is completely adequate for analyte concentrations

down to about 0.1–1.0 nM. However, when we consider analyte concentrations in

the picomolar (or smaller) range, concentration fluctuations may become impor-

tant in describing the overall performance of the sensor system. Recall that an an-

alyte concentration of 1 nM corresponds to a molecular density of slightly less that

1 molecule mm�3. In this event one must resort to stochastic methods for describ-

ing the reaction–diffusion process of analyte capture. For this case we mention

an approach originally developed by Gillespie [54, 55] for ‘‘exact’’ stochastic simu-

lation of coupled chemical reactions. Since the approach has been extended by

Stundzia and Lumsden [56] to incorporate diffusion effects, the combined algo-

rithm is suitable for providing a stochastic analysis of the analyte capture problem.

The Gillespie approach is based on the fact that at the microscopic level chemical

reactions consist of discrete events that may be described by a joint probability den-

sity function (PDF). Thus, given a total of m ¼ 1; 2; . . . ;M coupled reactions, con-

sisting of a total of n ¼ 1; 2; . . . ;N species, the appropriate joint PDF is Pðm; tÞ,
where t is the time interval between reactions. This is simply the joint probability

that the mth reaction occurs after a time interval of t, which may be written as

Pðm; tÞ ¼ PðmÞPðtÞ. Expressions for the individual probabilities are readily derived;

these expressions may then be used to implement a rather simple computer algo-

rithm that simulates the evolution of the discrete species concentrations as a func-

tion of time, thus yielding the stochastic kinetics for the system. As Gillespie has

shown [57], the resulting algorithm is an ‘‘exact’’ simulation of the stochastic mas-

ter equation describing the coupled chemical system.
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As mentioned above, as long as analyte concentrations are expected to be in a

range where concentration fluctuations are not important, i.e. greater that about

0.1–1.0 nM, then use of the usual mass-action-derived kinetic equations is per-

fectly satisfactory in estimating the capture kinetics of the sensors considered

here. However, since by its nature the mass-action-derived kinetics computes aver-

age values, this method cannot give one any insight into the stochastic behavior of

the system. While there are no well-defined rules as to when one must consider

fluctuations, it is generally true that when the total number of reactant molecules

(ligands) in the reaction volume is only of the order of several hundred, then one

should begin to suspect that fluctuations may play an important role in the system

behavior. In such cases it is advisable to investigate this possibility through the use

of a stochastic simulation algorithm such as the one described above.

1.4

Detecting Noise in Noise: Signal-processing Challenges

Although space does not permit a detailed analysis of the various signal-processing

methods that may be used in conjunction with (BIO)NEMS cantilever-type sensors,

we present a simple analysis of the most basic signal detection method that one

might employ. For this analysis we assume a single passive cantilever that utilizes

a piezoresistive transducer to sense the fluctuations in the cantilever tip. As dis-

cussed before, the term passive simply means that we do not actively drive the

cantilever motion in order to provide for a lock-in detector-type processing system.

Under these assumptions, and with no analyte bound to the cantilever, the mean-

square displacement of the cantilever tip due to fluid fluctuations is given by:

hx2ðtÞi ¼ 4kBTge
k2

ð41Þ

where kB is Boltzmann’s constant, T is the temperature, ge is the effective damping

constant for the cantilever and k is the effective spring constant for the cantilever.

The mean-square voltage signal into the front end of a signal-processing system is

then just:

hv2ðtÞi ¼ jG � Ij2hx2ðtÞi ð42Þ

with G being the transducer conversion coefficient and I being the piezoresistive

bias current.

We next assume that the presence of bound analyte on the cantilever tip appears

as a change in the effective cantilever damping constant, i.e. ge ! gbe . Note that in

this situation our ‘‘signal’’ appears as a change in the mean-square fluctuations of

the cantilever tip. From a signal detection theory standpoint we are attempting to

discriminate against the presence of two random voltages, both being Gaussian
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distributed but having different variances. Our expressions for the mean-square

voltage fluctuations yield a (power) signal-to-noise ratio, (SNR)p, of:

ðSNRÞp ¼ gbe
ge

ð43Þ

Note that since our expression for the mean-square displacement fluctuations was

essentially derived from a fluctuation–dissipation theorem, these expressions are

for a system with infinite bandwidth. Our expression for SNRp may thus be called

an inherent signal-to-noise ratio for this detection modality. The simplest possible

processing of this signal then amounts to sending it through a low-noise root

mean square (r.m.s.) detector with threshold. The threshold is set to achieve the

desired balance between probability of detection and false-alarm probability (cf.
Ref. [58]).

Of course, since it is usually required that one achieve the highest possible sys-

tem sensitivity, more sophisticated signal-processing techniques than the simple

r.m.s. detector are usually required. We will mention only two such possibilities:

(a) Passive detection using a reference cantilever;
(b) Active detection using a reference cantilever and lock-in (phase) detection.

In the first case we incorporate an additional cantilever, which is not functional-
ized, into the system. One may then use a technique which is analogous to one

developed in the early days of radio astronomy. In this implementation one period-

ically switches between the reference and sensing cantilevers to make what

amounts to a phase-detection measurement of the ‘‘signal’’ power. The method al-

lows one to eliminate the front-end electronics noise and to make a much better

estimate of the no-signal power, thus allowing an improved signal-to-noise ratio.

In the second approach we move to an active system where the reference and sens-

ing cantilevers are subjected to periodic deflection forces that are 90� out of phase.

This allows one to directly utilize lock-in amplifier (phase detector) technology to

achieve significant enhancements to the achievable signal-to-noise ratio. For details

on these and other more sophisticated signal-processing approaches to the detec-

tion of cantilever sensor signals, the reader is referred to Refs. [58–60].

1.5

Concluding Remarks

The physics and modeling of (BIO)NEMS devices poses many theoretical chal-

lenges that must be faced as experiment continues to push measurement to the

nanoscale. In this chapter we have just scratched the surface of this exciting new

field. In picking one particular example to focus upon it was our intent to leave the

reader with an idea of some of the physics and modeling issues that one may

encounter.
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