Contents

Preface XI

List of Contributors XIII

- 1 Microarrays in Systems Neurobiology and Translational Neuroscience – From Genome Research to Clinical Applications 1 Jeremy A. Miller and Daniel H. Geschwind
- 1.1 Introduction 1
- 1.2 Gene Expression Before Microarrays 2
- 1.2.1 High-Throughput Gene Expression Techniques 2
- 1.2.2 Contemporaneous Alternatives to Microarrays 3
- 1.2.3 Microarray Technologies 4
- 1.2.3.1 One-Color Oligonucleotide Arrays 4
- 1.2.3.2 Two-Color Arrays 5
- 1.2.3.3 Bead-Based Arrays 5
- 1.3 Designing and Implementing a Microarray Experiment From Start to Finish 5
- 1.3.1 Choosing the Proper Microarray Platform 6
- 1.3.2 Preparing the Tissue for Hybridization 6
- 1.3.3 Single-Cell Assays and Tissue Heterogeneity 7
- 1.3.4 Microarray Hybridization and Scanning 8
- 1.3.5 Preprocessing 8
- 1.3.6 Gene Expression Analyses 9
- 1.3.7 Analytical Challenges 9
- 1.3.8 Validating Results 13
- 1.4 Clinical Applications 13
- 1.4.1 Neurological Disease-Relevant Research 13
- 1.4.1.1 Incipient Alzheimer's Disease 15
- 1.4.1.2 Using Animal Models to Study Neurodegeneration 16
- 1.4.1.3 Determining Gene Pathways Using Meta-Analysis 16
- 1.4.2 Cancer Research 17
- 1.4.2.1 Tumor Classification and Patient Diagnosis 17

Neural Degeneration and Repair: Gene Expression Profiling, Proteomics, and Systems Biology Edited by Hans Werner Müller Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31707-3 ۷

- Contents
 - 1.4.2.2 Determining Patient Prognosis 18
 - 1.4.2.3 Predicting Therapeutic Response to Treatment 18
 - 1.4.2.4 Determining Therapeutic Targets for Cancer 19
 - 1.4.3 Using Peripheral Tissues as a Substitute for Brain Tissue 20
 - 1.4.3.1 Gene Expression Profiling of Disease 20
 - 1.4.3.2 Dividing Complex Phenotypes into Subtypes Using Microarrays 21
 - 1.4.3.3 Applying Blood Classification to Treatments 22
 - 1.4.3.4 Advantages and Disadvantages of Using Blood Genomics for Brain Disorders 23
 - 1.4.3.5 Pure Cell Line Assays in Peripheral Blood 23
 - 1.4.4 Other Types of Microarrays in Clinical Setting 24
 - 1.4.4.1 Gene Dose, Molecular Karyotyping, and Chromosomal Abnormalities 24
 - 1.4.4.2 SNP Genotyping and Beyond 24
 - 1.4.5 Future Clinical Applications: Pharmacogenomics 25 References 26
 - 2 A Meta-Analysis of Large-Scale Gene Expression Studies of the Injured PNS: Toward the Genetic Networks That Govern Successful Regeneration 35

Floor J. Stam, Matthew R. J. Mason, August B. Smit, and Joost Verhaagen

- 2.1 Introduction 35
- 2.2 Lesion Models in the Peripheral Nervous System 35
- 2.2.1 Sciatic Nerve 36
- 2.2.2 Facial Nerve 36
- 2.2.3 Postganglionic Trunk of the Superior Cervical Ganglion 37
- 2.2.4 Injury Types 37
- 2.3 Cellular Events After Injury 37
- 2.3.1 Regeneration After Dorsal Root Lesion is Limited Due to a Weak Neuronal Response to Axotomy 38
- Injury Signals 38 2.3.2
- 2.3.3 Regeneration-Associated Gene Expression 39
- 2.4 Large-Scale Screening Efforts to Find Novel Regeneration-Associated Genes 40
- 2.4.1 Global Gene Expression Changes After Neuronal Injury Found by Gene Expression Profiling Studies 40
- 2.4.2 Biological Processes Affected by Peripheral Nerve Injury 45
- Identification of Novel Regeneration-Associated Genes 2.4.3 by Microarray Analysis 46
- 2.5 Developing New Insights into the Molecular Biology of Regenerative Neurite Outgrowth: From Single Gene to Genetic Networks 47
- 2.5.1 Strategies to Enhance the Revenue of Profiling Regenerating Neurons 47

- 2.5.2 Open Screening for Regeneration-Associated Changes in the Transcriptome and (Phospho)Proteome 49
- 2.5.3 High-Throughput Screening for the Function of Target Genes 50
- 2.5.4 Finding Target Genes of Regeneration-Associated Transcription Factors 50
- 2.5.5 *In Silico* Approaches to Transcriptional Regulatory Network Elucidation *51*
- 2.5.6 From Transcriptional Regulatory Network to Regeneration 51 References 52
- 3 Analyzing Complex Gene Expression Profiles in Sensorimotor Cortex Following Spinal Cord Injury and Regeneration Promoting Treatment 61 Fabian Kruse, Nicole Brazda, Patrick Küry, Frank Bosse,
 - and Hans W. Müller
- 3.1 Introduction 61
- 3.2 Scar-Suppressing Treatment of SCI 62
- 3.3 Experimental Design 63
- 3.3.1 Treatment Paradigms and Animal Groups 63
- 3.3.2 Corticospinal Tract Transection 64
- 3.3.3 Cortical Tissue Preparation and Total RNA Isolation 64
- 3.3.4 Probe Labeling and Array Hybridization 65
- 3.4 Data Analysis 65
- 3.4.1 Affymetrix GeneChip Technology 65
- 3.4.2 Variations 66
- 3.4.3 Impact of the Experimental Setup 66
- 3.4.4 Low-Level Analyses 67
- 3.4.4.1 Microarray Suite (MAS) 67
- 3.4.4.2 Model-Based Expression Indexes (MBEI) 68
- 3.4.4.3 Robust Multiarray Average 69
- 3.4.4.4 GC-RMA 71
- 3.4.4.5 Probe Logarithmic Intensity ERror (PLIER) 72
- 3.4.5 Combination of Preprocessing Methods 72
- 3.4.6 Statistical Analysis 73
- 3.4.7 From Raw Data to Biological Meaning 75
- 3.4.7.1 Chip Chat 75
- 3.4.7.2 Implemented Thresholds 76
- 3.4.8 Biological Pathways and Ontology Information 76
- 3.5 Results and Discussion 78
- 3.5.1 Expression Patterns 78
- 3.5.2 Summary 83
 - References 84

VIII Contents

4	Unraveling Plasticity of Dorsal Root Ganglion and Spinal Cord Neurons Using cDNA Arrays 91
	Xu Zhang, Hua-Sheng Xiao, and Lan Bao
4.1	Identification of Regulated Molecules in DRG After Peripheral
	Nerve Injury 92
4.1.1	Neuropeptides and Neuropeptide Receptors 92
4.1.2	Molecules Related to Synaptic Transmission 93
4.1.3	Neurotransmitter Receptors and Ion Channels 95
4.1.4	Molecules for Survival or Regulating Gene Expression 96
4.2	Modification of Gene Expression in the Dorsal Horn
	of Spinal Cord 97
4.2.1	Ion Channels 97
4.2.2	Neurotransmitter/Neuromodulator Receptors 97
4.2.3	Signal Transduction Molecules 99
4.3	Potential Pharmacological Impact of the Regulated Molecules 99
4.4	Future Application of Gene Array 100
	References 101
5	The Role of Gene Expression Dependent Molecular Pathways in
	Axon Plasticity and Neuron Repair Following Acute CNS Injury 105
	Simone Di Giovanni
5.1	Introduction 105
5.2	The Mechanisms that Determine Functional Recovery Following
	Acute CNS Damage 108
5.3	Repair and Tissue Plasticity Gene Expression Changes Following
	Acute CNS Injury 111
5.4	Gene Expression Profiles and Gene Clusters Related to Axon
	Sprouting and Regeneration 113
5.5	The Role of Transcription Factors in the Control of Axon Growth
	and Regeneration 117
5.6	Therapeutic Implications for Neurodegenerative Disorders 119
5.7	Future Perspectives 122
	References 124
6	Axonal mRNA in Regeneration 135
	Christina F. Vogelaar and James W. Fawcett
6.1	Introduction 135
6.2	A Link Between Axon Regeneration and Local
	Protein Synthesis 136
6.3	Axonal mRNA Update 136
6.4	Axonal RNA Transport and Translation in Axon Guidance 141
6.4.1	Growth Cone Guidance of Xenopus Retinal Axons is Dependent
	on Axonal Protein Synthesis 141
6.4.2	Growth Cone Guidance is Mediated by Asymmetrical Transport
	and Translation of Selective mRNA Molecules 141

- 6.5 Axonal RNA in Mammalian Axons 144
- 6.5.1 Axon Guidance in Rat Dorsal Root Ganglion Axons 144
- 6.5.2 RNA Binding Proteins: A Link Between Axonal RNA and Axon Maintenance 144
- 6.5.3 Conditioning Lesioned Adult Rat DRG Axons 145
- 6.6 Summary and Conclusions 146
- References 147
- 7 Proteomic Approaches to Axon Injury Postgenomic Approaches to a Posttranscriptional Process 153

Izhak Michaelevski and Mike Fainzilber

- 7.1 Rapid Responses to Injury 153
- 7.2 Retrograde Injury Signaling via Molecular Motors 154
- 7.3 Posttranscriptional Mechanisms in Axon Maintenance or Regrowth After Injury 156
- 7.4 Proteomics in Studies of Axon Injury Responses 157
- 7.5 Proteomics of Retrograde Injury Signals From Local Translation to Signal Identification 158
- 7.6 Differential Proteomics in Central versus Peripheral Axon Tracts 159
- 7.7 Proteomics in Regenerating or Degenerating Axons 160
- 7.8 Moving Forward Technical Developments with Potential Application in Neuroproteomics *161*
- 7.9 Conclusions 162 References 163

8 Genomics Approaches to the Study of Neurodegeneration 167

- Jeanine Jochems, Peter Buckley, and James Eberwine
- 8.1 Introduction 167
- 8.2 Causes of Neurodegeneration 168
- 8.2.1 Alzheimer's Disease 168
- 8.2.2 Huntington's Disease 168
- 8.2.3 Parkinson's Disease 169
- 8.2.4 Amyotrophic Lateral Sclerosis 169
- 8.2.5 Common Processes Leading to Pathological Protein Aggregation in Neurodegenerative Diseases 170
- 8.2.6 Aging 170
- 8.3 Gene Expression Studies in Traumatic Brain and Spinal Cord Injury *172*
- 8.3.1 Methodological Considerations 172
- 8.3.2 Spinal Cord 174
- 8.3.3 Traumatic Brain Injury 175
- 8.4 Concluding Remarks 177 References 177

X Contents

9	Redox Proteomics and Metabolic Proteins in Brain of Subjects with Alzheimer's Disease, Mild Cognitive Impairment, and Models Thereof 181 Rukhsana Sultana, Tanea Reed, and D. Allan Butterfield
9.1	Oxidative Stress 181
9.2	Redox Proteomics 182
9.2.1	Two-Dimensional Electrophoresis (2-DE) 184
9.2.2	Mass Spectrometry and Database Searching 185
9.3	Oxidative Damage in AD 186
9.4	Role of Identified Energy-Related Proteins in AD Brain 188
9.5	Oxidative Stress in MCI 190
9.6	Models of Alzheimer's Disease 190
9.6.1	Cell Culture Model 191
9.6.2	SAMP8 192
9.6.3	Synaptosomal Model 192
9.6.4	Intracerebral Ventricular Model 193
9.6.5	Caenorhabditis elegans Model 194
9.7	Conclusions 194
	References 195
10	Gene Expression Profiling of Gliomas –
	Improving the Understanding of Glioma Biology and
	Paving the Way for Molecular Classification 209
	Markus J. Riemenschneider and Guido Reifenberger
10.1	Introduction 209
10.2	Expression Profiling and Glioma Classification 211
10.3	Progression-Associated Gene Expression Changes in Gliomas 215
10.4	Expression Signatures Relating to Tumor Location 217
10.5	Pathway-Associated Expression Signatures and
	Targeted Therapies 218
10.6	Expression Profiling of Selected Tumor Cell
	Subpopulations – Deciphering Tumor Heterogeneity 219
10.7	Summary and Outlook 223
	References 224

Index 229