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1.1

Introduction

Althoughmicroarray technology was introduced just 10 years ago, over 20 000 articles

have been published using this technology as of 2006, covering areas ranging from

soil ecology and yeast genomics to cancer andneurological disorders. Inneuroscience,

much of this represents publications since 2000, showing a remarkable trajectory as

well as reflecting early skepticism that has now given way to acceptance and apprecia-

tion (Figure 1.1).Q1 Entire transcriptomes can now be assayed on a single chip at a

reasonable cost, and technologies arebecoming cheaper andmore accurate day by day.

In basic neuroscience research,microarrays have been used to assess gene expression

differences across mouse strains [1], brain areas [2], cell types [3–5], and brain tumor

strains [6]. They have also been used to identify genes that play an important role in

neural stemcell biology [7,8],mousemodels of neurodevelopmental disorders [9], and

postmortem assessments of many neurodegenerative diseases such as Alzheimer’s

disease (AD) [2,10–15], Parkinson’s disease (PD) [16], Huntington’s disease (HD)

[17,18], amyotrophic lateral sclerosis (ALS) [19,20], and schizophrenia [21]. In addition

to providing a useful tool for basic neuroscience research,microarrays hold significant

promise clinically as patient classifiers in acute and chronic neurological diseases [22].

This chapter summarizes the current state of microarray technology, presenting

several clinical applications. In the next section, gene expression technologies

leading up to microarray technologies are presented along with alternative high-

throughput techniques. Section 1.3 provides a primer on how to design and imple-

ment a successful microarray experiment and presents challenges to the field and

analytic methods that have been developed to get the most out of expression data.

The last section summarizes recent microarray experiments in the field of

neuroscience, highlighting key, representative papers documenting state-of-the-art

experimental design, clinical uses in brain cancer, and the use of peripheral blood as

a substitute for brain tissue in various neuropsychiatric conditions. Finally, genomic

DNA microarrays are briefly discussed, along with speculation on the future of

clinical microarray applications.
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1.2

Gene Expression Before Microarrays

Since the discovery of DNA in the early 1900s and the subsequent discovery of RNA

as the substrate for protein synthesis, gene expression assays have become an

essential component of disease research. Gene expression approaches initially took

a gene-centric view. A scientist would hypothesize a relationship between a gene and

a phenotype, and then test this hypothesis using methods such as Northern blot and

in situ hybridization. In Northern blot analysis, mRNA is denatured and separated by

weight on a gel using agarose gel electrophoresis, transferred onto a membrane, and

hybridized with complementary labeled probes [23]. Thus, gene expression corre-

lates with intensity of the labeling. In situ hybridization, on the contrary, involves

directly applying labeled probes to the tissues of interest to determine where the

mRNA is expressed in situ [24]. Although still important for studying single genes,

these high-resolution techniques are at a disadvantage with regard to the throughput

now available using techniques such as RT-PCR, serial analysis of gene expression

(SAGE), differential display, and microarrays. As is the case in complex, dynamic

tissues such as the brain and nervous system, there is often a trade-off between scale

and resolution [25].

1.2.1

High-Throughput Gene Expression Techniques

A paradigm shift occurred in the early 1990s, as technology improved and knowl-

edge of the genome became widely accessible. This challenged scientists to move

from a gene-by-gene study to developmethods that took into consideration the entire

Figure 1.1 Acceptance and use of microarrays in the twenty-first

century. Since the year 2000, publications on microarrays

have gained popularity in the area of neurosciences, indicating

their more widespread acceptance and use as a viable tool.

The X-axis indicates publication year, while the Y-axis indicates

number of publications turning up in PubMed searches for

‘‘microarray’’ and ‘‘brain’’.
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system of gene expression, moving from the unimolecular to the systems level [26].

One of the earliest methods using high-throughput techniques to identify a

large number of genes differentially expressed between two tissues or conditions

was differential-display reverse-transcription polymerase chain reaction (DDPCR)

[27]. In DDPCR, the 50 end of mRNA is bound to anchor primers and reverse

transcribed. A subset of this cDNA is then PCR amplified near its 30 end using

short arbitrary primers. The resulting amplified cDNAs from two samples are run

side by side on a gel, and any differentially displayed bands of interest can be excised

from the gel, reamplified, cloned, and sequenced. This method is relatively inex-

pensive and can test gene expression of all transcripts amplified simultaneously;

however, every interesting band has to be sequenced individually, and the comple-

tion of the human genome project has rendered such time-consuming sequencing

unnecessary.

Representational difference analysis (RDA) represents a more elegant genome-

wide subtraction method that, unlike DDPCR, does not require sifting through an

entire gel of genes to find some that are different [7,28,29]. In RDA, populations of

mRNA from two separate tissues are transcribed into cDNA, digested using re-

striction enzymes, converted into primers, and PCR amplified. These populations

are then cross-hybridized by combining an excess of one population (driver) and

using that to remove identical transcripts from the less concentrated population

(tester). By iteratively performing this process with each population as the driver

and the tester, and then shotgun cloning the subtraction products, libraries for

genes enriched in each tissue can be created. We have used this method coupled to

microarray screening, which provides a powerful approach to screening genetic

subtractions [7,28].

1.2.2

Contemporaneous Alternatives to Microarrays

SAGE [30] is one of the several high-throughput sequencing methods that provide a

powerful technique for high-resolution assessment of gene expression in a relatively

small number of samples. In SAGE, cDNA is positionally anchored using restriction

digestion, and short nucleotide chains around 14 base pair (bp) are removed from

specific positions in each molecule, serving as tags, concatenated together into

polymers of such tags, many multiples of which can be processed in a single

sequencing run. Thus, small tags of each gene are present in proportion to their

abundance in the starting mRNA and can be counted by efficient sequencing and

bioinformatic identification of the gene fromwhich they originate. The resolution in

SAGE is limited only by the cost and time of sequencing, but it typically requires

about 2000 sequencing reactions for each SAGE library to identify 50 000 tags.

However, often one needs to sequence 1 million or more tags to identify low-

abundance species in a complex tissue such as the CNS. To compare two tissues,

several such libraries need to be prepared from each tissue, making this a high-

resolution but low-throughput approach (relative to sample numbers that can be

studied). In theory, this technique is sensitive enough to find anymRNA species and
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has the advantage over differential display, as each sequencing run determines

multiple mRNA species. In practice, however, this technique is too expensive and

time consuming for massive parallelization and clinical use.

Massively parallel signature sequencing (MPSS) determines mRNA counts using

a principle similar to SAGE [31]. In MPSS, fluorescently labeled cDNAs from

the input sample are hybridized to a microbead cDNA library, and hybridized

beads are fluorescently sorted and placed on a 2D grid. All beads are then simulta-

neously decoded and digested 4 bp at a time by binding unique adaptors, which

can be read using a charge-coupled device (CCD). MPSS has all the advantages of

SAGE and can read many more mRNA species for similar time investment

(�250 000), but it requires special equipment and is expensive. Thus, for most, it

remains primarily a research tool for in-depth investigation of a few specific samples

of interest, although the recent advent of new sequencing technologies will signifi-

cantly decrease the price of these clone and count techniques.

1.2.3

Microarray Technologies

Microarrays balance sensitivity and throughput to allow efficient study of about

10 000 detected mRNA species in parallel in a large number of samples. This may

not allow themaximumdepth possible as withMPSS or SAGE but has the advantage

of high scalability. The first high-throughput gene expression study, published in

1987, was carried out by Augenlicht et al. who used a nylon membrane containing

4000 cDNA sequences to examine gene expression changes in colon cancer [32].

Once solid substrates replaced nylon in the 1990s, this method provided a relatively

cheap, quick, and reproducible way for high-throughput gene expression analysis.

Owing to the abundant clinical and research applications of this technology, many

groups and companies have created their own microarray platforms. Although an

entire chapter could be devoted to describing the similarities and differences of

these platforms (see [33]), there are two general categories of microarrays: one-color

arrays and two-color arrays.

1.2.3.1 One-Color Oligonucleotide Arrays

One-color oligonucleotide (oligo) arrays (or chips) marked the first of the commercial

microarray technologies [34–38] andwere releasedbyAffymetrix in 1996.These arrays

required the development of two novel methodologies. Light directed chemical syn-

thesis allows for the direct application of hundreds of thousands of nucleotides to

specific positions on the chip at once, bypassing the need for PCR-amplified cDNA

probes. By masking all array positions not associated with the applied nucleotide and

repeating this chemical coupling for each nucleotide using multiple masks, gene-

specific oligo probes, 25 bp in length, are synthetically created. After synthesis of the

array, laser fluorescence microscopy can detect hybridization of fluorescently labeled

cDNA (target). Expression values for each gene can then be deduced by averaging over

multiple probes and using mismatch probes (where the 13th bp has been purposely

changed) to account for nonspecific binding.
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1.2.3.2 Two-Color Arrays

Contemporaneous with the development of oligonucleotide arrays, a separate yet

equally powerful method for running massively parallel gene expression experi-

ments was created [39–43] in which thousands of cDNA probes between 0.2 and

2.5 kb in length were PCR amplified and printed onto poly-L-lysine-coated micro-

scope glass slides using one of two printing techniques. In mechanical microspot-

ting (or passive dispensing) – currently the more popular method – the target is

loaded into a dispensing pin using capillary action and placed onto the cDNA

microarray by directly contacting the slide. Drop-on-demand (or inkjet) printers

use pins with piezoelectric fittings to drop a precise amount of the target onto the

slide using an electrical current, without actually having the pins contact the slide.

Once synthesized, these cDNA arrays, unlike their one-color counterparts, detect the

differential expression between two reference samples, each of which is labeled with

separate dyes (typically Cy3-dUTP and Cy5-dUTP). Hybridization fluorescence sig-

nals from each dye are detected separately with a dual-wavelength laser scanner and

combined into a single pseudocolor image using computer software. Recently, most

two-color platforms have shifted from cDNA probes to longer oligonucleotides

(30–60 bp), as oligos are generally more customizable, potentially more target

specific, and less difficult to amplify and purify than cDNAs. The Agilent platform

is an example of a commercial two-color platform based on oligonucleotides [44].

1.2.3.3 Bead-Based Arrays

Most current microarray systems, whether one-color (Affymetrix) or two-color

(Agilent), are based on oligos attached to a solid substrate, each with a known address.

Illumina universal bead arrays [45,46], however, consist of densely packed wells,

�3mm in diameter, which are randomly filled with beads containing 75 bp chimeric

oligos. These wells are etched either into bundles of fiber-optic strands or onto spe-

cialized chips. Each array has an average coverage of�30 beads per feature, with the

exact number variable due to the random filling of wells. For each bead, oligonucleo-

tides consist of a 25 bp bead identifier followed by a 50 bp gene-specific probe, and

�700000 such oligos are attached to each bead. Bead types are decoded by repeated

hybridization (and subsequent dehybridization) of fluorescently labeled cDNA se-

quences complementary to the bead identifiers. Fluorophores are chosen such that

each bead has a unique sequence of fluorescent signals (e.g., red-green-none-red-red-

none-green-red after eight hybridizations). After decoding, cRNA from one sample

is fluorescently labeled and scanned, and the absolute abundance of transcript is

determined by averaging the intensities of each bead containing that transcript.

1.3

Designing and Implementing a Microarray Experiment – From Start to Finish

Many articles and guides on the basic design of microarray experiments in the field

of neuroscience are available [47–50]. Here, we highlight some of the key issues,

starting with the basics.
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1.3.1

Choosing the Proper Microarray Platform

Given optimal conditions, all microarray platforms work very well; however, con-

ditions are never optimal, and issues such as experimental assay, local expertise,

cost, and gene coverage all play a role in platform selection. A two-color design is

most suited for comparative assays, for example, if the experimental goal is to

compare multiple tissues from a single subject (tumor versus normal tissue, cere-

bellum versus cortex, etc.). However, experiments seeking to correlate gene expres-

sion with phenotype (such as aging) in a single tissue tend to use one-color arrays;

although two-color arrays can be used, by comparing each sample with the same

reference sample [41,51]. This choice should be dictated by the statistical design of

the analysis, so as to allow optimal power to detect the desired changes.

Another issue to consider is cost versus reproducibility. Laboratory-made spotted

oligo arrays cost significantly less than factory-born arrays, whether one-color or two-

color, but require more effort to make. All microarrays are prone to batch effects,

which can be removed by proper normalization [52,53], but may be more significant

in homemade arrays. Thus, in a research-based experiment, custom arrays may be

appropriate, whereas biomarker assays would more likely require factory-made

arrays since thousands of identical arrays will eventually have to be made quickly.

Then, local expertise has also to be taken into account. If all of the current lab

personnel were trained using a specific kind of array, then the continued use of those

arrays would decrease both experimental time and error. One more advantage of

homemade arrays is that they are not vulnerable to changes in designs of manu-

facturers during the course of a series of experiments, as has been the case with

every commercial platform so far.

The final issue to consider when choosing an array platform is customizability

versus scalability. Both homemade and Agilent two-color arrays allow for the quick

and cheap creation of arrays containing any target of interest. For example, if an

experimenter aims to test the expression of multiple splice variants of a gene or to

make a biomarker assay for testing the expression of 100 specific genes, such

arrays would be appropriate. Nimblegen, which uses a mirror-based masking

system, has the maximum synthetic flexibility and offers custom arrays on a

commercial platform [54]. A wide variety of configurations are available, but the

cost is far higher than homemade spotted arrays. Spotted array technologies do

not lag far behind, however, as just about every microarray platform currently has

an array to test the expression of every known human transcript. All of these

factors have to be taken into account while choosing a proper platform for the

experiment at hand.

1.3.2

Preparing the Tissue for Hybridization

After selecting the microarray platform, tissue must be acquired and prepared in

such a way to avoid inducing unwanted changes in gene expression. An experiment
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using postmortem tissue must carefully control for gender, ethnicity, and cause of

death to avoid outlier arrays [22,47,55]. Once tissue is acquired it must be properly

cared for, as excessive postmortem interval, changes in pH or temperature, or

improper tissue handling at any stage can lead to RNA degradation [50]. Nonlinear

or excessive PCR can selectively amplify smaller segments of cDNA, leading to

increased variability, while improper tissue preservation can make a sample

completely unusable. Generally, an experiment should include duplicate spots or

arrays to quantitatively assess variability due to human error or choice of array

platform, thus, effectively determining the sensitivity of the experiment [50].

The precise steps to be taken between tissue acquisition and target hybridization

depend highly on the experiment at hand and generally involve the use of a series of

well-characterized procedures and commercially available kits. Generally, mRNA or

total RNA samples are extracted from the tissue or cells of interest and converted

into their cDNA sequences. In the case of genomic DNA assays, DNA is cut into

manageable sizes. When necessary, the cDNA is then amplified. Finally, each sam-

ple is fluorescently labeled using one or two dyes, as required.

1.3.3

Single-Cell Assays and Tissue Heterogeneity

Under ideal conditions, microarrays can detect mRNA in relative abundances as

low as one part per 500 000 [39,43], allowing for a resolution of 3–10 copies per

cell in simple tissues and cell lines. In practice, however, while these species may

be detected, their detection may not be reliable enough to ascertain differential

expression; so it is safer to assume reliable detection at the 1/100 000 level. In the

nervous system and other complex tissues consisting of multiple cell types with

uniquely expressed transcripts, resolution of cell type specific species is ham-

pered [50]. To increase resolution, therefore, many microarray experiments now

use single-cell assays to filter individual cell types of interest from heterogeneous

tissue before assessing changes in gene expression [25], although this also has its

costs.

Many cell purification assays, including flow cytometry, microaspiration, and

laser-capture microdissection (LCM), have arisen to combat tissue heterogeneity

in different situations. Flow cytometry allows thousands of cells per second to be

counted, examined, and separated based on any of a number of characteristics of the

cells [56]. This method is generally used to quickly obtain large quantities of a single

cell type. Several studies have recently demonstrated the use of automated flow

sorting [3,4] for purifying neurons from developing and adult brains [4]. In addition,

fluorescence can also be appliedmanually [5], although it is more tedious. The use of

automated sorting allows for large-scale purification of thousands of neurons in a

single sort. Cells can be labeled by tracer injection [3] or in genetically modifiedmice

[4], which are now available in many forms via the GENSAT project [57]. Micro-

aspiration, on the contrary, involves patching onto individual cells and removing

them one at a time [58]. This process is much more painstaking than flow cytometry

and provides many fewer cells; however, it can provide much more accurate
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dissections, and it even allows for dissection of only certain elements of the cell

(soma, dendrites, etc. [59]). In LCM, a tissue slice is prepared by labeling cells of

interest and placing the slice below a transfer cap on a laser-mounted microscope.

Once a labeled cell is located under the microscope, a laser beam can be activated,

transferring the cell to the transfer film [60]. Using LCM, several hundred cells can

be collected in a relatively short time using a simple assay. Like flow cytometry, LCM

allows for assaying a relatively large number of cells, and like microaspiration, it

allows for the inspection of cells before acquisition, although cell extraction is not

quite as precise.

1.3.4

Microarray Hybridization and Scanning

In two-color assays, equal amounts of differently labeled target from the two samples

are combined and cohybridized, while Affymetrix array assays only require hybrid-

ization of target from a single sample. In both cases, hybridization lasts overnight,

and then arrays are rinsed to remove any nonspecifically bound cDNA. A tunable

laser then excites the remaining bound target at the fluorescent frequency of each

dye, while a CCD or confocal microscope collects the fluorescence intensities. Most

scanners come with their own preprocessing software, although stand-alone pro-

grams, such as DNA-Chip Analyzer (dChip) [61] or Imagene [62], can also be used.

1.3.5

Preprocessing

One important issue in microarray studies is how to go from a series of images to a

table of expression values for each probe set. While methods differ between plat-

forms, preprocessing can generally be divided into six steps: image analysis, data

import, background adjustment, normalization, summarization, and quality assess-

ment [52]. In image analysis, spot detection methods convert pixel intensities to

probe intensities, and background levels are stored. Data import methods then take

all image analysis files, bring them together, and convert them into a form recog-

nized by the relevant software. Next, probe intensities are background-adjusted to

account for nonspecific hybridization and noise in the scanner. All images are then

normalized to account for variations among arrays. In some microarray platforms,

summarization takes intensities from all spots on an array representing a single

probe set and converts them into a single value representing the amount of RNA

transcript. Finally, all of the data are assessed for quality, and any measurements

falling outside an acceptable range of random noise are omitted.

Custom two-color arrays and Affymetrix chips use very different strategies for

preprocessing. Custom two-color arrays use a muchmore intuitive method; for each

sample, a red or a green spot on the array represents each probe set, and the ratio of

these values represents the relative abundance of that transcript. In Affymetrix

chips, multiple probe pairs consisting of a perfect match and a mismatch oligo

represent each probe set on the array. The mismatch probe differs from the perfect
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match probe only in the 13th nucleotide and is used to account for nonspecific

binding. Absolute expression values are then obtained by averaging the difference of

intensities between each probe pair for a given gene. Whatever the platform, once

preprocessing is complete and a core table of gene expression is obtained, data

analysis is ready to begin. Many methods have been used to extract signals from

Affymetrix arrays and their utility varies according to the experimental design and

conditions [52]. Recent comparisons of these techniques suggest that combining the

methods of microarray suite (MAS)Q2 background correction, quantile normalization,

MAS perfect match probe correction, and median polish expression summary

offers clear improvements over the manufacturers softwareQ3 [53]. Additionally, the

R package ‘‘ProbeFilter’’ can be used to eliminate many of the nonfunctioning and

nonspecific Affymetrix probes to further improve the data quality (http://arrayana-

lysis.mbni.med.umich.edu/MBNIUM.html).

1.3.6

Gene Expression Analyses

Standard gene expression analyses involve finding all genes that significantly differ

between two categories (Alzheimer’s disease versus control hippocampus [12], cor-

tex versus cerebellum [63], tumor 1 versus tumor 2 [6], etc.). The most common

method for categorization is to rank each gene by ratio, and then to consider all

genes with a ratio greater than X (or less than 1/X) differentially expressed, where X
is chosen on the basis of the level of statistical significance desired (Figure 1.2). A

more elegant, higher poweredmethod of analysis is to correlate gene expression in a

single tissue with a related phenotype (age [64], neurofibrillary tangle burden [11],

body weight [65], etc.). In this method, the Pearson correlation between expression

and phenotype is calculated and any significantly correlated genes (P< 0.05, typi-

cally) are recorded. These analyses produce several to thousands of significant genes,

from which a select few are generally investigated. There are many valid analytic

approaches and high-quality free software, such as BioConductor (http://www.bio-

conductor.org/ [66]) and Multiexperiment Viewer (http://www.tm4.org/mev.html),

available for analysis. It is best to consult a statistician to ensure design and analysis

are optimally performed.

1.3.7

Analytical Challenges

One major issue in microarray analysis is determining which genes to follow up

from the list of significant genes, often numbering in the thousands. A few large-

scale efforts, including public efforts such as the Gene Ontology Consortium (GO;

http://www.geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes

(KEGG; http://www.genome.jp/kegg/), and private efforts like BioCarta (http://

www. biocarta.com/genes/index.asp), have gone into categorizing genes into bio-

logically meaningful groups. GO, for instance, provides a hierarchical framework of

terms related to biological processes, molecular function, and cellular components.
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Figure 1.2 (legend see p.11)
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As the function of new genes becomes known, they are assigned relevant GO

categories, which are then stored in a publicly accessible database. To navigate this

database, various programs such as expression analysis systematic explorer (EASE)

[67] and gene set enrichment analysis (GSEA) [68] have been created. EASE searches

for overexpression of GO terms in a gene list of interest (e.g., all downregulated

genes) compared to a reference list (e.g., all genes present on the array). GSEA takes

all genes present on the array, ranks them by fold change, and then searches for gene

ontology categories with many highly ranked genes, providing power to detect genes

not identified with conventional methods. WebGestalt (http://bioinfo.vanderbilt.

edu/webgestalt/) allows many of these pathway-related analyses to be performed

and stored online in a user-friendly environment, and the web site keeps up-to-date

links tomany analytic tools [69]. Commercially available programs such as Ingenuity

Pathways Analysis (IPA; Ingenuity Systems, www.ingenuity.com), which are highly

curated, also help locate genes of interest relative to known pathways.

If many significant genes fall into one or two GO categories, choosing the most

significant genes in those categories would be one option. Alternatively, literature-

mining tools such as Chilibot [70] allow a user to input a list of terms (genes or

phenotypes), return all known relationships between all terms in the list, and

suggest hypotheses for new relationships. More focused literature searches can be

performed using GeneCards [71], a web site compiling links to everything that it can

find about every human gene, including links to primers, RNAi products, knockout

mice, and so on. Web sites such as the Allen brain atlas (http://www.brainatlas.org/

aba/) and WebQTL (http://www.genenetwork.org/) provide information about gene

expression patterns for thousands of genes in the mouse brain, and in some cases

correlate knocking out of various genes with phenotype. A list of other useful web

sites for gene expression analysis is included in Table 1.1.

3——————————————————————————
Figure 1.2 Determining genes of interest from

a microarray experiment. (A) After acquiring

and preprocessing microarray data, signifi-

cantly expressed genes are determined using a

method depending on the experimental

design. In comparative analyses, with two

(or more) distinct groups of samples, fold-

change measurements determine differential

expression, whereas in analyses with a con-

tinuous phenotype, differentially expressed

genes are those with the highest Pearson

correlation with the phenotype of interest.

(B) These differentially expressed genes are

then biologically classified, both by considering

the known function of each gene in a Gene

Ontology or KEGG pathway analysis and by

looking at de novo groupings of genes using

hierarchical or k-means clustering. (C) Of the

tens to thousands of significant genes and

pathways typically discovered in microarray

analyses, generally only a select few are pur-

sued, and determining relevant genes to pur-

sue is a critical step. Genes essential to sig-

nificant pathways can be determined by

searching the literature either manually using

PubMed or GeneCards, or though bioinfor-

matic literature mining tools like Chilibot and

IPA. However, relevant genes may be chosen

based on expression alone, either by taking

genes with the highest differential expression

or by using novel analytic tools such as gene

coexpression analysis to determine genes with

high connectivity. (D) Selected genes are then

validated technically using low-throughput

methods such as Northern blot and in situ

hybridization, and genes with confirmed dif-

ferential expression are then functionally vali-

dated using various in vitro and in vivo genetic

manipulations, such as RNAi-mediated

knockdown and transgenic knockouts.
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Still, moving from the gene list to function remains difficult using conventional

methods.We have been very interested inmoving to a systems level of understanding

of gene expression data and have used the merging of network theory and systems

biology, a technique of recent origin, from which extremely powerful methods for

quantifying gene coexpression have developed [72–75]. These coexpression methods

group genes on the basis of similarity of their expression values to each other and take

advantage of three properties of biological systems: (1) gene (and protein) expression

networks follow a scale-free topology, meaning that – like airports – a few ‘‘hub’’ genes

share similar expression patterns with many other genes, but most connect to only a

few other genes; (2) these hub genes are generallymore important to cellular function

than less connectedgenes; and (3) groupsof geneswith similar expressionpatterns are

generally involved in similar biological functions. We have used this approach to

identify key targets of human brain evolution [74] and therapeutic targets in cancer

[76], thus proving for the first time that these techniques can revolutionize the kind of

information obtained from a microarray experiment. Ultimately, a combination of

thesemethods should be used to determinewhich genes to followup, and some, if not

all, of the chosen genes should be validated using other methods.

Table 1.1 Additional web sites of interest in microarray analysis.

Web site Description

http://bioinformatics.org/ Bioinformatics tools and information

http://brownlab.stanford.edu/ Information on microarrays at Stanford and

links to collaborating labs

http://derisilab.ucsf.edu/ Information on yeast molecular biology and

human infectious disease

http://genome.ucsc.edu/ A comprehensive tool for scanning and

analyzing the human genome

http://ihome.cuhk.edu.hk/%7Eb400559/ A nearly complete list of web sites related to

functional genomics

http://pevsnerlab.kennedykrieger.org/ A comprehensive list of bioinformatic-related

tools and databases

http://rana.lbl.gov/ Useful software and web tools for genomic

and gene expression analyses

http://www.genenetwork.org/ A set of linked resources for systems

genetics in mice

http://www.geneontology.org/ The main gene ontology web site with tools

for gene expression analysis

http://www.informatics.jax.org/ A comprehensive mouse genomics

resource

http://www.ncbi.nlm.nih.gov/geo/ A repository for thousands of publicly available,

MIAME compliant microarray data sets

http://www.ncbi.nlm.nih.gov/gquery/ A list of all major NIH databases

http://www.nervenet.org/ Several useful genetics and gene mapping

databases, as well as a mouse brain library

This list represents a comprehensive, but by no means all-inclusive, list of web sites useful for

bioinformatic analysis of gene expression data. Many of these web sites have an extensive set of

links to numerous other expression-related sites.
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1.3.8

Validating Results

Northern blot, in situ hybridization, and various forms of PCR are still generally

used to quantitatively or qualitatively replicate the most interesting differentially

expressed genes. There has been some debate in the literature about whether

microarray experiments, when run properly, are more or less accurate than the

techniques used to validate them. Low-stringency microarray hybridizations may

show higher background, decreasing observed expression differences as com-

pared to single-gene techniques [10]. However, small pipetting errors or incorrect

choice of a housekeeping gene for normalization may lead to quantification errors

in RT-PCR, which are not found when using microarray platforms [77]. In any

case, successful gene expression validation, as generally occurs with highly sig-

nificant results, provides even more confidence in the ability of microarrays to

find phenotype-related expression changes in a highly parallel fashion. More

importantly, genes discovered using microarrays and validated using alternative

methods generally provide a starting point for determining therapeutic targets in

the disorder being studied [47].

1.4

Clinical Applications

Microarray studies generally fall into one of the two main categories. Some studies

seek to identify molecular changes in disease or injury, while others aim to identify

molecular biomarkers associated with disease (Figure 1.3). Studies identifying mo-

lecular changes in disease provide valuable information about pathological changes

associated with disease. These studies look at tissues directly affected by disease

pathology, which, with the notable exception of cancer tissue or the rare surgical

specimen obtained in dementia or epilepsy, generally cannot be obtained while the

subjects are alive; as a result such research cannot be directly applied in a clinical

setting. However, biomarker identification studies only look at tissue readily acces-

sible with the goal of accurately classifying patients using a simple gene expression

assay. This section will focus on clinical uses of microarrays such as biomarker

discovery, prognosis, diagnosis, and treatment/response studies. We will begin by

presenting a short summary of notable studies in neurological disease research that

have advanced the field significantly, suggesting new therapeutic targets for disease

and injury treatments.

1.4.1

Neurological Disease-Relevant Research

So many microarray studies have been conducted in the area of basic neuroscience

research that an entire review can be written on this topic alone. However, many of

themendupwith a gene list useful as a databaseof genesonly, as they donot gobeyond
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Figure 1.3 Parallel methodologies in neuro-

pathological and biomarker studies. Since the

tissue is generally acquired postmortem in

neuropathological studies (left), these studies

seek to answer the question, ‘‘What went

wrong in this disease and why?’’ However,

biomarker studies (right) use peripheral blood

as well as tumor and other biopsy tissues in

living patients to answer the question, ‘‘How

can we classify patients?’’ In both types of

studies, high-throughput screenings are per-

formed on acquired tissue (see Figure 1.2) to

determine possible disease–gene interactions.

In neuropathological studies, these interac-

tions come in the form of new disease models

and therapeutic targets. Treatments for these
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that.Herewe review a few significant studies because they introduce other key aspects

of microarray research or suggest new therapeutic targets for neurological diseases.

1.4.1.1 Incipient Alzheimer’s Disease

In the most elegant study on AD published to date, Blalock et al. [11] used micro-

arrays to study gene expression changes specific to early stages of Alzheimer’s disease

and noted which changes were sustained throughout AD progression. To do this,

gene expression in samples were correlated to the cognitive status of each individual

at death (MiniMental State Examination), as well as to their pathological profile

(neurofibrillary tangle burden). Genes were considered AD genes if they were signifi-

cantly correlated with either NFT burden or MMSE score. They were further consid-

ered early AD genes if they were also correlated when the analysis was limited to

comparison of control and incipient subjects, finding an upregulation of tumor sup-

pressors andother genes regulating cell proliferation anddifferentiation, aswell as the

expected upregulation of apoptosis and downregulation of synaptic transmission

pathways.

WhilemanyADmicroarray studies have been published in the past 5 years [11–15],

this study was significant for a few reasons. First, the complexity of ADwas taken into

consideration when designing the experiment. Instead of designating subjects as

either diseased or control, each individual’s cognitive ability and Tau pathology were

correlated to gene expression as described above. Second, the sample size was large

enough to provide decent statistical power (N¼ 31) and allow for significant correla-

tions in early AD using only half the samples. Careful tissue handling andmicroarray

analysis methods resulted in very low false discovery rates for microarray experi-

ments, further increasing statistical power. Additionally, raw data from this experi-

ment were uploaded to the Gene Expression Omnibus (GEO) repository (http://

www.ncbi.nlm.nih.gov/geo/) so that other researchers could review these data using

other methods. Finally, results from this microarray analysis were used to suggest a

new model of incipient AD progression along myelinated axons. None of the results

were validated functionally or by alternative methods, however, and no aspects of the

model were tested, thereby limiting the possible clinical applications of these results.

hypothesized therapeutic targets can then be

tested in vivo or in vitro, either using known

interacting compounds or by screening large

libraries, with successful treatments then

entering clinical trials. Disease–gene interac-

tions in biomarker assays, however, are used

to classify patients based on diagnosis, prog-

nosis, response to treatment, or a number of

other clinically relevant measures. Any prom-

ising classifications are then retested in an

independent cohort of individuals using either

low- or high-throughput tests, as necessary.

New treatments from neuropathological

studies of a disease can be tested clinically on

patients predicted by biomarker assays to have

poor prognosis and no predicted response to

available treatments, thus providing patients

for the clinical trials and possible new treat-

ments to patients who would otherwise not be

treated.

Figure 1.3 (Continued)

3———————————————————————————
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1.4.1.2 Using Animal Models to Study Neurodegeneration

An ideal microarray experiment will make predictions that can be validated in vitro
and in vivo, leading to new results with clinical applications. One early example of

this was in multiple sclerosis (MS) [78], where findings in human patients were

extended to functional validation in mice. Such studies are few and far between

because of the effort needed to validate experiments in animal models. One such

study on dementia by our group recently compared gene expression changes inmice

expressing the most common FTD-causing human mutation in Tau with wild-type

control mice [79]. This study found genes up- or downregulated with Tau mutation

in cortex, cerebellum, brain stem, and spinal cord, suggesting that pathologically

unaffected areas (like cerebellum) would show upregulation of neuroprotective

genes. This hypothesis was tested using multiple in vitro and in vivo assays, focusing
on puromycin-sensitive aminopeptidase (PSA) – a gene which resides very close to

tau on chromosome 17, and which was upregulated in cerebellum. For example, in a

fly transgenic model of tauopathies, PSA loss of function worsened the rough eye

phenotype, and in vitro, PSA digested recombinant Tau protein. These results sug-

gest that PSA overexpression may be a viable mechanism for treatment of many

neurodegenerative disorders involving tauopathies, and have identified a major new

pathway for Tau degradation in vivo [79].

Animal models are also useful for determining cell type specific markers. In

some situations, multiple morphologically similar cell types will reside in the

same cortical areas, making discrimination of these cell types difficult. Corticosp-

inal motor neurons reside in layer V of the cortex along with other projection

neurons, for example, and degenerate in upper motor neuron disorders such as

ALS. Arlotta and colleagues [3] discovered markers specific to three types

of cortical projection neurons in developing mouse cortex by using retrograde

labeling of axonal projection fields and fluorescence activated cell sorting (FACS)

to separate each cell type, and then ran microarrays on each pure cell line. Using

immunohistochemistry and loss of function knockout assays, they found that

CTIP2 was specific to corticospinal motor neurons and was required for axonal

pathfinding in the spinal cord. While this study cannot be directly applied to adult

brain, it provides evidence that functions of specific molecules in specific cell

types can be determined using microarray screening and animal models.

1.4.1.3 Determining Gene Pathways Using Meta-Analysis

Meta-analysis of microarrays provides a novel method for extracting groups of genes

involved in similar biological pathways. If two genes that may show similar expres-

sion patterns in one data set by chance are coexpressed in multiple data sets, it is

more likely that the two genes are functionally related. Lee et al. [80] looked at gene

coexpression across 60 data sets, finding a substantial number of correlated expres-

sion patterns (connections) that occurred in multiple studies. Additionally, the

probability that two genes were functionally related (as measured in overlapping

GO terms) was directly correlated with the number of connections between those

two genes. Furthermore, many of the genes could be clustered into groups related to

translation, transcription, cell adhesion, electron transport, and many other biologi-
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cally relevant categories based solely on their multistudy connections. With more

microarray data becoming publicly available every day and with computer processor

speeds increasing exponentially, suchmultistudymeta-analyses have the potential to

provide high-throughput pathway predictions for genes expressed in the brain and

other tissues [74].

1.4.2

Cancer Research

Cancer research represents one of the few fields of microarray study where results

from the lab can be directly applied clinically (see [6] for review). Unlike most

neurological disorders where diseased tissue can only be acquired from a patient

postmortem, tumor samples can be removed from living patients. Tumors can then

be classified based on the survival or treatment response of patients in the future. In

this section, we will explore various microarray applications in cancer genomics,

focusing on applications related to brain tumors.

1.4.2.1 Tumor Classification and Patient Diagnosis

Traditionally, tumors are classified morphologically based on their microscopic

resemblance to their CNS cell of origin or developmental progenitor cell [81].

Malignant tumors tend to look more like dedifferentiated precursor cells showing

mitotic activity, tumor necrosis, and angiogenesis [6]. Less aggressive tumors, on the

contrary, resemble their normal tissue counterparts, often making clinical diagnosis

difficult. While this classification scheme works with reasonable accuracy, morpho-

logically identical tumors can exhibit distinct mutational patterns and altered sig-

naling pathways, as well as respond differently to identical drug treatments. An

alternative method for categorizing tumor samples is gene expression profiling. In

situations where biopsy material cannot be morphologically characterized clearly as

either malignant or benign, a clinical test for gene expression patterns characteristic

of specific tumor types would be quite useful. By disregarding prior knowledge and

grouping tumors entirely on the basis of their transcriptional similarity, unsuper-

vised methods can often uncover morphologically unrecognized tumor subtypes,

thereby allowing for a more precise diagnosis of tumor malignancy [51].

Multiple experiments have shown that tumors from different cell types and with

different levels of aggressiveness show distinct gene expression patterns [6]. One

such example is glioma, where standard morphological categorizations have been

useful for predicting survival but not the response to treatment [82]. Shai et al.
performed unsupervised hierarchical clustering of various gliomas on a panel of 170

genes differentially expressed between tumor types. Glioblastomas, lower grade

astrocytomas, and oligodendrogliomas, they concluded, have transcriptional signa-

tures distinct from one another and from normal white matter tissue [82]. Addi-

tionally, secondary glioblastomas showed a wide range of expression patterning,

suggesting that they constitute a very heterogeneous group. A more recent, large-

scale study based on the gene expression profile of a panel of 595 genes [83] found

distinct subsets of morphologically identical gliomas, confirming the hypothesis of
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glioblastoma heterogeneity. More important, these tumor subtypes predicted patient

survival better than the standard methods, suggesting that tumor gene expression

profiling would be a viable alternative for patient prognostic tests.

1.4.2.2 Determining Patient Prognosis

In addition to classifying tumors for diagnostic purposes, gene expression profiles can

be used as biomarkers to predict patient survival. Accurate prognostic tests are useful

to determine how aggressive a cancer treatment administered to a patient should be. If

a malignant tumor goes untreated, a patient will likely relapse; however, aggressive

treatment can lead to severe side effects, including permanent cognitive and psycho-

logical deficits [84]. Current clinical methods for risk classification in medulloblasto-

ma fail to identify 20–30% of average-risk patients with resistant disease as well as

those patients whomight be overtreated [85], suggesting that more accurate methods

for risk stratification are necessary. Molecular prognostic markers, as measured by

microarray, RT-PCR, or Western blot, provide one such method that, as preliminary

results indicate, will be more accurate than traditional methods.

An early cDNAmicroarray study of 60medulloblastoma samples found that patient

survival could be predicted using as few as eight genes, independent of the clinical

variables traditionally used to stratify patients as average versus high risk [86]. These

results suggested that not only could gene expression profiles be used as a biomarker

for patient survival, but also that such classifiers would be a realistic option for the

clinical setting, as so few genes were needed for classification. With the price of

microarrays decreasing, repeatability is now becoming more of an issue than small

gene number. As mentioned above, a recent microarray study of gliomas found that

expression-based tumor classification using a panel of 595 genes is a more powerful

predictor of survival than age, pathological type, or grade [83]. A subset of this classifier

has been validated on an external data set, and despite the fact that a different micro-

array platform was used, this classifier significantly outperformed the initial histopa-

thology grading classification. In both the initial and the validation study, samples

could be classified to one of the four glioma subtypes that predicted patient survival

with high accuracy. Recent experiments have led to similar findings in less common

forms of brain cancer, such as ependymal neoplasms [87], suggesting that such

prognostic tests may be universally applicable to many forms of brain cancer. These

results indicate that a small panel of genes can be used to predict patient survival with

high accuracy and to determine whether a patient needs aggressive intervention.

1.4.2.3 Predicting Therapeutic Response to Treatment

Just as prognostic tests could be used to prevent patient overtreatment andminimize

side effects, tests predicting therapeutic response would prevent ineffective treat-

ments from being administered, thus allowing a patient to receive proper treatment

as quickly as possible. Such screens are important because administration of resis-

tant chemotherapies to a patient can lead to the development of secondary antineo-

plastic drug resistance, and drugs that at one point would have been useful would no

longer be effective [88]. In a proof-of-principle study, Staunton et al. [89] developed
gene expression classifiers for sensitivity or resistance of human cancer cell lines to
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232 compounds. They measured expression of 6817 genes on a panel of 60 human

cancer cell lines, finding classifiers of between 5 and 200 genes whose expression

patterns could accurately predict chemosensitivity for approximately one third of the

compounds tested. A similar, more focused study published recently tested chemo-

sensitivity of 30 cell lines to 11 anticancer drugs at clinically achieved concentrations

[88]. Prediction profiles for each chemotherapy agent were compiled and had an

overall accuracy of 86%, once again demonstrating the applicability of microarray

technology in drug resistance prediction. Additionally, 67 genes associated with

resistance to at least four drugs were found from these profiles. Many of these

associations were confirmed using RT-PCR, providing new candidate genes associ-

ated with multidrug resistance.

1.4.2.4 Determining Therapeutic Targets for Cancer

Glioblastomas andmedulloblastomas represent some of themost common forms of

malignant brain tumors in adults and children, respectively. Even with aggressive

treatment, patients with glioblastomas have a median survival time of only

15 months after diagnosis [76], and only 50% of children with medulloblastomas

survive to adulthood, often with severe psychological and cognitive side effects [84].

Clearly, new treatment approaches for these and other cancers are necessary. One

screening approach for novel therapeutic targets for cancer treatment is gene ex-

pression based high-throughput screening (GE-HTS) [90]. First, microarrays are

used to find a small number of genes that serve as markers for a desired cellular

state, such as differentiation. Next, thousands of compounds of interest are indi-

vidually combined with a cancer cell line in a high-throughput manner. The molec-

ular markers found using microarrays are then measured using RT-PCR for the cell

lines with each combined compound to see which ones have been transformed into

the desired cellular state. In a study of leukemia cells, Stegmaier et al. found that

eight of the 1739 compounds tested caused cancer cells to differentiate, leading to

growth arrest; after further validation they concluded these to be viable therapeutic

targets [90]. Using this method, discovery of new therapeutic targets requires no

special assays or reagents and no prior target validation, as the gene expression

profiles serve as markers for the state in question.

Coexpression analysis of gene expression data has also been used to discover new

molecular targets for glioblastoma treatment. In a significant recent advance,

Horvath and colleagues applied a systems biology approach to study 120 patient

glioblastoma samples [76]. They built a network in one set of 55 arrays and validated

it in an independent group of 65 arrays. This network grouped genes into five

modules using coexpression, one of which was significantly enriched in cell growth

genes. They identified a set of key hub genes that were driving glioblastoma prolif-

eration in this module, thus providing a proof-of-principle functional validation of

the network predictions. By looking at the 10 most connected genes in this module,

they found that most genes had already been identified as potential cancer targets,

and all but one were associated more with glioblastoma survival than the traditional

proliferation markers (Ki67 and PCNA). Additionally, inhibition of ASPM, a novel

therapeutic target, was confirmed to inhibit glioblastoma cell growth using siRNA.
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Similar results were duplicated using breast cancer samples, suggesting that these

results extend across cancer types.

This study presented a new computational technique that can be applied to any

cancer microarray experiment and led to insights not observable with standard

analysis of differential expression [75]. With the rapidly increasing popularity of

microarray and enough studies already published, new therapeutic targets should be

discoverable merely by reanalyzing existing data sets using novel computational

techniques, such as sophisticated network analyses.

A recentmicroarray study suggests thatnewcancer treatmentsmaybe foundsimply

by combining old chemotherapies together in novel ways. Cheok et al. [91] studied
single-agent versus combination therapy in patients with acute lymphocytic leukemia,

by comparinggene expressionprofilesbefore andafter treatment inpatientswhowere

treated with methotrexate, mercaptopurine, or both. They found that the combined

effect of both chemotherapies was profoundly different from the additive effects of

patients taking either drug. Thus, new treatmentsmay be found simply by combining

old treatments in novel ways and screening such combinations using microarrays.

1.4.3

Using Peripheral Tissues as a Substitute for Brain Tissue

In most neurological diseases, the affected tissue that holds the key to patient

survival cannot be directly assessed in a clinical setting. In these situations, alternative

methods must be used for diagnosis and treatment. For example, in many cases

damage to the brain can be indirectly assessed using peripheral tissue or blood. Many

scientists are rightly skeptical that peripheral, nonneural tissues can provide awindow

into the CNS. However, as we will discuss, current results indicate that a significant

proportion of CNS genes are expressed in peripheral blood or lymphoblasts, and that

these tissues can be used to identify biomarkers, if not therapeutic pathways.

1.4.3.1 Gene Expression Profiling of Disease

Unique blood biomarkers have been found for all kinds of neurological disorders,

including stroke, hypoxia,multiple sclerosis, depression, Down’s syndrome,HD, and

seizure, as well as general neurological distress [92–94]. The first study to link tran-

scriptional changes in peripheral blood to brain dysfunction measured gene expres-

sion in adult rat bloodmonocytes, 24 hours postinjury, for a variety of induced injuries

[95]. Using several hundred genes as a biomarker, animals with ischemic strokes,

hemorrhagic strokes, kainate-induced seizures, hypoxia, and insulin-induced hypo-

glycemia could be genetically distinguished from controls and each other. Many other

geneswere similarly regulated in each type of injury, suggesting they are stress related.

Similar results were found when the experiment was repeated using rat cortex, con-

firming the link between peripheral gene expression changes and disease [96]. More

recently, studies have compared gene expression in human blood following ischemic

stroke [97,98], finding that only a small number of genes were required to distinguish

controls from stroke patients. Such studies suggest that a blood test for stroke using

either RT-PCR or even microarrays will be very possible in the near future.
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One study, probably the most comprehensive to date, relating peripheral blood

profiling to disease looked at genes upregulated in subjects with presymptomatic

and symptomatic HD and compared age- and sex-matched controls [17]. This study

was very well designed, using multiple microarray platforms and quantitative RT-

PCR, as well as a test and training set assay, to confirm results. It found that gene

expression profiles could separate not only HD subjects from controls, but also

presymptomatic from symptomatic subjects, with early presymptomatic subjects

having profiles similar to controls and late presymptomatic subjects showing pro-

files similar to symptomatic HD subjects. Additionally, these upregulated transcripts

were less elevated in HD subjects taking the histone deacetylase inhibitor sodium

phenylbutyrate, which is a potential experimental therapy. Finally, as with the animal

models of acute injury, these genes upregulated in blood were also elevated in the

postmortemHD caudate, suggesting that bloodmRNAmay reflect disease pathways

in the brain. Thus, microarrays of peripheral blood can be used not only to diagnose

diseases, but also to subcategorize patients with a specific disease, either by specific

subphenotype or by treatment response. This provides another key point – biomar-

kers identified in chronic neurodegenerative diseases such as inherited ataxias and

dementia may provide a more proximal and quantitative end point than clinical

scales, which may be less sensitive to therapy, especially in the short term. In this

manner, biomarkers of disease progression can be used to determine therapeutic

efficacy early in a treatment course, increasing the power and reducing the cost of

clinical trials.

1.4.3.2 Dividing Complex Phenotypes into Subtypes Using Microarrays

Many other microarray studies in peripheral blood have also found that gene ex-

pression profiles alone can subdivide patients with complex diseases. A recent study

on Tourette syndrome (TS) found that a subset of patients show overexpression of six

cytotoxic T-cell/natural killer cell genes [99]. These results support the hypothesis

that pediatric autoimmune neuropsychiatric disorders associated with streptococcal

infections (PANDAS) can play a role in the onset of tic disorders and obsessive

compulsive disorder (OCD), which is currently unproven [100]. The Sharp lab has

also applied this approach to diseases with no obvious blood phenotypes, such as

tuberous sclerosis complex 2, neurofibromatosis type 1, and Down’s syndrome,

finding in all three cases different blood profiles for patients versus controls

[101]. Additionally, Down’s syndrome patients with congenital heart disease showed

different profiles than those without, and tuberous sclerosis patients with autism

showed different profiles than those without. These studies suggest that whatever

the causes of complex diseases, the resulting phenotypes can be distinguished from

one another using blood biomarkers; furthermore, these blood biomarkers may also

indicate the underlying mechanisms behind disease phenotypes [93].

In some cases, similar phenotypes may actually show multiple gene expression

profiles. For example, a recent study of mRNA expression of leukocytes in patients

with major depression disorder revealed 12 genes differentially expressed between

depressed patients and controls [94]. Additionally, half of the depressed subjects

showed altered expression of many more genes with no corresponding phenotypic
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manifestation. As depression is a complex neuropsychiatric disease, there may be

multiple pathophysiological conditions that trigger it, possibly partially explaining

why only a subset of depressed patients respond to treatment. Another equally

complicated phenotype is autism. We have recently used microarrays to study

autism cases with single-gene etiologies and validate these pathways in idiopathic

autism [115]. In this study, we compared mRNA expression between autistic males

with a fragile X mental retardation 1 gene (FMR1-RM) mutation, autistic males with

a 15q11–q13 duplication (dup(15q)), and controls. In addition to finding distinct

gene expression profiles for each autism group, we also found a set of 68 genes

commonly dysregulated in both types of autism, including a potential molecular link

between the two autistic groups (CYFIP1), which we confirmed in vitro. These
results suggest that not only can microarrays be used to subdivide complex phe-

notypes, but they may also be useful for determining the underlying effects of

complex disorders.

1.4.3.3 Applying Blood Classification to Treatments

Peripheral blood profiles can also divide patients on the basis of their responses to

treatment. These effects can be seen in two ways: (1) patients taking specific drugs

show specific profiles, and (2) patients who respond to treatment show different

profiles from those who do not. For example, epileptic children treated with carba-

mazepine or valproic acid each show characteristic gene expression changes com-

pared with controls [101]. Additionally, children who successfully responded to

valproic acid had different peripheral blood profiles from those who still had sei-

zures. The most studied disease in this area of research is multiple sclerosis

(MS); reviewed in [102]. In short, MS studies of peripheral blood gene expression

changes have found notable results: (1) MS patients have a different profile than

controls; (2) remitting patients show different expression patterns than relapsing

patients; (3) a subset of the MS profile overlaps with systemic lupus erythematosus,

suggesting an ‘‘autoimmune disease’’ fingerprint; (4) both interferon-beta and

methylprednisolone treatments result in unique molecular signatures; and (5) there

were profiles that predicted response to certain MS drugs.

Although most microarray studies require age- and sex-matched controls, some

treatment response studies can be self-controlled, removing much of the statistical

variability in comparisons. Using this approach, Kalman et al. tested the effect of the
selective serotonin and noradrenaline reuptake inhibitor, venlafaxine, on gene ex-

pression in lymphocytes [103]. Blood was taken from six otherwise healthy, elderly

individuals from the same nursing home both before the start of venlafaxine treat-

ment and 4 weeks after the start of treatment. Although this study had a very small

sample size, the genetic and environmental factors were both well controlled, since

the same individuals were used for both pre- and posttreatment conditions, and

since nursing home life placed each subject on the same diet with similar daily

routines. Fifty-seven genes related to ionic homeostasis, cell survival, neural plas-

ticity, signal transduction, and metabolism were found to significantly change ex-

pression between pre- and posttreatment. These expression changes corresponded

to a decrease in clinical levels of depression as measured by the Beck Depression
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Inventory. Thus, blood expression profiling has the potential to both help uncover

the physiological effects of drugs on the CNS and to separate subjects based on their

responses to treatment, thereby preventing the overtreatment of individuals suffer-

ing from one of the many neurological disorders.

1.4.3.4 Advantages and Disadvantages of Using Blood Genomics for Brain Disorders

Blood is an ideal substrate for clinical use as it can be acquired inexpensively and

easily from any living patient. RNA can be stabilized immediately after extraction

using vacutainer tubes (such as PAXgene and TEMPUS), reducing or eliminating

many of the factors associated with postmortem tissue [92]. Additionally, unique gene

expression profiles for many neurological diseases have been found in blood (as

described above). Furthermore, many of the same genes are involved in the disease

profiles for both blood and brain [96], with some studies showing significant correla-

tions between gene expression changes in both substrates [17]. Thus, not only can

blood provide transcriptional biomarkers for disease, subphenotypes, and treatment

response, but it may also provide insight into underlying molecular mechanisms.

Brain disorders are not, however, the only factors determining gene expression in

blood. In fact, just about any imaginable variable can have this effect, including,

among other things, age, sex, race, diet, time of day, medication, exercise, stress,

genetics, glucose levels, and time since last meal [92,94]. Conversely, some genes are

expressed exclusively in the brain, and therefore will not be induced in the blood.

Furthermore, any changes that do occur in the blood generally are on the order of

1.5–2.0-fold, compared with changes as high as 10-fold in cancer genomics – an

issue that can be partially circumvented by using pure cell types [93]. Thus, any

successful study must have a large enough sample size to account for all of these

factors, with control and disease patients carefully matched. In fact, before clinical

trials of any sort can be successful, some standardized method for normalizing

disease samples as compared to controls must be developed.

1.4.3.5 Pure Cell Line Assays in Peripheral Blood

As with postmortem tissue, many transcriptional changes in blood that occur in

response to neurological disease or injury are cell type specific. For example, most

gene expression changes in acute stroke occur in neutrophils and monocytes,

while changes in Tourette syndrome occur mostly in natural killer and cytotoxic

CD8 T cells, and those in migraine generally occur in platelets [92]. Most MS

studies are performed on peripheral blood mononuclear cells, a subset of blood

cells involved in immune response [102]. With such small magnitude gene expres-

sion changes found in blood relative to brain, pure cell assays are often essential for

peripheral blood profiling. Pure cell lines can also help control for unwanted gene

expression variations. Lymphoblasts in particular are useful for genetic research as

they are easy to acquire and can be cryopreserved and converted into cell lines,

providing an inexhaustible supply of genetic material [104]. In fact, many studies

have utilized lymphoblastoid cell lines for pharmacogenetic studies. In short, pure

cell lines allow for a more precise understanding of transcriptional changes due to

illness or injury.
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1.4.4

Other Types of Microarrays in Clinical Setting

While this chapter primarily emphasizes mRNA-targeting microarrays, DNA-

targeting microarrays also play a significant role in clinical diagnoses in areas such

asmolecular karyotyping and single nucleotide polymorphism (SNP) genotyping. In

general, these arrays include oligos that target specific sequences across the genome.

Depending on the specific question asked, current technologies allow the entire

genome to be assayed on a single chip at fairly high density.

1.4.4.1 Gene Dose, Molecular Karyotyping, and Chromosomal Abnormalities

High-density DNA arrays have been used since the late 1990s to measure the gene

dose effect of specific genomic regions across single chromosomes, as well as the

entire genome [105–107]. These arrays allow for mapping of chromosomal copy

number, for example, in diseases like Klinefelter’s and Down’s syndromes. High-

throughput assays can simultaneously assess regional duplications, deletions, and

amplifications with an average marker spacing of �25 kb [107]. Such high-density

coverage can detect microdeletions associated with developmental disorders, for

example, without any need to relate phenotype to genotype [22]. Additionally, by

using SNPs as oligonucleotides on microarrays, neutral chromosomal aberrations

such as uniparental disomy can also be detected [107,108]. While such abnormalities

commonly show no health or developmental effect, imprinting errors in chromo-

some 15 can lead to Prader–Willi syndrome and Angelman syndrome, and errors in

chromosome 11 can lead to Beckwith–Wiedemann syndrome [109]. In short, these

increasingly high-throughput arrays overcome many limitations of currently used

clinical diagnostic tests, which are often subjective and low throughput, requiring

relatively large amounts of DNA.

1.4.4.2 SNP Genotyping and Beyond

As cDNA microarrays can assess the expression of all genes in a single hybridiza-

tion, whole-genome SNP arrays can assess variability across the entire genome at

increasingly high densities. Current arrays from Affymetrix and Illumina can assess

over 500 000 SNPs at once, allowing for large-scale association and linkage studies in

increasingly short times and at low prices [110,111]. Such studies promote a gradual

increase in genome-to-disease associations. Clinical studies have already begun to

identify individuals at risk for cardiovascular disease, cancer, diabetes, and deep vein

thrombosis, as well as adverse drug reactions [112]. In principle, genomic variation

that dictates a drug response or indicates susceptibility to any disease could be

optimally assessed using SNP genotyping. Unlike cDNA microarrays in which the

readout is scalable, SNP arrays can be designed as binary, where the relevant spot

fluoresces or not depending on which nucleotide is present. This binary quality of

SNP genotyping results in a low error rate, making such arrays ideal in clinical

setting. SNP band hybridization with primer exclusion arrays can also be used for

gene resequencing. Affymetrix currently offers over 300 000 bp of resequencing on

one array. By measuring signal intensity over a group of adjacent probes, one can
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simultaneously assess changes in copy number on any of these SNP array platforms.

Such copy number variation regions are a significant source of genetic variation, and

this approach will likely be important [113,114].

1.4.5

Future Clinical Applications: Pharmacogenomics

Alone and in combination with other systems-level measurements such as neuro-

imaging, microarray technology provides a valuable tool for optimizing individual-

ized therapies for neurological diseases. In individualized therapy, the patient’s

genetic and biological makeup is assessed and scanned for potential biomarkers

to determine which, if any, treatment is necessary (Figure 1.4) [22]. SNP genotyping

can be used to determine susceptibility to various neurological disorders, and then to

predict treatment outcome or adverse effects in patients. Transcriptional changes in

peripheral blood can be used to diagnose patients and assess the effectiveness of

various treatments, both before and after drug administration. Tumors found

through imaging and other techniques can be identified and patient prognosis can

Figure 1.4 Microarray use for individualized

medicine. Left: Microarrays may be used to

augment current clinical diagnostic protocols.

By hybridizing mRNA from peripheral blood

cells (PBCs) of dementia patients onto diag-

nostic microarrays, clinicians could use the

expression pattern to determine whether a

patient is more likely to have Alzheimer’s

disease or frontotemporal dementia. Right:

Microarrays may be used to determine effec-

tive disease treatments. Before beginning a

new treatment, gene expression or SNP

microarrays may be used to predict treatment

response and possible adverse effects in

dementia patients. In theory, such diagnostic,

prognostic, and treatment-response predic-

tors could be implemented using microarray

technology for any disease or injury with a

gene expression signature in PBCs or biopsy

tissue.
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be determined using microarray technologies. In short, standardized microarray

chips will start to be available to identify and properly treat most neurological

diseases and injuries within the next decade.

Although a few such clinical tests are available andmany other pharmacogenomic

studies are underway, the goal of large-scale individualized therapies is still far from

attained. Before microarrays reach routine clinical use, batch effects need to be

decreased by standardizing themethodology and automating asmuch of the process

as possible [112]. Although such assays have improved in quality since their intro-

duction, there is room for additional development. Also, data mining tools need to

provide integration of transcriptional and translational data, in addition to imaging,

clinical, and histopathological data. With publication of many new large-scale bio-

marker assays and with constant advances in microarray reliability and data analysis

options, individualized medicine is slowly becoming a realistic tool for the clinician.
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