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Multiparametric Linear and Quadratic Programming
Nuno P. Faísca, Vivek Dua, and Efstratios N. Pistikopoulos

In this work we present an algorithm for the solution of multiparametric linear
and quadratic programming problems. With linear constraints and linear or convex
quadratic objective functions, the optimal solution of these optimization problems
is given by a conditional piecewise linear function of the varying parameters. This
function results from first-order estimations of the analytical nonlinear optimal
function. The core idea of the algorithm is to approximate the analytical nonlinear
function by affine functions, whose validity is confined to regions of feasibility and
optimality. Therefore, the space of parameters is systematically characterized into
different regions where the optimal solution is an affine function of the parame-
ters. The solution obtained is convex and continuous. Examples are presented to
illustrate the algorithm and to enhance its potential in real-life applications.

1.1
Introduction

Variability and uncertainty are widely recognized as crucial topics in the design and
operation of processes and systems [34]. Fluctuations in resources, market require-
ments, prices, and during plant operation make imperative the study of possible
consequences of uncertainty and variability in the feasibility and economics of a
project. In the optimization models, variability and uncertainty correspond to the
inclusion of varying parameters.

According to the parameters’ description, different solving approaches have been
proposed: (i) multiperiod optimization [11, 42, 46], (ii) stochastic programming
[4, 5, 10, 13, 20, 26, 40], and (iii) parametric programming. In the multiperiod op-
timization approach, the time horizon is discretized into time periods, associated
with forecasts of the parameters. For instance, if the forecast is a demand of a
specific chemical product in the ensuing years, the objective is to find a planning
strategy for producing these chemicals, which maximizes the net present value.
If the probability distribution function of the parameters is known, the stochastic
programming identifies the optimal solution which corresponds to the maximum
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Fig. 1.1 Crude oil refinery.

expected profit. At last, the parametric programming approach aims to obtain the
optimal solution as an explicit function of the parameters. In this chapter we will
discuss techniques based upon the fundamentals of parametric programming.

Parametric programming is based on the sensitivity analysis theory, distinguish-
ing from the latter in the targets. Sensitivity analysis provides solutions in the
neighborhood of the nominal value of the varying parameters, whereas parametric
programming provides a complete map of the optimal solution in the space of the
varying parameters. Theory and algorithms for the solution of a wide range of para-
metric programming problems have been reported in the literature [1, 3, 15–18, 22,
25, 33, 45].

�Example 1 [19]
A refinery blending and production process is depicted in Fig. 1.1. The ob-
jective of the company is to maximize the profit by selecting the optimal
combination of raw materials and products. Operating conditions are pre-
sented in Table 1.1, where θ1 and θ2 are parameters representing an ad-
ditional maximum allowable production of gasoline and kerosene, respec-
tively.
This problem formulates as a multiparametric linear programming prob-
lem (1.1), where x1 and x2 are the flow rates of the crude oils 1 and 2 in
bbl/day, respectively, and the units of profit are $/day.

Profit = max
x

8.1x1 + 10.8x2, (1.1a)

s.t. 0.80x1 + 0.44x2 ≤ 24 000 + θ1, (1.1b)

0.05x1 + 0.10x2 ≤ 2000 + θ2, (1.1c)

Table 1.1 Refinery data.

Volume % yield Maximum allowable
Crude 1 Crude 2 production (bbl/day)

Gasoline 80 44 24 000 + θ1
Kerosene 5 10 2000 + θ2
Fuel oil 10 36 6000
Residual 5 10 –
Processing cost ($/bbl) 0.50 1.00 –
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0.10x1 + 0.36x2 ≤ 6000, (1.1d)

x1 ≥ 0, x2 ≥ 0, (1.1e)

0 ≤ θ1 ≤ 6000, (1.1f)

0 ≤ θ2 ≤ 500. (1.1g)

The importance of solving this problem is as follows:
(i) the optimal policy for selecting the crude oil source is

known as a function of θ1 and θ2;
(ii) substituting the value of θ1 and θ2 into the parametric

profiles we know directly the optimal profit;
(iii) the sensitivity of the profit to the parameters is

identified. The board of the company foresees more
sensitive operating regions, making the management
more efficient.

�Example 2 [12]
A Dutch agriculture cooperative society has to deal with the excess of milk
produced. Since some high-valued products can be processed, this coop-
erative society has to set either the quantities, taking into account the de-
mand (z), and prices (x) for each product. This specific cooperative society
considers but four types of products: milk for direct consumption, butter,
fat cheese, and low fat cheese (Fig. 1.2).
The capacity constraints are

0.026z1 + 0.800z2 + 0.306z3 + 0.245z4 ≤ 119, (1.2a)

0.086z1 + 0.020z2 + 0.297z3 + 0.371z4 ≤ 251, (1.2b)

z1 ≥ 0, (1.2c)

z2 ≥ 0, (1.2d)

z3 ≥ 0, (1.2e)

z4 ≥ 0. (1.2f)

Obviously, consumer demand depends critically on the price of the product,
where a negative relation is expected:

Fig. 1.2 Possible products from the milk surplus.
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z1 = –1.2338x1 + 2139 + w1, (1.3a)

z2 = –0.0203x2 + 135 + w2, (1.3b)

z3 = –0.0136x3 + 0.0015x4 + 103 + w3, (1.3c)

z4 = +0.0016x3 – 0.0027x4 + 19 + w4, (1.3d)

where w1, w2, w3, and w4 are uncertainties associated with the consumer
demand.
The cooperative society wants to reward as much as possible their associates,
and hence the objective is to maximize profit. Ignoring production costs, the
objective function is written as

Profit = max
x

4∑
i=1

xi · zi, (1.4)

which is a quadratic function of prices, xi. The government avoids the esca-
lation of the prices with an extra policy constraint:

0.0163x1 + 0.0003x2 + 0.0006x3 + 0.0002x4 ≤ 10 + k, (1.5)

where k refers to a possible price rise (e.g., k = 0.1 means a rise of 1% on
the overall prices). This is regarded as a social constraint.

The optimization problem formulates as in (1.6).

Profit = max
x1,x2,x3,x4

4∑
i=1

xi · zi,

s.t. 0.026z1 + 0.800z2 + 0.306z3 + 0.245z4 ≤ 119,

0.086z1 + 0.020z2 + 0.297z3 + 0.371z4 ≤ 251,

0.0163x1 + 0.0003x2 + 0.0006x3 + 0.0002x4 ≤ 10 + k,

z1 = –1.2338x1 + 2139 + w1,

z2 = –0.0203x2 + 135 + w2,

z3 = –0.0136x3 + 0.0015x4 + 103 + w3,

z4 = +0.0016x3 – 0.0027x4 + 19 + w4,

z1 ≥ 0,

z2 ≥ 0,

z3 ≥ 0,

z4 ≥ 0,

–150 ≤ w1 ≤ 150,

–5 ≤ w2 ≤ 5,

–6 ≤ w3 ≤ 6,

–2 ≤ w4 ≤ 2,

–1 ≤ k ≤ 1.

(1.6)
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The significance of such solution is as follows:
(i) the optimal price policy is known as a function of the

uncertainty in the demand, wi, and possible price rise, k;
(ii) sensitivity of the current best decision is known, and

supports an efficient decision making.

As shown, this type of information is very useful for solving reactive or online
optimization problems. Such problems usually require a repetitive solution of op-
timization problems; due to the varying conditions of most processes, the optimal
decision/action changes with time. The key advantage of parametric programming
is to obtain the optimal solution as a function of the varying parameters without
exhaustively enumerating the entire parametric space.

A broad spectrum of process engineering applications has been identified: (i) hy-
brid parametric/stochastic programming [2, 27], (ii) process planning under uncer-
tainty [35], (iii) scheduling under uncertainty [41], (iv) material design under uncer-
tainty [14], (v) multiobjective optimization [31, 32, 39], (vi) flexibility analysis [6, 8],
and (vii) computation of singular multivariate normal probabilities [7]. Although
parametric programming has various applications, the online control problem [9,
37, 38, 44] is the most prolific application, where control variables are obtained as a
function of the initial state of the system. This reduces the real-time optimal control
problem to a simple function evaluation problem. Mathematically, such problems
are formulated as multiparametric quadratic programs (mp-QP). Robust online
control problems that can take into account uncertainty and disturbance can also
be reformulated as mp-QPs to obtain the explicit robust control law [28, 29, 43].

The rest of the chapter organizes as follows. Section 1.2 describes the underlying
mathematical background of the methodology, and finalizes with the algorithm;
convexity/continuity properties of the solution are also proven. In section 1.3, some
examples are solved in order to illustrate the procedure and to give an insight of
the complexity involved.

1.2
Methodology

Consider the general parametric nonlinear programming problem:

min
x

f(x, θ ),

s.t. gi(x, θ ) ≤ 0, ∀ i = 1, . . . , p,
hj(x, θ ) = 0, ∀ j = 1, . . . , q,
x ∈ X ⊆ R

n,
θ ∈ � ⊆ R

m,

(1.7)

where f, g, and h are twice continuously differentiable in x and θ . The first-order
Karush–Kuhn–Tucker (KKT) optimality conditions for (1.7) are given as follows:
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∇L = 0,
λigi(x, θ ) = 0, λi ≥ 0, ∀ i = 1, . . . , p,
hj(x, θ ) = 0, ∀ j = 1, . . . , q,

L = f(x, θ ) +
p∑

i=1

λigi(x, θ ) +
q∑

j=1

µjhj(x, θ ).

(1.8)

The main sensitivity result for (1.7) derives directly from system (1.8), as shown in
Theorem 1.

Theorem 1. Basic sensitivity theorem [21]: Let x0 be a vector of parameter values and
(u0, λ0, µ0) a KKT triple corresponding to (1.8), where λ0 is nonnegative and u0 is feasible
in (1.7). Also assume that (i) strict complementary slackness (SCS) holds, (ii) the bind-
ing constraint gradients are linearly independent (LICQ: linear independence constraint
qualification), and (iii) the second-order sufficiency conditions (SOSC) hold. Then, in
the neighborhood of x0, there exists a unique, once continuously differentiable function,
z(x) = [u(x), λ(x), µ(x)], satisfying (1.8) with z(x0) = [u(x0), λ(x0), µ(x0)], where u(x) is
a unique isolated minimizer for (1.7), and


du(x0)

dx
dλ(x0)

dx
dµ(x0)

dx


 = –(M0)–1N0, (1.9)

where M0 and N0 are the Jacobian of system (1.8) with respect to z and x:

M0 =




∇2L ∇g1 · · · ∇gp ∇h1 · · · ∇hq

–λ1∇Tg1 –g1
...

. . .
–λp∇Tgp –gp

∇Th1
...

∇Thq




,

N0 = (∇2
xuL, –λ1∇T

x g1, . . . , –λp∇T
x gp, ∇T

x h1, . . . , ∇T
x hq)T.

Note that the assumptions stated in the theorem above ensure the existence of
the inverse of M0 [30].

Corollary 1. First-order estimation of x(θ ), λ(θ ), µ(θ ), near θ = θ0 [22]: Under the
assumptions of Theorem 1, a first-order approximation of [x(θ ), λ(θ ), µ(θ )] in a neigh-
borhood of θ0 is

x(θ )
λ(θ )
µ(θ )


 =


x0

λ0

µ0


 + (M0)–1 · N0 · θ + o(‖θ‖), (1.10)

where (x0, λ0, µ0) = [x(θ0), λ(θ0), µ(θ0)], M0 = M(θ0), N0 = N(θ0), and φ(θ ) = o(‖θ‖)
means that φ(θ )/‖θ‖ → 0 as θ → θ0.
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Despite being a simple and linear expression, Eq. (1.10) may lead to complex
computational problems, since in the general nonlinear case the Jacobians of sys-
tem (1.8) are in most of the cases complex. Fortunately, it simplifies when (1.7) has
a quadratic objective function, linear constraints, and the parameters appear on the
right-hand side of the constraints:

z(θ ) = min
x

cTx + 1
2 xTQx,

s.t. Ax ≤ b + Fθ ,
x ∈ X ⊆ R

n,
θ ∈ � ⊆ R

m,

(1.11)

where c is a constant vector of dimension n, Q is an (n × n) symmetric positive
definite constant matrix, A is a (p × n) constant matrix, F is a (p × m) constant
matrix, b is a constant vector of dimension p, and X and � are compact polyhedral
convex sets of dimensions n and m, respectively. Note that a term of the form θTPx
in the objective function can also be addressed in the above formulation, as it can
be transformed into the form given in (1.11) by substituting x = s – Q–1PTθ , where
s is a vector of arbitrary variables of dimension n and P is a constant matrix of
dimension (m × n).

An application of Theorem 1 to (1.11) at [x(θQ), θQ] gives the following result:
 dx(θQ)

dθ

dλ(θQ)
dθ


 = –(MQ)–1NQ, (1.12)

where

MQ =




Q AT
1 · · · AT

p

–λ1A1–V1
...

. . .
–λpAp –Vp


 ,

NQ = [Y, λ1F1, . . . , λpFp]T,

Vi = Aix(θQ) – bi – FiθQ,

(1.13)

and Y is a null matrix of dimension (n×m). Thus, in the linear–quadratic optimiza-
tion problem, the Jacobians reduce to a mere algebraic manipulation of the matri-
ces declared in (1.11). In the neighborhood of the KKT point, [x(θQ), θQ], Corollary 1
writes as follows:[

xQ(θ )
λQ(θ )

]
= –(MQ)–1NQ(θ – θQ) +

[
x(θQ)
λ(θQ)

]
. (1.14)

Note that when assumptions in Theorem 1 are respected MQ is always invertible.
This is where parametric programming detaches from the sensitivity analysis

theory. Whilst sensitivity analysis stops here, where we know what happens if the
process conditions deviate from the nominal values to some value in its neigh-
borhood, parametric programming is concerned with the whole range of the para-
metric variability. The former associates with the uncertainty and the latter to the
variability of the process.
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The space of θ where this solution (1.14) remains optimal is defined as the critical
region, CRQ, and can be obtained by using feasibility and optimality conditions.
Note that for convenience and simplicity in presentation, we use the notation CR
to denote the set of points in the space of θ that lie in CR as well as to denote the
set of inequalities which define CR. Feasibility is ensured by substituting xQ(θ ) into
the inactive inequalities given in (1.11), whereas the optimality condition is given
by λ̃Q(θ ) ≥ 0, where λ̃Q(θ ) corresponds to the vector of active inequalities, resulting
in a set of parametric constraints. Let this set be represented by

CRR = {ĂxQ(θ ) ≤ b̆ + F̆θ , λ̃Q(θ ) ≥ 0, CRIG}, (1.15)

where Ă, b̆, and F̆ correspond to the inactive inequalities and CRIG represents a
set of linear inequalities defining an initial given region. From the parametric in-
equalities thus obtained, the redundant inequalities are removed and a compact
representation of CRQ is obtained as follows:

CRQ = �{CRR}, (1.16)

where � is an operator which removes redundant constraints—for a procedure to
identify redundant constraints see [25] (see Appendix A for a summary). Note that
a CRQ is a polyhedral region. Once CRQ has been defined for a solution, [x(θQ), θQ],
the next step is to define the rest of the region, CRrest, as proposed in [16] (see
Appendix B for a summary):

CRrest = CRIG – CRQ. (1.17)

Another set of parametric solutions in each of these regions is then obtained
and corresponding CRs are obtained. The algorithm terminates when there are no
more regions to be explored. In other words, the algorithm terminates when the
solution of the differential equation (1.12) has been fully approximated by first-
order expansions.

The main steps of the algorithm are outlined in Table 1.2. Note that while defin-
ing the rest of the regions, some of the regions are split and hence the same optimal

Table 1.2 mp-QP algorithm.

Step 1 In a given region solve (1.11) by treating θ as a free variable to obtain
a feasible point [θQ]

Step 2 Fix θ = θQ and solve (1.11) to obtain [x(θQ), λ(θQ)]

Step 3 Compute [–(MQ)–1NQ] from (1.12)

Step 4 Obtain [xQ(θ ), λQ(θ )] from (1.14)

Step 5 Form a set of inequalities, CRR, as described in (1.15)

Step 6 Remove redundant inequalities from this set of inequalities and de-
fine the corresponding CRQ as given in (1.16)

Step 7 Define the rest of the region, CRrest as given in (1.17)

Step 8 If no more regions to explore, go to next step, otherwise go to Step 1

Step 9 Collect all the solutions and unify the regions having the same solu-
tion to obtain a compact representation
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solution may be obtained in more than one regions. Therefore, the regions with the
same optimal solution are united and a compact representation of the final solution
is obtained.

When θ is present on the right-hand side of the constraints, the solution space
of (1.7) is convex and continuous [23]. Since (1.11) is a special case of (1.7), its solu-
tion has these properties as well. Due to its importance, we prove these properties
specifically for (1.11) in the next theorem.

Theorem 2. Consider the mp-QP (1.11) and let Q be positive definite, � convex. Then
the set of feasible parameters �f ⊆ � is convex, the optimizer x(θ ) : �f 
→ R

n is
continuous and piecewise affine, and the optimal solution z(θ ) : �f 
→ R is continuous,
convex, and piecewise quadratic.

Proof. We first prove convexity of �f and z(θ ). Take generic θ1, θ2 ∈ �f and let
z(θ1), z(θ2) and x1, x2 be the corresponding optimal values and minimizers. Let α ∈
[0, 1] and define xα � αx1 + (1 – α)x2, θα � αθ1 + (1 – α)θ2. By feasibility, x1, x2 satisfy
the constraints Ax1 ≤ b + Fθ1, Ax2 ≤ b + Fθ2. These inequalities can be linearly
combined to obtain Axα ≤ b + Fθα and therefore xα is feasible for the optimization
problem (1.11). Since a feasible solution, x(θα), exists at θα , an optimal solution
exists at θα and hence �f is convex.

The optimal solution at θα will be less than or equal to the feasible solution:

z(θα) ≤ cTxα +
1
2

xT
αQxα

and hence,

z (θα) – [α(cTx1 +
1
2

xT
1 Qx1) + (1 – α)(cTx2 +

1
2

xT
2 Qx2)] (1.18a)

≤ cTxα +
1
2

xT
αQxα – [α(cTx1 +

1
2

xT
1 Qx1) + (1 – α)(cTx2 +

1
2

xT
2 Qx2)] (1.18b)

= 1
2

[α2xT
1 Qx1 + (1 – α)2xT

2 Qx2 + 2α(1 – α)xT
2 Qx1

– αxT
1 Qx1 – (1 – α)xT

2 Qx2] (1.18c)

= –
1
2
α(1 – α)(x1 – x2)TQ(x1 – x2) ≤ 0, (1.18d)

which means that, (1.18e)

z(αθ1 + (1 – α)θ2) ≤ αz(θ1) + (1 – α)z(θ2), ∀θ1, θ2 ∈ �, ∀α ∈ [0, 1], (1.18f)

proving the convexity of z(θ ) on �f.
Within the closed polyhedral regions, CRQ, in �f the solution x(θ ) is affine (Corol-

lary 1). The boundary between two regions belongs to both closed regions. Because
the optimum is unique the solution must be continuous across the boundary. The
fact that z(θ ) is continuous and piecewise quadratic follows trivially.

Remark 1. Multiparametric linear program: Note that when Q is a null matrix, (1.11)
reduces to a multiparametric linear program (mp-LP). This does not affect the solution
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procedure described above and the algorithm remains the same. This is because the re-
sults presented in the theorems are still valid as explained next. The results presented in
Theorem 1 continue to hold true and SOSC is valid in spite of the fact that Q is a null
matrix as discussed on page 71 in [22]. For mp-LPs x is an affine function of θ and λ

remains constant in a CR as shown in Chapter 4 in [25] and therefore Corollary 1 can be
used. Whilst the results of Theorem 2 regarding �f and x(θ ) are still valid, z(θ ) simplifies
to a continuous, convex, and piecewise linear function of θ as also shown in Chapter 4
in [25].

Hence, at the end of the algorithm the solution obtained is a conditional piece-
wise function of the parameters and Theorem 2 implies that the optimal function
computed, z(θ ), is continuous and convex.

1.3
Numerical Examples

In this section, the solution steps are described in detail for the two illustrative
examples presented before: the refinery problem and the surplus milk production.
Additionally, we solve a mp-QP problem corresponding to a model-based predictive
control problem [37].

1.3.1
Example 1: Crude Oil Refinery

Consider the mp-LP problem formulated for the crude oil refinery example:

Profit = max
x

8.1x1 + 10.8x2, (1.19a)

s.t. 0.80x1 + 0.44x2 ≤ 24 000 + θ1, (1.19b)

0.05x1 + 0.10x2 ≤ 2000 + θ2, (1.19c)

0.10x1 + 0.36x2 ≤ 6000, (1.19d)

x1 ≥ 0, (1.19e)

x2 ≥ 0, (1.19f)

0 ≤ θ1 ≤ 6000, (1.19g)

0 ≤ θ2 ≤ 500. (1.19h)

The solutions steps are as follows.

Step 1. Solve (1.19) by treating θ1 and θ2 as free variables. A
feasible point obtained is θQ–1 = [0, 0]T;

Step 2. Fix θQ–1 = [0, 0]T and solve (1.19). The solution is:
xQ–1 = [26 207, 6896.6]T; λQ–1 = [4.655, 87.52, 0];



1.3 Numerical Examples 13

Step 3. Compute [–M–1
Q–1NQ–1] from (1.13). The solution is given by

–M–1
Q–1NQ–1 =




1.724 –7.586
–0.8621 13.79
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000


 .

Step 4. Compute [xQ–1(θ ), λQ–1(θ )] from (1.14):




x1
Q–1(θ )

x2
Q–1(θ )

λ1
Q–1(θ )

λ2
Q–1(θ )

λ3
Q–1(θ )




=




1.724 –7.586
–0.8621 13.79
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000


 · (θ – θQ1 ) +




26 207
6896.6
4.552
87.52

0.0000


 ,

or,




x1
Q–1 = 1.724 · θ1 – 7.586 · θ2 + 26207,

x2
Q–1 = –0.8621 · θ1 + 13.79 · θ2 + 6896.6,

λ1
Q–1 = 4.555,

λ2
Q–1 = 87.52,

λ3
Q–1 = 0.0000.

Step 5. Form a set of inequalities corresponding to CRR,

CRR =




ĂxQ–1(θ ) ≤ b̆ + F̆θ : –0.1380θ1 + 4.206θ2 ≤ 896.5,

λ̃Q–1(θ ) ≥ 0 :




4.552 ≥ 0,
87.52 ≥ 0,
0.0000 ≥ 0,

CRIG :

{
0 ≤ θ1 ≤ 6000,
0 ≤ θ2 ≤ 500,

(1.20)

Step 6. Remove redundant constraints,

CRrest =




–0.1380θ1 + 4.206θ2 ≤ 896.5,
0 ≤ θ1 ≤ 6000,
0 ≤ θ2.

(1.21)

Step 7. Define the rest of the region, CRrest,

CRR =




–0.1380θ1 + 4.206θ2 ≥ 896.5,
0 ≤ θ1 ≤ 6000,
θ2 ≤ 500.

(1.22)
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Table 1.3 Solution of the refinery example.

i CRi Optimal solution

1 –0.14θ1 + 4.21θ2 ≤ 896.55 Profit(θ ) = 4.66θ1 + 87.52θ2 + 286 758.6
0 ≤ θ1 ≤ 6000 x1 = 1.72θ1 – 7.59θ2 + 26 206.90
0 ≤ θ2 x2 = –0.86θ1 + 13.79θ2 + 6896.55

2 –0.14θ1 + 4.21θ2 ≥ 896.55 Profit(θ ) = 7.53θ1 + 305 409.84
0 ≤ θ1 ≤ 6000 x1 = 1.48θ1 + 24 590.16
θ2 ≤ 500 x2 = –0.41θ1 + 9836.07

Step 8. There is a region to explore, region (1.22). Return to Step 1
and include constraints (1.22) in the optimization
problem (1.19). This problem terminates in the next
iteration ending with two critical regions.

Step 9. Collect the two regions. Since they have different solutions,
they are not merged.

The solution of this problem is given in Table 1.3 and Fig. 1.3.
We can conclude the following:
(i) A complete map of all the optimal solutions, profit and crude

oil flowrates as a function of θ1 and θ2, is available.
(ii) The space of θ1 and θ2 has been divided into two regions,

CR1 and CR2, where the profiles of profit and flowrates of
crude oils remain optimal and hence (a) one does not have to
exhaustively enumerate the complete space of θ1 and θ2 and
(b) the optimal solution can be obtained by simply
substituting the value of θ1 and θ2 into the parametric
profiles without any further optimization calculations.

Fig. 1.3 Solution of refinery example.
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(iii) The sensitivity of the profit to the parameters can be
identified. In CR1 the profit is more sensitive to θ2, whereas
in CR2 it is not sensitive to θ2 at all. Thus, for any value of θ

that lies in CR2, any expansion in kerosene production will
not affect the profit.

1.3.2
Example 2: Milk Surplus

A reformulation of the milk surplus production problem is

Profit = max
x

–1.2338x2
1 – 0.0203x2

2 – 0.0136x2
3 – 0.0027x2

4 + 0.0031x3x4

+2139x1 + 135x2 + 103x3 + 19x4

+x1w1 + x2w2 + x3w3 + x4w4,
s.t. –0.0321x1 – 0.0162x2 – 0.0038x3 – 0.0002x4 ≤ –80.5,

–0.026w1 – 0.800w2 – 0.306w3 – 0.245w4,
–0.1061x1 – 0.0004x2 – 0.0034x3 – 0.0006x4 ≤ 26.6,
–0.086w1 – 0.020w2 – 0.297w3 – 0.371w4,
1.2334x1 ≤ 2139 + w1,
0.0203x2 ≤ 135 + w2,
0.0136x3 – 0.0015x4 ≤ 103 + w3,
–0.0016x3 + 0.0027x4 ≤ 19 + w4,
0.0163x1 + 0.0003x2 + 0.0006x3 + 0.0002x4 ≤ 10 + k,
–150 ≤ w1 ≤ 150,
–5 ≤ w2 ≤ 5,
–6 ≤ w3 ≤ 6,
–2 ≤ w4 ≤ 2,
–1 ≤ k ≤ 1.

(1.23)

Although formulation (1.23) has cross terms, xiwi, introducing an artificial vari-
able s: x = s – Q–1PTθ , the problem resumes to formulation (1.11). The solution for
problem (1.23) is presented in Table 1.4.

Similar to the refinery company, the cooperative society has a complete map of
the optimal solution, price of each product, as a function of the bounded parame-
ters, demand and overall price rise. In this way, the cooperative society tackles the
variability of the system in a more efficient way.

1.3.3
Example 3: Model-Based Predictive Control

This example is taken from [37] where MPC problems are reformulated as mp-QP
problems. The vectors and matrices corresponding to (1.11) are as follows:

c =
[

0
0

]
; Q =

[
0.0196 0.0063
0.0063 0.0199

]
;
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Table 1.4 Solution of mp-QP Example 2.

#CR Optimal solution

x1 = +0.018 222w1 + 1.096 03w2 + 0.752 233w3 + 1.005 84w4 + 52.7399k + 418.119
x2 = –1.662 98w1 – 50.015w2 – 17.7007t3 – 15.2865w4 – 149.711k + 3467.8
x3 = +0.047 9505w1 – 6.899 47w2 – 11.389w3 – 5.574 06w4 + 170.972k + 2736.15
x4 = +0.865 523w1 + 6.3944w2 – 0.588 982w3 – 42.3241w4 + 413.347k + 2513.17

1 Critical region
–150 ≤ w1 ≤ 150
–5 ≤ w2 ≤ 5
–6 ≤ w3 ≤ 6
–2 ≤ w4 ≤ 2
–1 ≤ k ≤ 1
0.008 609w1 + 0.2160w2 + 0.088 84w3 + 0.078 64w4 + k ≤ 3.089

x1 = +0.079 3947w1 + 0.088 8125w2 + 0.337 98w3 + 0.639 184w4 + 48.0772k + 432.52
x2 = +0.088 8125w1 + 0.099 3474w2 + 0.378 071w3 + 0.715 004w4 + 53.78k + 2839.29
x3 = +0.337 98w1 + 0.378 071w2 + 1.438 76w3 + 2.720 98w4 + 204.662k + 2632.1
x4 = +0.639 184w1 + 0.715 004w2 + 2.720 98w3 + 5.145 89w4 + 387.055k + 2594.38

2 Critical region
w1 ≤ 150
w2 ≤ 5
w3 ≤ 6
–2 ≤ w4 ≤ 2
k ≤ 1
–0.008 6087w1 – 0.216 013w2 – 0.088 843w3 – 0.078 635w4 – k ≤ –3.08864

b =




2
2
2
2


 ; A =




1 0
–1 0
0 1
0 –1


 ; F =




5.9302 6.8985
–5.9302 –6.8985
1.5347 –6.8272

–1.5347 6.8272


 ;

and –1.5 ≤ θ1 ≤ 1.5, –1.5 ≤ θ2 ≤ 1.5. The solution of this example is given in
Table 1.5. This solution is transformed to obtain control variables as a function of
state variables.

Concluding, the online model-based predictive control problem reduces to a
function evaluation problem — see [37] for details.

1.4
Computational Complexity

Under the assumptions of Theorem 1, at the most n constraints can be active at
a point in �. Thus, given a set of p constraints, all the possible combinations of
active constraints are less than or equal to

η �
n∑

i=0

(
p
I

)
,
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Table 1.5 Solution of mp-QP Example 2: x(θ)i = Wiθ + wi, CRi : �iθ ≤ φi.

W1 =
[

+0.000 000 +0.000 000
+0.000 000 +0.000 000

]
w1 =

[
+0.000 000
+0.000 000

]

�1 =



–1.0000 –1.1633
1.0000 1.1633

–1.0000 4.4486
1.0000 –4.4486


 φ1 =




0.3373
0.3373
1.3032
1.3032




W2 =
[

5.9302 6.8985
1.5347 –6.8272

]
w2 =

[
2.0000

–2.0000

]

�2 =



–1.0000 0
0 –1.0000

1.3655 1.0000
–1.0000 1.3608


 φ2 =




1.5000
1.5000

–0.2885
–0.4006




W3 =
[

–0.4933 2.1945
1.5347 –6.8272

]
w3 =

[
0.6429

–2.0000

]

�3 =




0 –1.0000
–1.3655 –1.0000

1.0000 0
1.3655 1.0000

–1.0000 4.4486


 φ3 =




1.5000
0.2885
1.5000
0.5618

–1.3032




W4 =
[

5.9302 6.8985
–1.8774 –2.1839

]
w4 =

[
2.0000

–0.6332

]

�4 =



–1.0000 0
–1.0000 1.3608

1.0000 –1.3608
1.0000 1.1633


 φ4 =




1.5000
0.7717
0.4006

–0.3373




W5 =
[

5.9302 6.8985
1.5347 –6.8272

]
w5 =

[
2.0000
2.0000

]

�5 =
[

–1.0000 0
1.0000 –1.3608
1.3655 1.0000

]
φ5 =

[
1.5000

–0.7717
–0.5618

]

W6 =
[

5.9302 6.8985
1.5347 –6.8272

]
w6 =

[
–2.0000

2.0000

]

�6 =



1.0000 0
0 1.0000

–1.3655 –1.0000
1.0000 –1.3608


 φ6 =




1.5000
1.5000

–0.2885
–0.4006




W7 =
[

–0.4933 2.1945
1.5347 –6.8272

]
w7 =

[
–0.6429

2.0000

]

�7 =




0 1.0000
1.3655 1.0000

–1.0000 0
–1.3655 –1.0000

1.0000 –4.4486


 φ7 =




1.5000
0.2885
1.5000
0.5618

–1.3032




W8 =
[

5.9302 6.8985
–1.8774 –2.1839

]
w8 =

[
–2.0000

0.6332

]

�8 =



1.0000 0
–1.0000 1.3608

1.0000 –1.3608
–1.0000 –1.1633


 φ8 =




1.5000
0.4006
0.7717

–0.3373




W9 =
[

5.9302 6.8985
1.5347 –6.8272

]
w9 =

[
–2.0000
–2.0000

]

�9 =
[

1.0000 0
–1.0000 1.3608
–1.3655 –1.0000

]
φ9 =

[
1.5000

–0.7717
–0.5618

]
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where(
p
i

)
= p!

(p – i)!i!
.

In the worst case, an estimate of ηr, the number of regions, CR, generated can
be obtained as follows. The following analysis does not take into account (i) the
reduction of redundant constraints, and (ii) possible empty sets are not further par-
titioned. The first critical region, CRQ is defined by the constraints given in (1.15).
For simplicity assume that CRIG is unbounded. Thus, first CRQ is defined by p
constraints. From Appendix B, CRrest consists of p convex polyhedra CRl defined
by at most p inequalities. For each CRl, a new CR is determined which consists of
2p inequalities (the additional p inequalities come from the condition CR ⊆ CRl),
and therefore the corresponding CRrest partition includes 2p sets defined by 2p in-
equalities. This way of generating regions can be associated with a search tree. By
induction, it is easy to prove that at the tree level k + 1 there are k!pk regions defined
by (k + 1)p constraints. As observed earlier, each CR is the largest set correspond-
ing to a certain combination of active constraints. Therefore, the search tree has a
maximum depth of η, as at each level there is one admissible combination less. In

conclusion, the number of regions is ηr ≤
η–1∑
k=0

k!pk, each one defined by at most ηp

linear inequalities.
The algorithm has been fully automated [36] and tested on a number of prob-

lems. The computational experience with test problems on a Pentium II-300 MHz
computer is given in Tables 1.6 and 1.7.

Table 1.6 Computation time (seconds).

p n/m 2 3 4 5

4 2 3.02 4.12 5.05 5.33

6 3 10.44 26.75 31.7 70.19

8 4 25.27 60.20 53.93 58.61

Table 1.7 Number of regions.

p n/m 2 3 4 5

4 2 7 7 7 7

6 3 17 47 29 43

8 4 29 99 121 127
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1.5
Concluding Remarks

A sensitivity analysis based algorithm has been presented for the solution of multi-
parametric linear and quadratic problems. These optimization problems have lin-
ear or convex quadratic objective function and linear constraints; the varying para-
meters are assumed to be additive linear terms on the constraints’ right-hand side.
Through a systematic partition of the parametric space, the algorithm provides a
complete map of the optimal solution as a conditional piecewise linear function
of the parameters. Each piecewise function derives from first-order estimation of
the analytical nonlinear optimal function. Therefore, the piecewise linear functions
are valid inside characteristic regions, defined using the optimality and feasibility
conditions. Hence, the core idea of the algorithm is to approximate the analyti-
cal nonlinear function by affine functions, whose validity is optimally confined to
critical regions. The solution obtained is convex and continuous.

In the context of online optimization, online model-based control and optimiza-
tion problems involving parametric uncertainty can be reformulated as multipara-
metric optimization programs. Optimal control actions are computed off-line as
functions of the state variables, and the space of state variables is subdivided into
characteristic regions. Online optimization is then carried out by taking measure-
ments from the plant, identifying the characteristic region corresponding to these
measurements, and then calculating the control actions by simply substituting the
values of the measurements into the expression for the control profile correspond-
ing to the identified characteristic region. The online optimization problem thus re-
duces to a simple map-reading and function evaluation problem. The correspond-
ing computational effort required by this kind of implementation is very small, as
no optimization is done online. Benchmark examples have been presented to show
the applicability and to describe the proposed procedure.
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Appendix A. Redundancy Check for a Set of Linear Constraints

Consider a system of linear constraints:
N∑

j=1

gi,jθj ≤ bi, i = 1, . . . , k, . . . , m. (1.24)

Constraint k is redundant if there is a solution for the following problem:

min
θ ,ε

εk, (1.25a)
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s.t.
N∑

j=1

gi,jθj + εi = bi, i = 1, . . . , m, (1.25b)

εi ∈ R, (1.25c)

such that εk ≥ 0. If {min εk} > 0, the constraint is said to be strongly redundant;
if {min εk} = 0, simultaneously with another εi, one of them is said to be weakly
redundant.

Fig. 1.4 Critical regions, CRIG and CRQ.

Fig. 1.5 Division of critical regions: Step 1.
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Fig. 1.6 Division of critical regions: rest of the regions.

Appendix B. Definition of Rest of the Region

Given an initial region, CRIG and a region of optimality, CRQ such that CRQ ⊆
CRIG, a procedure is described in this section to define the rest of the region,
CRrest = CRIG – CRQ. For the sake of simplifying the explanation of the procedure,
consider the case when only two parameters, θ1 and θ2, are present (see Fig. 1.4),
where CRIG is defined by the inequalities: {θL

1 ≤ θ1 ≤ θU
1 , θL

2 ≤ θ2 ≤ θU
2 } and CRQ is

defined by the inequalities: {C1 ≤ 0, C2 ≤ 0, C3 ≤ 0} where C1, C2, and C3 are lin-
ear in θ . The procedure consists of considering one by one the inequalities which
define CRQ. Considering, for example, the inequality C1 ≤ 0, the rest of the region
is given by, CRrest

1 : {C1 ≥ 0, θL
1 ≤ θ1, θ2 ≤ θU

2 }, which is obtained by reversing
the sign of inequality C1 ≤ 0 and removing redundant constraints in CRIG (see
Fig. 1.5). Thus, by considering the rest of the inequalities, the complete rest of the
region is given by: CRrest = {CRrest

1 ∪ CRrest
2 ∪ CRrest

3 }, where CRrest
1 , CRrest

2 and CRrest
3

are given in Table 1.8 and are graphically depicted in Fig. 1.6. Note that for the

Table 1.8 Definition of rest of the regions.

Region Inequalities

CRrest
1 C1 ≥ 0, θL

1 ≤ θ1, θ2 ≤ θU
2

CRrest
2 C1 ≤ 0, C2 ≥ 0, θ1 ≤ θU

1 , θ2 ≤ θU
2

CRrest
3 C1 ≤ 0, C2 ≤ 0, C3 ≥ 0, θL

1 ≤ θ1 ≤ θU
1 , θL

2 ≤ θ2
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case when CRIG is unbounded, simply suppress the inequalities involving CRIG in
Table 1.8.
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