Contents

Preface XV
List of Contributors XIX

I Basic Principles and Theory 1

1 Phase-Coherent Transport 3

Thomas Schäpers

1.1 Introduction 3
1.2 Characteristic Length Scales 4
1.2.1 Elastic Mean Free Path 4
1.2.2 Inelastic Mean Free Path 5
1.2.3 Phase-Coherence Length 5
1.2.4 Transport Regimes 6
1.3 Ballistic Transport 7
1.3.1 Landauer–Büttiker Formalism 7
1.3.2 Split-Gate Point Contact 9
1.4 Weak Localization 13
1.4.1 Basic Principles 14
1.4.2 Weak Localization in One and Two Dimensions 15
1.4.3 Weak Localization in a Magnetic Field 16
1.5 Spin-Effects: Weak Antilocalization 19
1.6 Al’tshuler–Aronov–Spivak Oscillations 21
1.7 The Aharonov–Bohm Effect 23
1.8 Universal Conductance Fluctuations 27
1.8.1 Basic Principles 27
1.8.2 Detailed Analysis 29
1.8.3 Fluctuations in Long Wires 31
1.8.4 Energy and Temperature Dependence 32
1.9 Concluding Remarks 33
References 34
2 Charge Transport and Single-Electron Effects in Nanoscale Systems 37
 Joseph M. Thijssen and Herre S.J. van der Zant
2.1 Introduction: Three-Terminal Devices and Quantization 37
2.2 Description of Transport 40
2.2.1 Structure of Nanoscale Devices 40
2.2.1.1 The Reservoirs 40
2.2.1.2 The Leads 41
2.2.1.3 The Island 41
2.2.2 Transport 42
2.2.2.1 Coherent-Incoherent Transport 43
2.2.2.2 Elastic–Inelastic Transport 44
2.2.2.3 Resonant–Off-Resonant Transport 44
2.2.2.4 First-Order versus Higher-Order Processes 44
2.2.2.5 Direct Tunneling 45
2.3 Resonant Transport 45
2.4 Constant Interaction Model 49
2.5 Charge Transport Measurements as a Spectroscopic Tool 53
2.5.1 Electronic Excitations 55
2.5.2 Including Vibrational States 57
2.6 Second-Order Processes 59
2.6.1 The Kondo Effect in a Quantum Dot with an Unpaired Electron 60
2.6.2 Inelastic Co-Tunneling 61
References 63

3 Spin Injection–Extraction Processes in Metallic and Semiconductor Heterostructures 65
 Alexander M. Bratkovsky
3.1 Introduction 65
3.2 Main Spintronic Effects and Devices 67
3.2.1 TMR 67
3.2.2 GMR 68
3.2.3 (Pseudo)Spin-Torque Domain Wall Switching in Nanomagnets 70
3.3 Spin-Orbital Coupling and Electron Interference
 Semiconductor Devices 72
3.3.1 Spin-Hall Effect (SHE) and Magnetoresistance due to Edge
 Spin Accumulation 74
3.3.2 Interacting Spin Logic Circuits 76
3.4 Tunnel Magnetoresistance 77
3.4.1 Impurity Suppression of TMR 80
3.4.2 Negative Resonant TMR? 81
3.4.3 Tunneling in Half-Metallic Ferromagnetic Junctions 82
3.4.4 Surface States Assisted TMR 84
3.4.5 Inelastic Effects in TMR 84
3.5 Spin Injection/Extraction into (from) Semiconductors 86
3.5.1 Spin Tunneling through Modified (Delta-Doped) Schottky Barrier 89
3.5.2 Conditions for Efficient Spin Injection and Extraction
3.5.3 High-Frequency Spin-Valve Effect
3.5.4 Spin-Injection Devices
3.5.5 Spin Source of Polarized Radiation
3.6 Conclusions
References

4 Physics of Computational Elements
Victor V. Zhirnov and Ralph K. Cavin
4.1 The Binary Switch as a Basic Information-Processing Element
4.1.1 Information and Information Processing
4.1.2 Properties of an Abstract Binary Information-Processing System
4.2 Binary State Variables
4.2.1 Essential Operations of an Abstract Binary Switch
4.2.2 The Use of Particles to Represent Binary Information
4.3 Energy Barriers in Binary Switches
4.3.1 Operation of Binary Switches in the Presence of Thermal Noise
4.3.2 Quantum Errors
4.3.3 A Combined Effect of Classical and Quantum Errors
4.4 Energy Barrier Framework for the Operating Limits of Binary Switches
4.4.1 Limits on Energy
4.4.2 Limits on Size
4.4.3 Limits on Speed
4.4.4 Energy Dissipation by Computation
4.5 Physics of Energy Barriers
4.5.1 Energy Barrier in Charge-Based Binary Switch
4.5.2 Energy Barrier in Spin-Based Binary Switch
4.5.3 Energy Barriers for Multiple-Spin Systems
4.5.4 Energy Barriers for the Optical Binary Switch
4.6 Conclusions
References

II Nanofabrication Methods

5 Charged-Particle Lithography
Lothar Berger, Johannes Kretz, Dirk Beyer, and Anatol Schwersenz
5.1 Survey
5.2 Electron Beam Lithography
5.2.1 Introduction
5.2.1.1 Electron Sources
5.2.1.2 Electron Optics
5.2.1.3 Gaussian Beam Lithography
5.2.1.4 Shaped Beam Lithography
5.2.1.5 Patterning

Contents
5.2.2 Resists 153
5.2.3 Applications 158
5.2.3.1 Photolithography Masks 158
5.2.3.2 Direct-Write Lithography 162
5.2.3.3 Maskless Lithography 164
5.2.3.4 Imprint Templates 170
5.2.4 Integration 170
5.3 Ion Beam Lithography 172
5.3.1 Introduction 172
5.3.1.1 Ion Sources 173
5.3.1.2 Ion Optics 173
5.3.1.3 Patterning 173
5.3.2 Applications 173
5.3.2.1 Direct-Structuring Lithography 174
5.3.2.2 Imprint Templates 176
5.4 Conclusions 176

References 177

6 Extreme Ultraviolet Lithography 181
Klaus Bergmann, Larissa Juschkin, and Reinhart Poprawe

6.1 Introduction 181
6.1.1 General Aspects 181
6.1.2 System Architecture 182
6.2 The Components of EUV Lithography 185
6.2.1 Light Sources 185
6.2.1.1 Plasmas as EUV Radiators 186
6.2.1.2 Laser-Induced Plasmas 187
6.2.1.3 Gas Discharge Plasmas 188
6.2.1.4 Source Concepts and Current Status 189
6.2.2 Collectors and Debris Mitigation 191
6.2.3 Multilayer Optics 194
6.2.4 Masks 198
6.2.5 Resist 199
6.3 Outlook 203
References 204

7 Non-Optical Lithography 209
Clivia M. Sotomayor Torres and Jouni Ahopelto

7.1 Introduction 209
7.2 Nanoimprint Lithography 210
7.2.1 The Nanoimprint Process 210
7.2.2 Polymers for Nanoimprint Lithography 211
7.2.3 Variations of NIL Methods 215
7.2.3.1 Single-Step NIL 215
7.2.3.2 Step-and-Stamp Imprint Lithography 216
7.2.3.3 Step-and-Flash Imprint Lithography 216
7.2.3.4 Roll-to-Roll Printing 217
7.2.4 Stamps 217
7.2.5 Residual Layer and Critical Dimensions 222
7.2.6 Towards 3-D Nanoimprinting 227
7.2.7 The State of the Art 230
7.3 Discussion 230
7.4 Conclusions 234
References 235

8 Nanomanipulation with the Atomic Force Microscope 239
Ari Requicha
8.1 Introduction 239
8.2 Principles of Operation of the AFM 242
8.2.1 The Instrument and its Modes of Operation 242
8.2.2 Spatial Uncertainties 247
8.3 Nanomanipulation: Principles and Approaches 250
8.3.1 LMR Nanomanipulation by Pushing 250
8.3.2 Other Approaches 253
8.3.3 Manipulation and Assembly of Nanostructures 256
8.4 Manipulation Systems 260
8.4.1 Interactive Systems 260
8.4.2 Automated Systems 261
8.5 Conclusion and Outlook 265
References 267

9 Harnessing Molecular Biology to the Self-Assembly of Molecular-Scale Electronics 275
Uri Sivan
9.1 Introduction 275
9.2 DNA-Templated Electronics 278
9.2.1 Scaffolds and Metallization 278
9.2.2 Sequence-Specific Molecular Lithography 281
9.2.3 Self-Assembly of a DNA-Templated Carbon Nanotube Field-Effect Transistor 284
9.3 Recognition of Electronic Surfaces by Antibodies 288
9.4.1 Molecular Shift-Registers 293
9.4.2 Error Suppression and Analogy Between Synthesis and Communication Theory 298
9.5 Future Perspectives 300
References 301
10 Formation of Nanostructures by Self-Assembly 305

Melanie Homberger, Silvia Karthäuser, Ulrich Simon, and Bert Voigtländer

10.1 Introduction 305
10.2 Self-Assembly by Epitaxial Growth 306
10.2.1 Physical Principles of Self-Organized Epitaxial Growth 306
10.2.1.1 Epitaxial Growth Techniques 306
10.2.1.2 Kinetically Limited Growth in Homoepitaxy 307
10.2.1.3 Thermodynamically Stable Nanostructures 309
10.2.2 Nanostructure Formation in Heteroepitaxial Growth 311
10.2.2.1 Stranski–Krastanov Growth of Nanoislands 313
10.2.2.2 Lateral Positioning of Nanoislands by Growth on Templates 314
10.2.2.3 Silicide Nanowires 315
10.2.2.4 Monolayer-Thick Wires at Step Edges 315
10.2.3 Hybrid Methods: The Combination of Lithography and Self-Organized Growth 317
10.2.4 Inorganic Nanostructures as Templates for Molecular Layers 318
10.3 Molecular Self-Assembly 320
10.3.1 Attaching Molecules to Surfaces 321
10.3.1.1 Preparation of Substrates 322
10.3.1.2 Preparation of Self-Assembled Monolayers 322
10.3.1.3 Preparation of Mixed Self-Assembled Monolayers 323
10.3.2 Structure of Self-Assembled Monolayers 324
10.3.2.1 Organothiols on Metals 325
10.3.2.2 Carboxylates on Copper 326
10.3.3 Supramolecular Nanostructures 327
10.3.4 Applications of Self-Assembled Monolayers 330
10.3.4.1 Surface Modifications 330
10.3.4.2 Adsorption of Nanocomponents 330
10.3.4.3 Steps to Nanoelectronic Devices 331
10.4 Preparation and Self-Assembly of Metal Nanoparticles 334
10.4.1 Preparation of Metal Nanoparticles 334
10.4.2 Assembly of Metal Nanoparticles 337
10.4.2.1 Three-Dimensional Assemblies 337
10.4.2.2 Two-Dimensional Assemblies: The Formation of Monolayers 339
10.4.2.3 One-Dimensional Assemblies 341
10.5 Conclusions 344
References 344

III High-Density Memories 349

11 Flash-Type Memories 351

Thomas Mikolajick

11.1 Introduction 351
11.2 Basics of Flash Memories 353
13.4.2 Voltage Scaling 412
13.4.3 3-D Capacitor Structure 413
13.4.3.1 Limitation of Planar Capacitor 413
13.4.3.2 Demonstration of a 3-D Capacitor 413
13.5 Summary and Conclusions 417
References 417

14 Magnetoresistive Random Access Memory 419
Michael C. Gaidis
14.1 Magnetoresistive Random Access Memory (MRAM) 419
14.2 Basic MRAM 420
14.3 MTJ MRAM 422
14.3.1 Antiferromagnet 426
14.3.2 Reference Layer 427
14.3.3 Tunnel Barrier 427
14.3.4 Free Layer 428
14.3.5 Substrate 428
14.3.6 Seed Layer 428
14.3.7 Cap Layer 429
14.3.8 Hard Mask 429
14.4 MRAM Cell Structure and Circuit Design 429
14.4.1 Writing the Bits 429
14.4.2 Reading the Bits 433
14.4.3 MRAM Processing Technology and Integration 436
14.4.3.1 Process Steps 437
14.5 MRAM Reliability 439
14.5.1 Electromigration 439
14.5.2 Tunnel Barrier Dielectrics 440
14.5.3 BEOL Thermal Budget 440
14.5.4 Film Adhesion 441
14.6 The Future of MRAM 441
References 443

15 Phase-Change Memories 447
Andrea L. Lacaita and Dirk J. Wouters
15.1 Introduction 447
15.1.1 The Non-Volatile Memory Market, Flash Memory Scaling, and the Need
for New Memories 447
15.1.2 PCM Memories 448
15.2 Basic Operation of the Phase-Change Memory Cell 449
15.2.1 Memory Element and Basic Switching Characteristics 449
15.2.2 SET and RESET Programming Characteristics 452
15.3 Phase-Change Memory Materials 453
15.3.1 The Chalcogenide Phase-Change Materials: General
Characteristics 453
15.3.1.1 The Pseudo-Binary GeTe-Sb₂Te₃ Compositions 454
15.3.1.2 Compositions Based on the Sb₇₀Te₃₀ “Eutectic” Compound 454
15.3.1.3 Other Material Compositions 455
15.3.1.4 N- or O-Doped GST 455
15.3.2 Material Structure 455
15.3.2.1 Long-Range Order: Crystalline State in GST and Doped Sb-Te 455
15.3.2.2 Short-Range Order in Crystalline versus Amorphous State 455
15.3.3 Specific Properties Relevant to PCM 457
15.4 Physics and Modeling of PCM 458
15.4.1 Amorphization and Crystallization Processes 458
15.4.2 Band-Structure and Transport Model 459
15.4.3 Modeling of the SET and RESET Switching Phenomena 462
15.4.4 Transient Behavior 463
15.5 PCM Integration and Cell Structures 464
15.5.1 PCM Cell Components 464
15.5.2 Integration Aspects 466
15.5.3 PCM Cell Optimization 467
15.5.3.1 Concentrating the Volume of Joule Heating 467
15.5.3.2 Improving the Thermal Resistance 467
15.6 Reliability 469
15.6.1 Introduction 469
15.6.2 Retention for PCM: Thermal Stability 469
15.6.3 Cycling and Failure Modes 470
15.6.4 Read and Program Disturbs 472
15.7 Scaling of Phase-Change Memories 472
15.7.1 Temperature Profile Distributions 472
15.7.2 Scaling of the Dissipated Power and Reset Current 473
15.7.3 Voltage Scaling 475
15.7.4 Cell Size Scaling 476
15.7.5 Scaling and Cell Performance: Figure of Merit for PCM 478
15.7.6 Physical Limits of Scaling 478
15.8 Conclusions 479
References 480

16 Memory Devices Based on Mass Transport in Solid Electrolytes 485

Michael N. Kozicki and Maria Mitkova

16.1 Introduction 485
16.2 Solid Electrolytes 486
16.2.1 Transport in Solid Electrolytes 486
16.2.2 Major Inorganic Solid Electrolytes 488
16.2.3 Chalcogenide Glasses as Electrolytes 490
16.2.4 The Nanostructure of Ternary Electrolytes 492
16.3 Electrochemistry and Mass Transport 494
16.3.1 Electrochemical Cells for Mass Transport 494
16.3.2 Electrodeposit Morphology 497
16.3.3 Growth Rate 500
16.3.4 Charge, Mass, Volume, and Resistance 501
16.4 Memory Devices 504
16.4.1 Device Layout and Operation 504
16.4.2 Device Examples 506
16.4.3 Technological Challenges and Future Directions 511
16.5 Conclusions 513
References 513

Index 517