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Phase-Coherent Transport
Thomas Sch€apers

1.1
Introduction

From elementary quantum mechanics it is known that electrons possess wave
properties in addition to their appearance as a particle. Often, these wave properties
are difficult to observe directly, the main reason being that in many cases the electron
wavelengthisquite small– that is, inmetals thewavelengthof theelectronsat theFermi
energy is only of the order of a few nanometers. Therefore, one possible approach to
observing thephenomenarelated to thewavepropertiesof theelectrons is to reduce the
samplesize todimensionsclose to theelectronwavelength, asperformed inaquantum
point contact. Nevertheless, the wave nature of the electrons is sometimes revealed
undermuchmore relaxed conditions. An essential perquisite here is that the coherent
wave propagation is maintained over sufficiently long distances, so that interference
effects canoccur. Inmost cases this condition isonly fulfilledat lowtemperatures in the
Kelvin range, where inelastic scattering is suppressed to a large extent.
In diffusive conductors, one possible way to achieve electron interference is if the

diffusive motion allows electrons to propagate coherently in closed loops. This so-
called �weak localization effect� can even be observed in macroscopic structures. The
electron interference can be significantlymodified if spin precession (i.e., due to spin-
orbit coupling) comes into play. Well-controlled electron interference can be achieved
if the wave propagation is guided by the shape of the conductor, and an excellent
example in this respect is the Aharonov–Bohm effect, which is observed in ring-
shaped conductors.
This discussion of phase-coherent transport in nanostructures begins by intro-

ducing the relevant length scales and the different transport regimes in Section 1.2.
Subsequently, in Section 1.3 the Landauer–B€uttiker formalism and ballistic transport
through a split-gate point contact are discussed. Section 1.4 provides an explanation
for the weak localization effect, which leads to an enhanced resistance, whilst in
Section 1.5 it is shown that spin precession can result in the reversal of the weak
localization effect. Phase-coherent transport in ring-shaped structures is discussed in
Sections 1.4 and 1.5, while in Section 1.6 it is shown that the finite number of
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scattering centers in very small structures can result in pronounced fluctuations in
conductance. Although, within this chapter, transport phenomena in two- and one-
dimensional structures are outlined, zero-dimensional structures –namely quantum
dots – are discussed in detail in Chapter 2.

1.2
Characteristic Length Scales

Transport in nanoelectronic systems can be classified by relating its size to some
specific characteristic length scales [1, 2] which determine how the carriers propagate
through the sample. In the following sections, the elastic and inelasticmean free path
are introduced, which quantify the degree of elastic and inelastic scattering occurring
in the structure, respectively. A length scale, which provides information about loss of
the phase memory is termed the phase-coherence length.

1.2.1
Elastic Mean Free Path

The elastic mean free path le is a measure of the distance between subsequent elastic
scattering events. Such events occur due to the fact that the conductor is not ideal but
rather contains irregularities in the lattice, such as impurities or dislocations. The
scattering can be considered as elastic, which means that the electron energy is
conserved. A typical example is the scattering of an electron at a charged impurity.
If we assume a stationary scattering center, then effectively no energy is transferred
during the scattering event, whereas the direction of the electron momentum can
change greatly.
In order to determine the elastic mean free path le within the Drude model, one

must first calculate the average time between elastic scattering events, te. Its value
can be extracted from the electron mobility me, given by

me ¼
ete
m*

ð1:1Þ

The quantitiesm� and e are the effective electronmass and the elementary charge,
respectively. The electron mobility is a measure of the increase of the drift velocity
vdrift in a conductor with increasing electric field E: vdrift¼�meE. In practice, the
electron mobility is determined from the electron concentration ne and the Drude
conductivity s0 by

me ¼
s0

ene
ð1:2Þ

Experimentally, the electron concentration ne is obtained from Hall measure-
ments, while the conductivity s0 is deduced from resistance measurements at zero
magnetic field.
Effectively, only electrons at the Fermi energy EF contribute to the electron

transport. Therefore, the elastic mean free path le is given by the length an electron
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with the Fermi velocity vF propagates until it is elastically scattered after the elastic
scattering time te:

le ¼ tevF ð1:3Þ
As an example, for a typical two-dimensional (2-D) electron gas in anAlGaAs/GaAs

heterostructure (see Section 1.3), low-temperature mobilities of around 106 cm2

(Vs)�1 at ne¼ 3· 1011 cm�2 are achieved. For a 2-D system the Fermi velocity is given
by vF ¼ �h

ffiffiffiffiffiffiffiffiffiffi
2pne
p

=m*. With m�¼ 0.067me and using Equation 1.3, the length of the
elastic mean free path is 9mm.

1.2.2
Inelastic Mean Free Path

In addition to the elastic scattering discussed above, electron scattering can also be
connected to an energy transfer. A typical example is the effect of lattice vibrations on
electron transport. An electron moving within a crystal will be scattered by these
lattice vibrations and either lose or gain energy, depending on whether it excites the
lattice vibrations or is excited by them. As an energy transfer occurs, these scattering
processes are considered to be inelastic. Similar to the previous discussion, one can
define an inelastic scattering length lin as a measure for the length between inelastic
scattering events. Besides electron–phonon scattering, electron–electron scattering
is another possible process, where a considerable amount of energy canbe exchanged
between both scattering partners [3].

1.2.3
Phase-Coherence Length

The phase-coherence length lj is the relevant length scale, which determines if
phase-coherent transport can be observed in nanolectronic systems [2]. It is a
measure of the distance that the electron propagates phase coherently before its
phase is randomized. At low temperatures, the phase-coherence length can be larger
than the elastic mean free path le. Thus, a number of elastic scattering events occur
before the phase information is finally lost. During an elastic scattering event (i.e., at
an impurity), the phase of an electron is not randomized; it is only shifted by well-
defined amount. If the electron propagates along the identical path a second time, the
phase accumulation will be exactly the same. This is in strong contrast to inelastic
scattering events (e.g., electron–phonon scattering), where the scattering target
changes with time. Consequently, the phase shift that the electron would acquire
is different each time. However, care must be taken to identify lj right away with the
inelastic mean free path lin, as they are not identical in all cases; that is, spin-flip
scattering is considered to be phase-breaking and thus contributing to ljwhilst itmay
be elastic at the same time. In addition, small-energy-transfer electron–electron
scattering, which is due to the fluctuation of the electric field produced by the
electrons (Nyquist contribution), can contribute to a large extent to lj [4]. As
mentioned above, at low temperatures a number of elastic scattering events occur
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until the phase is broken, implying that the characteristic phase-breaking time tj is
larger than the elastic scattering time te. Owing to the diffusive motion during the
time tj, the phase-coherence length lj must be expressed by

lj ¼
ffiffiffiffiffiffiffiffi
Dtj

p ð1:4Þ
Here, D is the diffusion constant defined as

D ¼ 1
d
v2Fte ð1:5Þ

with d the dimensionality of the system. Typical values for the phase-coherence
length of an AlGaAs/GaAs 2-D electron gas below 1K are of the order of several
micrometers [5].

1.2.4
Transport Regimes

By comparing le and lj with the dimension L of the sample and the Fermi
wavelength lF, different transport regimes can be classified, and these are sum-
marized in Table 1.1. For the case where the elastic mean free path le is smaller than
the dimensions of the sample, many elastic scattering events occur while the
electrons propagate through the structure. The carriers are traveling randomly
(diffusive) through the crystal, as illustrated in Figure 1.1a. If the phase-coherence

Table 1.1 Comparison of the different transport regimes.

Diffusive Classical kF, le� L, lu< le
Quantum kF, le� L, lu> le

Ballistic Classical kF� L< le, lu
Quantum kF� L< le, lu

Figure 1.1 Illustration of (a) a diffusive conductor, and (b) a
ballistic conductor. In the diffusive transport regimemany elastic
scattering events occur, while the electron crosses the sample. In
the ballistic regime, the electron crosses the sample without any
elastic scattering event.
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length lj is shorter than the elastic mean free path le, the transport is considered
as classical. In contrast, if lj> le, then quantum effects owing to the wave nature
of the electrons can be expected. This diffusive regime is thus called the quantum
regime. As illustrated in Figure 1.1b, in the case that le is larger than the dimensions
of the sample, the electrons can transverse the system without any scattering;
this regime is called ballistic. Depending on themagnitude of the Fermi wavelength
lF in comparison to the dimension of the sample, the transport can either be
regarded as classical ballistic or quantumballistic. In the following section, ballistic
transport will first be discussed, and later the transport phenomena in the diffusive
regime.

1.3
Ballistic Transport

In this section transport in the ballistic transport regime will be discussed; that is,
where the elastic mean free path exceeds the dimensions of the sample. First, the
Landauer–B€uttiker formalism is explained, where the resistance of a sample is
described in terms of transmission and reflection probabilities, which is a very
convenient scheme to analyze the transport in the ballistic regime. Subsequently, the
quantized conductance of a split-gate point contact will be discussed, making use of
the Landauer–B€uttiker formalism.

1.3.1
Landauer–B€uttiker Formalism

In order to analyze the electronic transport properties of a sample, usually a current is
allowed toflow between two contacts while the response of the system ismeasured by
two voltage probes. The latter are not necessarily different from the current contacts.
The ratio between the voltage dropU and the current I can be defined as amacroscopic
resistance. (The expressionmacroscopic is used here as only the global properties of the
sample are measured.)
A very intuitive interpretation of the macroscopic resistance, R, of a sample can be

obtained if the so-called Landauer–B€uttiker formalism is used [6–9]. In this model,
the resistance

Rmn;kl ¼ Ukl

Imn
ð1:6Þ

is defined by the voltage measured between contacts k and l and the current flowing
between contacts n and m.
In order to keep things simple, the discussion is restricted to a conductor

connected via ideal one-dimensional (1-D) ballistic leads to four corresponding
reservoirs. The geometry of the sample is depicted in Figure 1.2. The ballistic wires
should consist of only a single 1-D. The reservoirs with the corresponding chemical
potentials mi (i¼ 1, . . . , 4) serve as source and drain for carriers flowing in and out of
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the conductor. At zero temperature, the i-th reservoir can supply electrons to the
conductor up to a maximum energy of mi. Each carrier from the lead, which reaches
the reservoir is absorbed by the reservoir, irrespective of the phase and energy of the
carriers. As discussed above, inelastic scattering is forbiddenwithin the leads, so that
electrons once injected into the conductormaintain their energy until they reach one
of the reservoirs.
As an example, we will study the current contributions in the 1-D lead 1, which

results in the net current I1. The current injected from reservoir 1 is given by:

Iinj ¼ e
ðm1
0
D1DðEÞvðEÞdE ð1:7Þ

where v(E) is the velocity of the electrons. As the wire is 1-D, the density of states of a
1-D system must be inserted, which is given by

D1DðEÞ ¼ 2
hvðEÞ ð1:8Þ

So far, only the states propagating from reservoir 1 are considered, and the density
of states used here is half of the commonly known value because there is only one
direction of propagation [1]. It can be seen directly that the product of the 1-D density
of states D1D(E) and the velocity v(E) is constant, and therefore the current leaving
reservoir 1 has the following simple form:

Iinj ¼ 2e
h
m1 ð1:9Þ

Part of the current supplied by reservoir 1 will be reflected back into the conductor.
IfRii is defined as the reflection probability for a reflection of carriers from lead i back
into lead i, then the current reflected into lead 1 can be written as

IR ¼ � 2e
h
Riimi ð1:10Þ

Figure 1.2 Schematic illustration of a four-terminal resistance
measurement set-up. The conductor is connected by ideal one-
dimensional leads to four corresponding reservoirs.
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In addition, electrons are transmitted from the other three leads into lead 1. By
defining the transmission probability from lead j into lead i (i j) as Tij, we arrive at
the following expression for the current transmitted into lead 1:

IT ¼ � 2e
h

X4
j¼2

T1jmj ð1:11Þ

By summing all of these contributions it can be seen that the net current flowing in
lead 1 is finally given by:

I1 ¼ Iinj þ IRþ IT

¼ 2e
h
ð1�R11Þm1�

X4
j¼2

T1jmj

" #
;

ð1:12Þ

or, more generally, the current in lead i is given by

Ii ¼ 2e
h
ð1�RiiÞmi�

X
j„i

T ijmj

2
4

3
5 ð1:13Þ

By using Equation 1.13, the above-defined resistanceRmn;kl can be determined for
given reflection and transmission probabilities of the sample. According to the initial
definition of Rmn;kl, as given in Equation 1.6, the net current Imn flows between
contacts n andm. The leads k and l do not carry a net current in case of an ideal voltage
measurement. The voltage dropUkl is given by the difference of the electrochemical
potentials divided by e: (mk�ml)/e. In the following section, Equation 1.13 will serve
as a basis to describe the transport properties of a split-gate quantum point contact.

1.3.2
Split-Gate Point Contact

In split-gate quantum point contacts the transport is limited to only one dimension.
This is obtained byfirst restricting the propagation of the electrons to a plane. In these
so-called �two-dimensional electron gases� (2DEGs), the carriers are confined at an
interface of two different semiconductor layers. A typical example of a 2DEG realized
in an AlGaAs/GaAs layer system is depicted in Figure 1.3. Here, the carriers are
located at the AlGaAs/GaAs interface and, owing to the conduction band offset
between AlGaAs andGaAs, a triangular quantumwell is formed at the interface. The
electrons in the quantum well are supplied by an n-type d-doped (very thin) layer. In
order to prevent ionized impurity scattering, the electrons in the quantum well are
separated from the d-doped layer by an undoped AlGaAs spacer layer. Using this
scheme, very large electron mobilities and thus very long elastic mean free paths of
the order of several micrometers can be achieved.
A further restriction of the electron propagation to only one dimension can be

realized by using split-gate point contacts [10, 11]. As illustrated in Figure 1.4, two
opposite gate fingers are separated by a distance of a few hundreds of nanometers.
Split-gate electrodes are usually prepared by using electron beam lithography. Since
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the Fermi wavelength lF of a 2-D electron gas is typically a few tenths of a nanometer,
the separation of the split-gates is comparable with lF. The length of the channel
formed by the gate electrodes is usually smaller than 1mm, and thus smaller than the
elasticmean free path le. According to the classification introduced in Section 1.2, the
transport can be considered as ballistic.
By applying a sufficiently large negative voltage to the gate fingers, the underlying

2-D electron gas is depleted underneath the gate fingers (see Figure 1.4a). Only a
small opening between the gate fingers remains for the electrons to propagate from
one side to the opposite side; however, by varying the gate voltage it is possible to
control the effective width of the opening. An increase of the negative bias voltage
enlarges the depletion area and thus reduces the opening width. At sufficiently large
negative bias voltages the opening can even be closed completely (pinch-off).
Owing to the depletion area underneath the split-gate electrodes, it can be assumed

that the electrons in the 2DEG are confined in a potential well along the y-axis, while
the free propagation takes place along the x-axis. If the potential profile in the plane of
the 2DEG induced by the split-gate electrodes is expressed by V(x, y), the Hamilton

Figure 1.4 (a) Schematic illustration of a split-gate point contact
on an AlGaAs/GaAs heterostructures. By applying a negative gate
voltage to the split-gate electrodes, the electron gas underneath is
depleted. The electrons can only pass the small opening. (b) An
electron beam micrograph of split-gate point contacts.

Figure 1.3 Layer sequence of an AlGaAs/GaAs heterostructure
containing a two-dimensional electron gas at the AlGaAs/GaAs
interface. A schematic illustrationof the conductionbandprofile is
shown on the right-hand side.
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operator has the following form:

H ¼ �h2

2m*

q2

qx2
þ q2

qy2

� �
þVðx; yÞ ð1:14Þ

In order to determine the precise shape of the potential V(x, y) as a function of the
gate voltage, elaborated self-consistent simulations are required [12]. However, for
most applications it is sufficient to assume an approximated potential profile. For low
gate voltages an appropriate approximation is a rectangular potential profile, while for
higher negative gate voltages the potential well can be approximated by a parabolic
potential. As an example, we will consider here the latter potential shape. Due to the
short length of the channel formed by the split-gates, the 2-D potential profile will be
saddle-shaped. However, if the potential shaped along the constriction is smooth
(adiabatic limit), it is sufficient to consider only the narrowest point of the channel,
which can be expressed by

VðyÞ ¼ 1
2
m*w2

0y
2 þ V0 ð1:15Þ

Here, o0 is the characteristic frequency of the parabolic potential, while V0

represents the height of the inflection point of the saddle-shaped potential. For the
energy dispersion of the 1-D subbands in the point contact, we obtain

EnðkxÞ ¼ E0
nþV0þ �h2k2x

2m*
; n ¼ 1; 2; 3; . . . ; ð1:16Þ

with

E0
n ¼ ðn� 1=2Þ�hw0; ð1:17Þ

the energy eigenvalues of the harmonic oscillator. By changing the gate voltage at the
split-gate electrodes, the effective width of the opening can be adjusted. In the
parabolic approximationo0 is increased if amorenegative gate voltage is applied, and
this leads to an increased separation of the energy eigenvalues. As a consequence,
lesser levels are occupied up to the Fermi energy (see Figure 1.5a and b).

Figure 1.5 (a) Energy dispersion of a
one-dimensional channel with the two lowest
levels lying below the Fermi energy EF.
(b) Corresponding situation with only one
subband occupied. The energy separation
between the levels given by �hw0 is larger

compared to the situation shown in (b). (c) A
one-dimensional conductor; that is, the channel
formed by the split-gate electrodes, connected
by two reservoirs with the electrochemical
potential m1 and m2, respectively.
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Before examining the experimental outcome of measurement of the split-gate
point contact resistance, the conduction of a 1-D conductor by using the Land-
auer–B€uttiker formalism will be briefly discussed. It must first be assumed that the
conductor is connected on both terminals to reservoirs with the electrochemical
potentials m1 and m2, respectively (i.e., the 2DEG on both sides of the split-gates), as
shown in Figure 1.5c.
For a set-up with only two reservoirs, and where only the lowest subband is

occupied, the following expression is obtained according to the Landauer–B€uttiker
formalism [cf. Equation 1.13]:

ðh=2eÞI ¼ ð1�R11Þm1�T12m2 ð1:18Þ

� ðh=2eÞI ¼ ð1�R22Þm2�T21m1 ð1:19Þ
At zero magnetic field (B¼ 0), the transport is time-inversion invariant so that the

following relationships hold:

T12 ¼ T21 ¼ T ¼ 1�R11 ¼ 1�R22 ð1:20Þ
Thus, finally we arrive at the expression for the conductance of the constriction:

G ¼ I
U
¼ Ie

m1�m2
¼ 2e2

h
T ð1:21Þ

As illustrated in Figure 1.5b, only carriers with energy between m1 and m2
contribute to the conductance. If backscattering is neglected (T¼ 1), the conduction
through a constriction is simply given by:

G ¼ 2e2

h
: ð1:22Þ

It should be stressed that the constant conductance is a result of the cancellation of
the energy dependence of the density of states and the velocity for the 1-D case [cf.
Equation 1.7], which is not the case for 2-D or three-dimensional (3-D) systems. In
analogy, the conductance can be calculated ifN subbands are occupied. The occupied
subbands taking part in the transport are usually called channels; the situation for two
channels (N¼ 2) is illustrated in Figure 1.5a. If N one-dimensional channels are
assumed, then the total transmission probability from reservoir j to reservoir i (i j)
can be expressed as

Tij ¼
XN
mn

Tij;mn ð1:23Þ

where Tij,mn denotes the transmission probability from the n-th subband of lead j into
the m-th subband of lead i. If ideal transmission and no intersubband scattering is
assumed, then the total transmission probability of a 1-D channel withN subbands is
given byT¼N. Thus, each subband contributes with 2e2/h to the conductance so that
the total conductance of a constriction with N subbands occupied is given by

G ¼ 2e2

h
N ð1:24Þ
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This remarkable result indicates that the conductance of a 1-D constriction
changes in steps equal to 2e2/h, if the number of channels is altered by adjusting
the widths of the constriction. The latter can be achieved by applying an appropriate
voltage to the split-gate electrodes.
An experimental result of the resistance and conductance of quantum point

contact based on a 2DEG in an AlGaAs/GaAs heterostructure is shown in Figure 1.6.
With amore negative gate voltage, the resistance of the point contact increases, as the
width of the constrictionbecomes increasingly narrower.As canbe seen inFigure 1.6,
if the conductance G is plotted, it can clearly be seen that G decreases stepwise by
multiples of 2e2/h with increasing negative gate voltage.
The experimentally observed curves can deviate in many aspects from the ideal

curves. The calculations given above were restricted to zero temperature, but at finite
temperatures the broadening of the Fermi distribution function results in a broadening
of the steps owing to the partial occupation and emptying of the 1-D channels. The
geometrical shapeof thepoint contact openingalsoaffects the transmission through the
point contact. For example, sharp edges of the point contact opening can result in
reflections of the incoming and transmitted electronswaves at the inlet and outlet of the
1-D channel. As a result, oscillations are expected in the plateaus of the steps [13, 14].

1.4
Weak Localization

Interference effects of electronwaves due tophase coherent transport canbe seeneven
in large samples, where the phase coherence length is much smaller than the
dimensions of the sample. This effect, called weak localization, results in an increased
resistance compared to the classically expected value [15, 16]. Weak localization is
observed if the temperature is sufficiently low so that the phase coherence length lj is

Figure 1.6 Resistance and conductance of an AlGaAs/GaAs split-
gate point contact as a function of the gate voltage. The
conductance is plotted in units of 2e2/h.
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Figure 1.7 (a) Possible trajectories of electrons propagating from
pointA toQ. The trajectory 3a represents a closed loop. (b) Detail
of a closed loop with a magnetic flux F penetrating this loop.

larger than the elastic scattering length le. As we will see below, the effect of weak
localization depends strongly on the dimensionality of the system. The lower the
dimension of the system is, the stronger the effect of weak localization is, that is in
quasi one-dimensionalwire structuresweak localization ismost pronounced. In order
to illustrate the general mechanisms leading to weak localization, we will first
introduce a simplemodel. Later onmore quantitative expressions for the conductivity
corrections will be given.

1.4.1
Basic Principles

Let us consider a diffusive conductor, in which an electrons starting at point A
propagate to pointQ. Some typical trajectories of an electron are sketched inFigure 1.7,
illustrating that there are many possibilities for an electron to propagate from A toQ.
It is assumed that the elasticmean free path le is smaller than the distance betweenA

andQ. Thus, an electronundergoesmany elastic scattering events on itsway.However,
during elastic scattering the electron does not lose its phase memory. If it is assumed
that the phase coherence length is longer than the distance betweenA andQ, the phase
information is not lost. By following Feynman, each path j can be described from the
initial stateA to thefinal stateQby a complex probability amplitudeCj given by [17, 18]:

Cj ¼ cjexpðijjÞ ð1:25Þ
Here, jj is the phase shift that the electron acquires on its way from A to Q while

propagating along path j. Often, there are many possible paths for an electron to
propagate between A and Q. For example, for free electron propagation the phase
accumulation along the path j can be calculated from the action Sj by

jj ¼
Sj
�h

ð1:26Þ

The non-relativistic action Sj is defined by

Sj ¼
ðtQ
tA

dtLðr; _r; tÞ ð1:27Þ
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with

Lðr; _r; tÞ ¼ m
2
_r2 ð1:28Þ

the Lagrangian function of a free propagating electron. Here, tA is the time when the
electron starts atA, and tQ the time when it arrives atQ. The quantities r and _r are the
position and velocity of the particle, respectively. However, the electron acquires not
only a phase shift during free propagation but also well-defined phase shifts by the
elastic scattering events, so that the total phase accumulated along the path is the sum
of both contributions. The total amplitude for the propagation fromA to Q is given by
the sumof the amplitudesCj of all undistinguished paths. Finally, the total probability
PAQ for an electron to be transported from A toQ is determined by the square of the
total amplitude

PAQ ¼
X
j

cje
ijj

�����
�����
2

ð1:29Þ

In systemswitha largenumberofpossiblepaths, thephasesjj areusually randomly
distributed, and therefore the wave nature should have no effect on the electron trans-
port due to averaging. Nevertheless, the fact that an increase of the resistance is
observed, compared to theclassical transport, is a result ofclosed loops (seeFigure1.7a,
trajectory3a).Along these loops, anelectroncanpropagate in twoopposite orientations
with the corresponding complex amplitudes C1,2¼ c1,2 exp(ij1,2). The current contri-
bution of the current returning to the starting point of the loop (O) is given by

POO ¼ jC1þC2j2 ¼ jC1j2þ jC1j2þ 2ReðC*
1C2Þ ð1:30Þ

Since, for time-reversed paths c1¼ c2 and j1¼j2, we obtain

jC1þC2j2 ¼ 4jC1j2 ð1:31Þ
For classical non-phase-coherent transport, the probability would simply be
jC1j2þ jC2j2, which is a factor of 2 smaller than for the phase-coherent case. A
larger probability to return to the origin implies that the net current through the
sample is reduced.Hence, the carriers are localizedwithin the loop. Such localization
does not depend on the size of the loop as long as its length is smaller than the phase-
coherence length. It is important to note here that constructive interference occurs
for all possible closed loops in the conductor, and is therefore not averaged out. As a
result, the total resistance is increased compared to the classical case.

1.4.2
Weak Localization in One and Two Dimensions

In the following section, it is briefly sketched how a value for the correction of the
conductance due toweak localization can be obtained quantitatively [18]. For theweak
localization effect we are interested only in those processes where the electrons
return to their starting points. The discussion will first be restricted to a 2-D system,
for example a 2-D electron gas in an AlGaAs/GaAs heterostructure. A larger number
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of scattering centers increase the probability for backscattering of the electrons. The
larger the number of scattering centers is, the smaller is the diffusion constant; as a
consequence one obtains for the return probability due to diffusivemotion: 1/(4pDt).
For the total return probability, it must be ensured that the phase of the electrons is
preserved up to time tj, which provides a pre-factor exp(�t/tj). Furthermore, it is
required that the electron is at least once elastically scattered; thus, a pre-factor
[1� exp(�t/te)] must be included. In total, the correction to the conductance can be
expressed as [19, 20]:

Ds2D ¼ � 2�h
m*

s0

ð¥
0

dt
1

4pDt
ð1� e� t=teÞe� t=tj

¼ � e2

2p2�h
ln 1þ tj

te

0
@

1
A

ð1:32Þ

Here, s0 is the classical Drude conductivity of a 2-D system. The localization
vanishes, if the phase-breaking time tf is much smaller than te, since then the logari-
thmic factor tends towards zero. The ratio of the correction due to weak localization
to the Drude conductivity Ds2D/s0 is usually small and of the order of 1/kFle. Here,
kF ¼ m�VF=�h is the Fermi wavenumber. For a typical 2-D electron gas with me¼
106 cm2Vs�1 at ne¼ 3· 1011 cm�2, a correction of less than 0.1% would be expected.
For a quasi 1-D structure of width W with lj�W, the diffusion is effectively

reduced to one dimension, so that the return probability can now be expressed by
W�1(4pDt)�1/2. The conductivity correction in this case is given by [20]:

Ds1D ¼ � e2

p�h
lj
W

1� 1þ tj
te

� �� 1=2
" #

ð1:33Þ

Acomparison of the 1-D and 2-D cases reveals that theweak localization correction
to the conductivity ismuch larger for the 1-D case. In the latter case, the ratioDs1D/s0

is of the order (lj/W)(1/kFle). If a phase-breaking time of tf¼ 10�10 s and a width of
W¼ 200 nm are assumed, the result is a ratioDs1D/s0 of 6%, for a wire based on the
2-D electron gas as specified above. Clearly, this value is much larger than the
corresponding value for a 2-D system.

1.4.3
Weak Localization in a Magnetic Field

If the sample is penetrated by a magnetic field B, the phase accumulation along a
certain trajectory ismodified, since the Lagrangian function L [cf. Equation 1.28] of an
electron with charge �e contains an additional term

Lðr; _r; tÞ ¼ m
2
_r2� e½_rAðr; tÞ� ð1:34Þ

Here, A is the vector potential defined by B¼ rot A. In the presence of a vector
potential, the probability amplitude C1 of a closed loop propagated in clockwise
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orientation acquires an additional phase factor

C1!C1 exp � i
e
�h

þ
Adl

� �
¼ C1 exp i

2pF
F0

� �
ð1:35Þ

Here,F¼BS is themagnetic flux penetrating the enclosed area S of the loop, with
F0¼ h/e the magnetic flux quantum. For the propagation in the opposite orientation
one obtains

C2!C2 exp � i
2pF
F0

� �
ð1:36Þ

The phase difference accumulated between both time-reversed paths is therefore

Dj ¼ 4p
F
F0

ð1:37Þ

Thus, if a magnetic field is applied, the property that constructive interference
occurs for all loops in case of B¼ 0 is lost. Generally, many loops enclosing different
areas are found in a diffusive conductor and, depending on the size of the loops,
different phase shifts Dj develop. Thus, for a particular magnetic field the localiza-
tion is lifted to a different extent depending on the loop size. If the magnetic field is
increased starting from zero, the constructive interference is destroyed first for the
largest loops. Finally, if the magnetic field is sufficiently large, the phase difference
will be randomly distributed between the ensemble of loops. On average, the degree
of localization decreases with increasing magnetic field, resulting in a continuous
decrease of the resistance.
For a quantitative approach onemust take into account that, in addition to the usual

phase breaking at zero magnetic field, the phase is also broken effectively by a
magnetic field. Similar to lj a length lm is defined, which is characterized by the
condition that the area l2m corresponds to the case that the penetrating flux is equal to
F0. Thus, lm is defined by

ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
. As outlined above, for afluxF0 the phase difference

between time-reversed paths is already significant. The characteristic magnetic
relaxation time tB related to lm can be estimated from the relationship lm �

ffiffiffiffiffiffiffiffiffi
DtB
p

,
in analogy to Equation 1.4 defining lj. The expression that quantitatively describes the
increase of the conductivity with increasing magnetic field is given by [21, 22]:

Ds2DðBÞ�Ds2Dð0Þ ¼ e2

2p2�h
Y

1
2
þ tB

2tj

� �
�Y

1
2
þ tB

2te

� �
þ ln

tj
te

� �� �
ð1:38Þ

where C(x) is the digamma function. The exact expression for tB, which must be
inserted into Equation 1.38, is given by tB ¼ l2m=2D. At zero magnetic fields the
relevantmaximumsize of the loops atwhich the phase coherence is broken is givenby
l2j. In a finitemagnetic field, weak localization is suppressed if a noticeable phase shift
between time-reversed loops is accumulated. This is the case for loopswith the area of
about l2m. By comparing both relationships, it is clear that the magnetic field has a
significant effect on the conductance for l2j � l2m. This relationship defines a critical
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magnetic field Bc, which is given by

Bc ¼ �h

2el2j
ð1:39Þ

Thus, at the characteristicfield ofBc one expects a suppression ofweak localization.
For semiconductor structures, lj may be of the order of 1 mm, and result in a critical
field of about 1mT. In the case of a 2-D electron gas, weak localization is suppressed at
relatively low magnetic fields (see Figure 1.8).
In 1-D systems in the dirty metal limit, defined as le�W� lj, the closed

trajectories contributing to weak localization are quenched in one direction, with
a typical enclosed area of the loop given byW

ffiffiffiffiffiffiffiffiffi
DtB
p

(see Figure 1.9a). For a unit phase
shift this area corresponds to l2m, resulting in a magnetic relaxation time of
tB � l4m=DW

2 and a critical field of Bc � �h=eWlj. The full expression for the weak
localization correction of one-dimensional systems in the dirty limit is given by [24]

Ds1DðBÞ ¼ e2

p�h

ffiffiffiffi
D
p

W
1
tj
þ 1

tB

� �� 1=2

� 1
tj
þ 1

te
þ 1

tB

� �� 1=2
" #

ð1:40Þ

Figure 1.8 Comparison of the weak localization effect in a two-
dimensional (upper graph) and a one-dimensional electron gas
(lower graph) in AlGaAs/GaAs. For the one-dimensional
structures a much higher magnetic field is required to suppress
the weak localization effect. (Reprintedwith permission from [23].
Copyright (1987) by the American Physical Society.)
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withmagnetic relaxation time in this case given by tB ¼ 3l4m=WD. It should be noted
that, at zero magnetic fields, Equation 1.32 is recovered. Furthermore, a closer
inspection of Bc reveals, that if the width of the wire is reduced, the critical field is
increased, ensuring that the weak localization effect is preserved up to much higher
magnetic fields compared to the 2-D case. This is confirmed by the measurements
shown in Figure 1.8, where the magnetoresistance peak is wider in the 1-D case. In
wire structures based on high-mobility, 2-D electron gases, the elasticmean free path
le may be larger than the width of the wire: W� le. In this ballistic regime, the
electrons propagate without any scattering between the wire boundaries. As illus-
trated in Figure 1.9b, owing to diffusive boundary scattering the typical closed loops
will self-interact. As both parts of the loop area are traversed in opposite orientation,
the net flux is basically cancelled [20]. Clearly, the flux cancellation results in a further
increase of the critical field.

1.5
Spin-Effects: Weak Antilocalization

So far, the effect of spin on the electron interference has been neglected, and this
approach is valid as long as the spin orientation is conserved. However, in many
materials the spin changes its orientation while the electron propagates along the
closed loops, resulting in the weak localization effect.
It can be assumed that |si is the initial spin state, this generally being a

superposition of the spin up |"i and spin down |#i states. In principle, there are
two possibilities of how the spin orientation can be changed:

. The Elliot–Yafet mechanism. Here, the potential profile of the scattering centers
can lead to spin-orbit coupling; this results in a spin rotation, while the electron is
scattered at the impurities (see Figure 1.10a).

. The so-called D�yakonov–Perel mechanism, where the spin precesses while the
electron propagates between the scattering centers (see Figure 1.10b). The origin of
the spin precessionmay either be a lack of inversion symmetry (i.e., in zinc blende

Figure 1.9 (a) Typical closed trajectory in a dirty metal one-
dimensional conductor (le�W� lf). (b) Typical closed
trajectory in a narrow one-dimensional structure with W� le.
Here, diffusive boundary scattering results in loops which self-
interact. The net flux is cancelled in this configuration.
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crystals; the Dresselhaus effect [25]), or an asymmetric potential shape of the
quantum well forming a 2-D electron gas (the Rashba effect) [26].

Further details on spin precession are provided in Chapter 3 of this volume and
Chapter 5 of volume 4 of this series (Bandyopadhyay, S., Monolithic and Hybrid
Spintronics. In: Schmid, G. (ed), Nanotechnology, Vol 4, Chapter 5).
Regardless of the underlying mechanism, if an electron propagates along a closed

loop, its spin orientation is changed. The modification of the spin orientation can be
expressed by a rotation matrix U [27]. For the propagation along the loop in forward
( f ) direction the final state |sfi can be expressed by

jsf i ¼ Ujsi ð1:41Þ
where U is the corresponding rotation matrix. For propagation along the loop in a
backwards directions (b), the final spin state is given by

jsbi ¼ U�1jsi ð1:42Þ
Here, use is made of the fact that the rotation matrix of the counter-clockwise
propagation is simply the inverse of U. For interference between the clockwise and
counter-clockwise electron waves, not only the spatial component is relevant but also
the interference of the spin component:

hsbjsf i ¼ hU�1sjUsi
¼ hsjU�Ujsi
¼ hsjU2jsi:

ð1:43Þ

The final expression was obtained by making use of the fact that U is a unitary
matrix:U�1 ¼ U�, withU� the adjoint (complex conjugated and transposed) matrix
ofU. Weak localization – and thus constructive interference – is recovered if the spin
orientation is conserved in the case that U is the unit matrix 1.
However, if the spin is rotated during electron propagation along a loop, in general

no constructive interference can be expected. Moreover, for each loop a different
interference will be expected. Interestingly, averaging over all possible trajectories
even leads to a reversal of theweak localization effect such that, instead of an increase

Figure 1.10 (a) Typical closed trajectory in forward direction with
spin scattering at the impurities. The initial spin state |si is
transformed to the final spin state |sfi. The spin orientation is
preserved while propagation between the scattering centers.
(b) The situation where a spin precession occurs while the
electron propagates between the scattering centers.
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