
1
Introduction

Process control, as it has been known for many years, was first developed in the
process industries. Although starting with local measurement devices, the system
has since progressed to centralized measurement and control (central control
rooms) and computer hierarchical/plantwide control. Recent developments in
process control have been influenced by improvements in the performance of
digital computers suitable for on-line control. Moreover, while the performance of
these units has improved significantly, their prices have fallen drastically. The price
trends for small but more sophisticated minicomputers, despite the inclusion of
more reliable electronics and increasing inflation, is shown graphically in Figure
1.1. By having high speeds of operation and storage capacities, the process com-
puter can be used effectively in process control due to its insignificant capital cost.
Once in place, the computer is usually operated in a timesharing mode with large
numbers of input/output operations, so that the central processing unit (CPU) is
typically in use only for about 5% of the time. Thus, many industrial plants have
95 % of the computing power of a highly capable minicomputer programmable in a
high-level language such as Fortran, C, Visual Basic, LabVIEW, etc., and available
for implementing sophisticated computer-controlled schemes.
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Figure 1.1 Price trends for real-time minicomputers.



During the same time, modern control theory has undergone intense develop-
ment, with many successful applications covering many areas of the industry. Most
recently, several process control research groups have applied new sophisticated
control algorithms and schemes to simulated, laboratory-scale – and even full-scale
– processes. As a consequence, it is necessary for the process control engineer to
design an economically optimal process control scheme based on a judicious
comparison of the available control algorithms. The aim of this book is to offer
assistance in this respect, and to provide a brief introduction to the theory and
practice of the most important modern process control strategies. This is achieved
by using industrially relevant chemical processes as the subjects of control per-
formance studies.

1.1
Introductory Concepts of Process Control

A control system is a combination of elements which act together in order to bring a
measured and controlled variable to a certain, specific, desired value or trajectory
termed the “set/point of reference”. The basis for an analysis of such a system is
the foundation provided by linear system theory, which assumes a linear cause–
effect relationship for the components of a system. Therefore, a component or
process to be controlled can be represented by a block, as shown in Figure 1.2. The
output variables are the “interesting” ones (technological parameters, yield, etc.),
while the input variables are those which influence the outputs (e.g., mass or
energy flows, environmental variables, etc.). Figure 1.2 illustrates the different
types of input and output parameters used in the development and study of control
algorithms. We refer to a variable as an input if its value is determined by the
“environment” of the system to be controlled. We distinguish disturbance inputs
and manipulated or control inputs. We are free to adjust the later but not the former.
Variables, the values of which are determined by the state of the system, are
referred to as outputs – some of these are measured, but others are not. Controlled
variables must be maintained at specified setpoints. Associated variables are only
required to stay within certain bounds, their exact value within bounds being of
little interest.

An open-loop control system uses a controller or control actuator in order to
obtain the desired response, as shown in Figure 1.3. In contrast to an open-loop
control system, a closed-loop control system uses an additional measure of the
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Figure 1.2 Definition of input and output variables considered
for control system design.



actual output in order to compare the actual output with the desired output
response. The measure of the output is called the feedback signal. A simple
closed-loop feedback control system is shown in Figure 1.4. A standard definition of
a feedback control system is as follows: A feedback control system is a control system
that works to maintain a prescribed relationship between one system variable and another
by comparing functions of these variables and using the difference as a means of control.

A feedback control system often uses a function of a prescribed relationship
between the output and the reference input to control the process. Often, the
difference between the output of the process under control and the reference input
is amplified and used to control the process, so that the difference is continually
reduced. The feedback concept has been the foundation for control system analysis
and design.

Classical control theory is essentially limited to single-input single-output (SISO)
systems described by linear differential equations with constant coefficients (or
their corresponding Laplace transforms). However, the so-called modern control
theory has developed to the point where results are available for a wide range of
general multivariable systems, including those described by linear, variable-coef-
ficient differential equations, nonlinear differential equations, partial differential,
and integral equations.

The results of modern control theory include the so-called optimal control theory,
which allows the design of control schemes, which are optimal in the sense that the
controller performance minimizes some specified cost functional.

In addition to controller design, modern control theory includes methods for
process identification and state estimation. Process identification algorithms have
been developed for determining the model structure and estimating the model
parameters, either off-line or adaptively on-line. These are useful both in the initial
control system design and in the design of adaptive control systems which respond to
such changes in the process characteristics. These might arise, for example, with
the fouling of heating exchanger surfaces or the deactivation of catalyst in chemical
reactors. State estimation techniques are on-line methods either for estimating
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Figure 1.3 Open-loop control system.

Figure 1.4 Closed-loop feedback control system.



system state variables which are not measured, or for improving the quality of all
the state-variable estimates in the presence of measurement errors. In those
processes where some sensors are not available, or are too expensive to be installed,
on-line state estimation can be of significant practical importance.

The way in which all the components of a comprehensive computer process
control scheme might fit together for a particular process is illustrated in Figure
1.5. Such a control scheme would consist of the following parts:
• The Process, which responds to control inputs u; to natural process disturbances

d1; and to special input disturbances d2 used for identification. The true process
state x is produced, but this is seldom measured either completely or precisely.

• Measurement devices, which usually are able to measure only a few of the states or
some combination of states, and are always affected by measurement errors. The
measurement device outputs y are fed to the –

• State estimator, which uses the noisy measurements y along with a process model
to reconstruct the best possible process state estimates xest. The process state
estimates are passed to the –

• Controller, which calculates what control actions must be taken based on the state
estimates xest, the setpoints r (which themselves may be the subject of process
optimization), and the controller tuning parameters. The controller parameters
can be calculated either off-line or adaptively on-line, based on current estimates
of the model parameters. The process model parameters must be determined
from the –
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Figure 1.5 A comprehensive advanced computer control
scheme.



• Process identification block, which takes user measurements from the process as
raw data y (and may choose to introduce experimentally designed input distur-
bances d1) in order to identify the process model parameters Æ. If the parameters
are time-invariant, the identification is unique; however, if the process changes
with time, then the identification scheme must be activated periodically to
provide adaptation to changing conditions.

In most applications only a few of the components of this control structure are
required.

1.2
Advanced Process Control Techniques

1.2.1
Key Problems in Advanced Control of Chemical Processes

The main features of chemical processes that cause many challenging control
problems [1–3] are shown schematically in Figure 1.6.

1.2.1.1 Nonlinear Dynamic Behavior
Nonlinear dynamic behavior of chemical processes causes one of the most difficult
problems in designing control systems. In the case of linear, lumped parameter
systems, a very general model in the time domain form can be written as:
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Figure 1.6 Common process characteristics, important in the
choice of control strategy.



dx
dt
¼ A � x þ B � u þ ˆ � d, xðt0Þ ¼ x0 (1.1)

y ¼ C � x (1.2)

where x, u, y, and d are the vectors of states, controls (manipulated variables),
outputs and disturbances, respectively. The state space matrices, A, B, C, and ˆ, can
be either constant or time-varying. For systems in Laplace transform domain,
involving transfer functions the model can be represented in the form:

�yðsÞ ¼ GðsÞ � �uðsÞ þ GdðsÞ � �dðsÞ (1.3)

with:

GðsÞ ¼ C sI � Að Þ�1B (1.4)

GdðsÞ ¼ C sI � Að Þ�1ˆ (1.5)

These representations show the linear dependence between the manipulated
inputs (u) and outputs (y); that is, a certain ˜u variation will cause, in a certain
time t, a linear proportional variation of y (˜y = Æt˜u). Assuming that d = 0, (there
is no unmeasured disturbance), once the linear model was identified (the coef-
ficients of A, B, C, and ˆ were determined), the trajectory of the outputs y can be
predicted for any changes of the manipulated inputs, ˜u, at any time using the
linear model in one of the forms described above [Eqs. (1.1)–(1.2) or (1.3)–(1.5)].

In the case of nonlinear processes, there is no linear dependence between control
variables and states (or manipulated variables), so that Eqs. (1.1)–(1.5) are no longer
valid, and for predictions a much more general model must be used. Mathemati-
cally, a general nonlinear process model can be represented as follows:
• dynamic modeling equations:

dx
dt
¼ f x; u; q; dð Þ (1.6)

with the initial conditions:

x t0ð Þ ¼ x0 (1.7)

• algebraic equations (equilibrium relationship, etc.)

0 ¼ g1 x; u; qð Þ (1.8)

• state-output relationship:

y ¼ g2 xð Þ (1.9)

where x are state variables, u are manipulated variables, q are parameters, d are
measured and unmeasured disturbances, and y is the output (measured) variable.
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In contrast to the case of a linear model, for nonlinear process model there is
generally no analytical solution and the prediction must be made by numerically
solving the model. Consequently, for nonlinear process models, computational
demand is much higher than for the linear ones.

1.2.1.2 Multivariable Interactions between Manipulated and Controlled Variables
It is commonly believed that for SISO systems, well-tuned proportional, integral,
derivative (PID) controllers work as well as model-based controllers, and that PID
controllers are more robust to model errors. The offset-free constrained linear
quadratic (LQ) controller for SISO systems, may be implemented in an efficient
way so that the total controller execution time is similar to that of a PID [4].

Unfortunately, most multivariable systems have significant coupling between
outputs and controls, and these pose great difficulties in control system design. In
the case of multiple input-multiple output (MIMO) systems, any manipulated
input can have effects on more outputs. Thus, the choice of appropriate control
loops with the best control performances demands detailed study and can be very
difficult. One of the main advantages of most advanced control strategies is that
they can explicitly handle the multivariable interactions. Due to their multivariable
nature, advanced control strategies – such as model predictive control techniques
(MPC) – allow the control problem to be addressed globally. Thus, one must
determine only the best set of manipulated inputs for a certain set of controlled
outputs, and there is no need for detailed study of the individual interactions
between the inputs and outputs. However, in the choice of the best control set, a
study of the interaction problem for a certain MIMO system application is always
useful.

1.2.1.3 Uncertain and Time-Varying Parameters
Most chemical processes are characterized by having uncertain and/or time-vary-
ing parameters. Time-varying parameters are common for batch and semibatch
processes, when it is clear that most of the thermodynamic and physico-chemical
properties of the system vary with time. Moreover, even for continuous processes
when deviations from steady-state are frequent and the process variables vary in a
wide operating range, the dependence of parameters on time should be taken into
consideration.

For linear time-varying processes the state-space representation of the model
[Eqs. (1.1)–(1.2)] is still valid, but in this case the elements of the state-space
matrices A, B, C, and ˆ are functions of time. The general model of nonlinear
systems expressed by Eqs. (1.6)–(1.9), by its mathematical form takes explicitly into
consideration the variation in time of the process parameters.

Among the multitude of parameters of a chemical process model, a significant
number cannot normally be determined accurately, and this will lead to model/
plant mismatch. The importance of uncertainties is increasingly being recognized
by control theoreticians; consequently, they are being included explicitly in the
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formulation of control algorithms. MPC can handle model/plant mismatch in its
closed loop, feedback form, by continuously adjusting the uncertain parameters so
that the difference between the current measurements and the prediction from the
previous step is a minimum.

1.2.1.4 Deadtime on Inputs and Measurements
One especially important class of systems in chemical process control is that of
having time delays. This class of dynamic systems arises in a wide range of
applications, including paper making, chemical reactors, or distillation. The prin-
cipal difficulty with time delays in the control loop is the increased phase lag, which
leads to unstable control system behavior at relatively low controller gains. This
limits the amount of control action possible in the presence of time delays. In
multivariable time-delay systems with multiple delays, these problems are even
more complex. In these problems, the normal control difficulties due to loop
interactions are complicated by the additional effect of time delays. Consequently,
these aspects must be taken into consideration. The properly designed process
model in its general nonlinear form expressed by Eqs. (1.6)–(1.9) explicitly involves
time delays; however, to emphasize this feature in the literature one can often find
the following general mathematical expression of the nonlinear model:

dx
dt
¼ f x t��xð Þ; u t�¨ð Þ; q; dð Þ (1.10)

x t0ð Þ ¼ x0 (1.11)

0 ¼ g1 x; u; qð Þ (1.12)

y ¼ g2 x t��y
� �� �

(1.13)

where ¨ is the deadtime between manipulated and state variables, �y is the
deadtime between manipulated and output variables, and �x is the deadtime on
state variables.

From this model it can be seen that, in a very general form, deadtime can be
included on process inputs and control variables as well as on unmeasured states.
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Figure 1.7 The structure of a controlled system having state,
control and output delays.



For example, time-delay can be due to transport (flow through pipes) or measure-
ment delays (analytical instrumentation, etc.). A good example of a multivariable
time-delay nonlinear system with multiple delays is that of the distillation process.

A very general representation of systems having delays in the control variables
u(t), state variables x(t) and output variables y(t) is illustrated in Figure 1.7.

1.2.1.5 Constraints on Manipulated and State Variables
In chemical process control, constraints on state variables usually arise due to
technological specifications, while those on manipulated variables are caused
generally by the control hardware restrictions as well as the control system
characteristics. For example, in systems with time delay in the control loop, the
controller gain must be limited in order to avoid unstable behavior. In practice, the
operating point of a plant that satisfies the overall economic goals of the process
usually lies at the intersection of constraints. Therefore, in order to be successful,
any control system must anticipate constraint violations and correct them in a
systematic manner. Violations of the constraints must not be allowed while the
operation is kept close to these constraints.

Constraints on manipulated and output/state variables can be expressed math-
ematically as follows:

ymin � y � ymax (1.14)

umin � u � umax (1.15)

˜uj j ¼ ˜umax (1.16)

where the limits of the state/output variables (ymin, ymax) and those of control
inputs/manipulated variables (umin, umax, ˜umax) can be either constant or time-
varying.

The usual practice in process control is to ignore the constraint issue at the
design stage and then to “handle” it in an “ad hoc” way during the implementation.
Therefore, these control structures are very system-specific, and their cost cannot
be spread over a large number of applications, implying high design cost. Ad-
vanced control techniques usually provide intelligent methodologies to handle
constraints in a systematic manner during the design and implementation of
the control.

1.2.1.6 High-Order and Distributed Processes
On many occasions, the modeling of chemical processes leads to very high-order
models. Although the general nonlinear model expressed by Eqs. (1.6)–(1.9) is a
specific formulation for simple, low-order, lumped parameter systems which can
be described by ordinary differential equations, this form can be also used for high-
order and/or distributed parameter systems. Generally, in the case of high-order
systems, an nth order differential equation can be described by a system of n first-
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order differential equations by introducing n–1 fictitious state variables. For exam-
ple, for a high-order system with one state variable, described by the nth order
differential equation below:

an
dnx
dtn
þ an�1

dn�1x
dtn�1

þ . . . þ a1
dx
dt
þ a0x þ b ¼ 0 (1.17)

is equivalent with the following system of n first-order differential equations:

dx
dt
¼ x1

dx1

dt
¼ x2

..

.

dxn�1

dt
¼ � an�1

an
xn�1 � . . . � a1

an
x1 �

a0

an
x � b

an

(1.18)

where x1,…, xn–1 are fictitious states.
In this way, the general model described by Eqs. (1.6)–(1.9) can be extrapolated

for high-order systems. However, for a MIMO system every high-order equation
must be decomposed in a system of ordinary differential equations, and this –
usually in the case of very high-order MIMO systems – can cause computational
difficulties. For this reason, a model reduction is recommended in the case of high-
order systems.

Distributed parameter systems are distinguished by the fact that the states, controls
and outputs may depend on spatial position. Thus, the natural form of the system
model is represented by partial differential equations or integral equations.

1.2.1.7 Unmeasured State Variables and Unmeasured and Frequent Disturbances
In most industrial processes, the total state vector can seldom be measured, and the
number of outputs is much smaller than the number of states. In addition, the
process measurements are often corrupted by significant experimental error, and
the process itself is subject to random, unmodeled upsets. Both, unmeasured state
variables and unmeasured disturbances can lead to a substantial model/plant
mismatch, which appears as a reduction in quality control. However, each of these
difficulties individually causes a very challenging control problem (according to
most control specialists, the most important problem in MPC design): the con-
sequences for both problems are differences between the predicted (yp) and
measured (ym) outputs. Thus, the effects of the unmeasured disturbances can be
included in the model error caused by the unmeasured state variables, and treated
in the model/plant mismatch problem as a global, additive disturbance. Because
unmeasured state variables and unmeasured disturbances manifest themselves in
the quality of the predictions, which actually underlines the MPC strategies, the
state estimation is an essential problem in practical NMPC applications.
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1.2.2
Classification of the Advanced Process Control Techniques

The chemical process industry is characterized as having highly dynamic and
unpredictable marketplace conditions. For example, during the course of the
past 15 years we have witnessed an enormous variation in crude and product
prices. The demands for chemical products also vary widely, imposing different
production yields. It is generally accepted that the most effective means of gen-
erating the highest profit from plants, while responding to marketplace variations
with minimal capital investment, is provided by integrating all aspects of automa-
tion of the decision-making process [6], which are:
• Measurement. The gathering and monitoring of process measurements via

instrumentation.
• Control. The manipulation of process degrees of freedom for the satisfaction of

operating criteria. This typically involves two layers of implementation: the
single loop control which is performed via analogue controllers or rapid sam-
pling digital controllers; and the overall control performed using real-time
computers with relatively large CPU capabilities.

• Optimization. The manipulation of process degrees of freedom for the satisfac-
tion of plant economic objectives. This is usually implemented at a rate such that
the controlled plant is assumed to be at steady state. Therefore, the distinction
between control and optimization is primarily a difference in implementation
frequencies.

• Logistics. The allocation of raw materials and scheduling of operating plants for
the maximization of profits and the achievement of the company’s program.

Each of these automation layers plays a unique and complementary role in
allowing a company to react rapidly to changes. Therefore, one layer cannot be
effective without the others. In addition, the effectiveness of the whole approach is
only possible when all manufacturing plants are integrated into the system.

Although, in the past, the maintenance of a stable operation for the process was
the sole objective of control systems, this integration imposes more demanding
requirements. In the process industries, control systems must satisfy one or more
of the following practical performance criteria:
• Economic. These can be associated with either maintaining process variables at

the targets dictated by the optimization phase, or dynamically minimizing an
operating cost function.

• Safety and environmental. Some process variables must not violate specified
bounds for reasons of personnel or equipment safety, or because of environ-
mental regulations.

• Equipment. The control system must not drive the process outside the physical
limitations of the equipment.

• Product quality. Consumer specifications on products must be satisfied.
• Human preference. There exist excessive levels of variable oscillations or jaggedness

that the operator will not tolerate. There can also be preferred modes of operation.

1.2 Advanced Process Control Techniques 11



In addition, the implementation of such integrated systems is forcing the processes
to operate over an ever-wider range of conditions. As a result, we can state the
control problem that any control system must solve as follows [5]:

”On-line update the manipulated variables to satisfy multiple,
changing performance criteria in the face of changing plant
characteristics.”

Today, the entire spectrum of process control methodologies in use is faced with
the solution of this problem. The difference between these methodologies lies in
the particular assumptions and compromises made in the mathematical formula-
tion of performance criteria, and in the selection of a process representation. These
are made primarily to simplify the mathematical problem so that its solution fits
the existing hardware capabilities. The natural mathematical representation of
many of these criteria is in the form of dynamic objective functions to be mini-
mized and of dynamic inequality constraints. The usual mathematical representa-
tion for the process is a dynamic model with its associated uncertainties.

At present, there is an important number of advanced control techniques using
either specific algorithms for particular systems, or very general methods with a
wide application area and well-developed theory. A classification of these techni-
ques is difficult because many of the algorithms are very similar, being obtained
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from some more general methods with usually minor changes with regard to, for
example, the performance criteria, optimization method, prediction horizon, and
constraint handling. However, all of these algorithms have a common feature: all
are based on a process model, described in different ways. The proposed classi-
fication, based on this feature, is presented in Figure 1.8. According to this, the
advanced control techniques can be classified first in four conceptually different
categories. The first and most important approach, the Model Predictive Control
(MPC), can be classified further, for example, according to different model types
used for prediction in the controller. This feature is usually the most significant
difference among MPC algorithms.
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