
3

1

Phase Diagrams for Crystal Growth

Manfred Mühlberg

1.1
Introduction

The operating abilities of a large part of modern technological hardware (electronic
and optic devices, control and operating systems, watches, etc.) is based on active
and/or passive crystalline core pieces. For various applications the crystalline state
is required to be polycrystalline (ceramics), multigrained (solar cells), crystalline
designed (thin film sequences) or single crystalline (semiconductor and NLO
devices, CaF2 lenses, prisms, etc.). The dimension of the crystallites and crystals
covers a wide range from <nm> (nanocrystallites) and <µm> (ceramics, thin-film
arrangements) up to <mm> and <cm> scales (electronics, optics), in special cases
up to <m> scale (silicon single crystals, natural ice and quartz crystals).

This chapter is only focused on the growth conditions of so-called single crystals
in the dimension of <mm> and <cm> scale. The fabrication of such single
crystals is normally connected with the well-established growth methods named
after Bridgman, Czochralski, Verneuil or zone melting, top seeded solution growth
(TSSG), recrystallization techniques, etc. All these methods can be described by
the following definition of crystal growth:

1. In growing single crystals, one is primarily concerned with obtaining a
crystal of predetermined size with a high degree of structural perfection and
a well-determined chemical composition.

2. Growth of a single crystal requires the nucleation, subsequent growth,
eventual termination of the process and, finally, removal of the crystal from
the apparatus.

3. The transition into the solid/crystalline state can be realized from the vapor
phase, liquids or a polycrystalline solid phase. Liquid phases are melts or
high- or low-temperature solutions. The growth from liquid phases plays the
most important role.

4. Each step of the growth process is affected by controlling the experimental
parameters pressure p, temperature T , and concentration (of components) xi.
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4 1 Phase Diagrams for Crystal Growth

Paragraphs (1) and (2) are primarily determined by the growth method and
optimized technological parameters. Paragraphs (3) and (4) are correlated with
some thermodynamic terms: phases, pressure, temperature, and concentration.
In a pictorial representation crystal growth means to start in a p − T − xi phase
space at any point po, To, xi

(o). By default, the final point of the growth process is
fixed at the normal atmospheric pressure, room temperature and a desired crystal
composition. One (i), in some cases two (ii) challenges must be overcome between
the starting and final point in the phase space.

i. A phase transition (of first order) is necessary for the transfer into the
solid/crystalline state. They are denoted as sublimation, solidification, precip-
itation, recrystallization, etc.

ii. Additionally, one or more phase transitions may exist in the solidified material
between the starting and final point. The kinds of solid/solid phase transitions
are very varied (Rao and Rao [1]), and the structural quality of the grown crystal
is strongly influenced by the type of these phase transitions. Ferroelectric
compounds play an important role in several technical applications. For
this reason, ferroelectric phase transitions, classified as phase transition of
second order, are of special interest in crystal growth. The most important
materials undergoing ferroelectric phase transitions are members of the
perovskite group (LiNbO3, BaTiO3, KNbO3) and the tetragonal tungsten
bronzes (strontium barium niobate (SBN), calcium barium niobate (CBN),
potassium lithium niobate (KLN), and potassium titanyl phosphate (KTP =
KTiOPO4).

Phase diagrams represent all these transitions. Consequently, the determination,
knowledge and understanding of phase diagrams are one of the essential precon-
ditions for selection and basic application of the growth method and the growth
process.

1.2
Thermodynamics and Phase Diagrams

Phase diagrams are the reflection of thermodynamic laws and rules between
different phases in the p − T − xi phase space. The general thermodynamic
background is given in textbooks (e.g. [2, 3]). There are also some distinguished
overviews (e.g. [4]) and collections of selected phase diagrams (e.g. [5]). The aim
of this chapter is to give an overview and understanding of phase diagrams
with the dedicated focus to crystal growth. The basic thermodynamic functions
and variables are seen as prerequisite and are not included in this chapter (see
Chap. 2).

As mentioned above, the crystallization process is a phase transition of first order
characterized by a jump of the latent (transition) heat, volume and several physical
and chemical properties like heat conductivities, densities etc. The latent heat ∆Htr

must be considered as the first important parameter.
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Table 1.1 Typical values for the heat and entropy of transformation.

Kind of transformation Heat of transformation Entropy of transformation
∆ Htr [kJ/mole] ∆Str[

J
K·mole ]

solid/solid
first order 1–(5) <10
solid/liquid 10 (metals) 10

10–100 comp. 10–50
liquid/vapor 10–100 (elem.) 10

> 100 (comp.) ≈ 80

In particular, some growth processes from the melt have relatively high growth
rates, being influenced by release of the heat of fusion. There are the following
relationships between the different kinds of latent heat (legend: s/s – solid/solid;
fus – fusion; vap – vapor; sub – sublimation):

∆Hs/s < ∆Hfus < ∆Hvap;∆Hsub = ∆Hfus + ∆Hvap;∆Hfus << ∆Hsub (1.1)

Table 1.1 shows typical values being valid for the heats and entropies of transfor-
mation. The latent heats cover a range of two orders of magnitude, and we will see
later the distinctive consequences on the kind and appearance of phase diagrams.

1.2.1
One-component Systems

The second important thermodynamic function is the Gibbs free energy G de-
scribing the convertible energy amount between two phases. In an equilibrium
state between two phases in a one-component system one can write the following
approach for the change of the free energy

dGphase1 = dGphase2 (1.2)

(Vp2 − Vp1)dp − (Sp2 − Sp1) dT = 0 (1.3)

Considering:

(Sp2 − Sp1) = ∆Htr

T
; dVdp − ∆Htr

dT

T
= 0 (1.4)

dT

dp
= ∆Htr

T · ∆V
and/or

dT

dp
= T · ∆V

∆Htr (1.5)

Equations (1.5), also called the Clausius–Clapeyron (CC) equations, describe the
temperature dependence of the vapor pressure and the dependence of the vapor
pressure on the (melting) temperature, respectively. The consequences can be seen
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Fig. 1.1 Ideal (top left) and real (SiO2 [2], top right)
one-component system. DTA plot of the α–β quartz phase
transition.

at a simple one-component phase diagram, which can be articulated completely by
the CC equation.

For a solid/liquid phase transition the steepness of dp/dT can be greater or
less than zero caused by a positive or negative volume difference between the two
phases. In most cases, these differences are positive, i.e. the volume of the liquid
phase is greater than the volume of the solid state (see top left image in Fig. 1.1).
Furthermore, ∆V is very small for solid/liquid and solid/solid transitions, and
the pressure dependence on the melting point is also very small, typically in the
range of 10−3 K/bar. Additionally, a differential thermal analysis (DTA) plot of the
well-known α ↔ β quartz transition is given in the top right picture of Fig. 1.1.
The plot displays a heat effect for this transition being typical for phase transitions
of first order. On the other side, the α ↔ β quartz transition can be specified using
the Landau theory by a typical phase transition of second order. The rotation δ of the
SiO2 tetrahedrons between 16 ◦C (at room temperature) and 0 ◦C (at 573 ◦C) is
the order parameter and satisfies the classical rule δ ∼ (T − T tr)1/2. Table 1.2 shows
some examples for a positive and/or negative slope of the solid/liquid transition.
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Table 1.2 Slope of dT/dp for the types of phase transitions:
solid/solid, solid/liquid and liquid/vapor.

dT
dp (K/bar) s ↔ s s ↔ l l ↔ v

Ag +4 × 10−3

H2O −8 × 10−3 28.01
CdSe −0.2 × 10−3

HgTe +4.5 × 10−3

α ↔ β Quartz 0.021
α = Quartz. ↔ Tridymite 0.620

For transitions from a condensed phase into the vapor phase (the vapor phase is
assumed to be perfect: Vv − Vcond ≈ Vv = R·T/p) the solution of the CC equation
results in

p = p0 · exp

(
∆Htr

R

(
1

T0
− 1

T

))
(1.6)

The one-component system can be easily expanded by Raoult’s and van’t Hoff’s
laws if it is diluted. These laws describe that a low solute composition xB reduces
the freezing point of a solid phase and the partial pressure over a liquid phase
(see Fig. 1.2).

Raoult’s law: ps = (1 − xB) · p0(A) (1.7)

van’t Hoff equations:

boiling point elevation :
∆T

Tv
= xB · RTv

∆Hv
(1.8)

freezing point depression :
∆T

Tm
= −xB · RTm

∆Hf
(1.9)

Equation (1.9) is useful to derive solubility curves from limited solubility data.

1.2.2
Multicomponent Systems

For a multicomponent system Eqs. (1.2) and (1.3) can be primary extended by a
term describing the composition influence of the participated components xA,B,C,....
The thermodynamic activity of any component (e. g. A) is expressed by the chemical
potential µA

i = µA
i(0) + R·T ln xA

(i); i corresponds to solid or liquid or vapor. The
chemical potential can be understood in terms of the Gibbs free energy per mole
of substance, and it demonstrates the decreasing influence of a pure element or a
compound in a diluted system. If any pure component is diluted then the term R·T
ln xA

(i) will always take values lower than zero (note, that only an ideal solution
behavior is considered by the mole fraction xA. For real cases the so-called activity
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aA = f A·xA must be used. The activity coefficient f A collects all deviations from
an ideal solution behavior). Figure 1.3 shows the reducing influence in a diluted
solution as a function of the temperature.
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Accepting that all processes have to be discussed in a p − T − xi phase space,
Eq. (1.10) describes the complete change dG of the free energy of a multicomponent
system.

dG = Vdp − SdT +
n∑

i=1

µidxi

︸ ︷︷ ︸
T−xi phase diagrams

+ dγsurf + (..) dεelast (1.10)

For many processes the vapor pressure can be neglected and also the last two
terms must only be considered for small particles (surface influence) or nucleation
inside of a solid phase (elastic strain). They can be neglected for any bulk growth
processes from the liquid or vapor phase. These assumptions are the basis for the
presentation of the technical important T − x phase diagrams. Equation (1.10) is
reduced for the case of a two-component system A–B to

dG = Vdp − SdT + xAdµA + xBdµB (1.11)

Using the chemical potential as the ‘‘partial molar Gibbs free energy’’ in
Eq. (1.12) and accepting that many processes are running at a nearly constant
pressure (p = const.; dp = 0) one can rewrite Eq. (1.12) to Eq. (1.13) for a two
component system A–B in solid(s)/liquid(l) equilibrium

dG
s
A = dG

1
A dGA = dG

dxA
(1.12)

−(S
s
A − S

1
A)dT + RT · d ln

xs
A

x1
A

= 0 (1.13)

Replacing −(S
s
A − S

1
A) by ∆Hfus

T and integrating Eq. (1.13) gives the final
expression for an ideal binary phase diagram of a solid solution system A–B. This
equation is also indicated as the van Laar equation for a two-component system
A–B [3].

ln
xs

A

x1
A

− ln
xs

B

xl
B

= ∆HA

RT

(
1 − T

TA

)
− ∆HB

RT

(
1 − T

TB

)
(1.14)

The van Laar equation is only determined by the two melting points TA, TB and
the heats of fusion ∆HA, ∆HB of the end members A and B. Their influence on
the shape of a solid solution system can easily be shown on a PC if the equation
is converted in parametric functions [Eqs. (1.15) and (1.16)] and calculated by any
data and function plotting utility (e.g. Gnuplot [6], see Fig. 1.4).

Equations (1.15) and (1.16) illustrate the parametric function for the solidus and
liquidus curve

xs
B =

exp

{
∆HA

R

(
1

T
− 1

TA

)}
− 1

exp

{
∆HA

R

(
1

T
− 1

TA

)
− ∆HB

R

(
1

T
− 1

TB

)}
− 1

(1.15)
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xl
B =

exp

{
∆HA

R

(
1

T
− 1

TA

)}
− 1

exp

{
∆HA

R

(
1

T
− 1

TA

)}
− exp

{
∆HB

R

(
1

T
− 1

TB

)}
(1.16)

Examples for a binary complete solid solution system for the
a) solid ↔ liquid transition:

(with ∆Hf
A = ∆Hf

B = 50 kJ/mole, and for
melting points: TA = 1000 K; TB = 1400 K) and for
b) α ↔ β phase transition:
(with ∆Htr

A = ∆Htr
B = 1.5 kJ/mole

transition temperatures: TA = 500 K; TB = 900 K)
are given in Fig. 1.4.

It can be seen in Fig. 1.5 that the higher the heats of fusion the broader the
width between the liquidus and solidus lines of an ideal system. Furthermore,
the difference between the heats of fusion determines the asymmetric shape of the
phase diagram. In Section 1.3.1 the consequences of the shape of the solid solution
phase diagrams on the segregation behavior in normal freezing growth processes
will be discussed.

The extension to real cases and eutectic systems can be carried out in an
analogous manner and is described by Kubaschewski and Alcock [7].
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Fig. 1.5 Influence of the heat of fusion on the design of
solid solution phase diagrams; calculated by Eqs. (1.15) and
(1.16).

1.2.3
Gibbs Phase Rule and Phase Diagrams

The main key for the understanding of phase diagrams is the phase rule of William
Gibbs (1876)

P + F = C + 2 (1.17)

where P is the number of phases, C is the number of components in the
system, and F is the number of freedom, or variance. The definition for
the combined terms are: P – any part of a system that is physically ho-
mogeneous within itself and bounded by a surface; component C – small-
est number of independently variable chemical constituents and degree of
freedom – smallest number of intensive variables (e.g. p, T, xi of components
in each phase) that must be specified to completely describe the state of the system.

Phase diagrams are the graphical representations of the phase rule, and they
are classified by the number of components as follows: one-, two-, three-, . . .

component systems. On the other side, the phase rule is the most important tool
for verifying phase diagrams. If pressure is omitted as a variable, the number of
variables in a system is two: temperature and composition. The phase rule reduces
to F = C − P + 1 and in this form is referred to as the condensed phase rule or phase
rule for condensed systems. As an example, let us discuss the application of the
phase rule on a simple three-component system A–B–C with one compound BC.
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If at least one phase exists then there is a four-dimensional phase space
determined by the variables: p, T, xA, xB. As an illustration, we have to re-
duce the dimension of the phase space. In the first step a constant pres-
sure is assumed and the phase space is reduced to a trihedral prism with
the coordinates T, xA, xB. Normally, the projection onto this trihedral prism
is used for printing processes. Figure 1.6 and the legend give the explana-
tion for the relationship between the number of phases and the number of
freedom.

P = 1 → F = 4 p, T , xA, xB phase space
P = 1 → F = 3 T , xA, xB phase space, if p = const.
P = 2 → F = 2 BCsol. + melt

( ⊕ )
P = 3 → F = 1

(
A + BC

)
sol. + melt

(
O

)
P = 4 → F = 1

(
A + B + BC

)
sol. + melt

(
∆

)
There are several violations of the phase rule resulting in incorrect description of
phase relationships. Instructive examples of such thermodynamically impossible
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situations were given by Okamoto and Massalski [8] expressed by a fictive binary
phase diagram (points A–T in Fig. 1.7).

1.3
Phase Diagrams vs. Crystal Growth from Liquid Phases

This section will describe some special problems, violations and handicaps of crystal
growth associated with different types of phase diagrams. Growth of bulk crystals
from the liquid state plays a dominant role for many technical applications and
also in basic research. For this reason, the section is focused on growth processes
from the melt, from high-temperature solutions and from aqueous solutions. The
variable pressure cannot be neglected, but it is accepted to have little influence for
many material systems, also at elevated temperature.

Figure 1.8 in combination with Table 1.3 shows basic types of binary phase
diagrams being responsible for the mentioned growth processes. Some material
systems will be selected and discussed in more detail.

Only one type has the identical composition of the melt and the solid crystalline
phase at a congruent melting composition/point. This point corresponds to a
distribution coefficient ko = 1, and it is the best condition for growth from a
liquid phase. An equilibrium between the solid and liquid phase in all other cases
is characterized by a composition difference and consequently the existence of
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Fig. 1.8 Important phase diagram types being relevant for
crystal growth from the melt and from solution.

Table 1.3 The four main types of the liquid/solid transition
being important for crystal growth.

Solid-solution system Congruent melting Incongruent melting Eutectic system
• nonstoich. melt • phase transition
• HT – solutions • Tm lowering

• pressure lowering

Bridgman method Czochralski method TSSG, THM TSSG, THM
Czochralski method Bridgman method solution growth solution growth
(Si,Ge) GaAs, InP KNbO3 BaTiO3

(Hg,Cd)Te LiNbO3, SrTiO3 KTiOPO4 (KTP) β − BaB2O4 (BBO)
(Sr,Ba)NB2O6 garnets (e.g. YAG) garnet (YIG)
segregation!! preferable inclusions!! inclusions!!

distribution coefficients not equal to unity. Segregation of the components and
capture of solvent are the main problems for growth from solutions. Inclusions
are a form of growth instability that in the case of growth from melts can be
prevented by high purity and by an appropriate temperature gradient at the
growth front defined by the constitutional supercooling criterion. In growth from
solutions, inclusions of solvent can be prevented by applying a growth rate below
the maximum stable growth rate that can be derived from the phase diagram
(concentration, solubility curve) as discussed in Chapter 6 of Elwell and Scheel [9].
Forced convection along the growth interface reduces the diffusion boundary layer,
and thus allows to increase stable growth rates. Furthermore, the seeding of the
growth process is complicated in these cases. The precise knowledge of the liquidus
curve is required in order to avoid either spontaneous crystallization or dissolving
of the seed crystal. For this reason, any crystal growth laboratory should closely
cooperate with a laboratory for thermal analysis. Also, the reinvestigation of known
and published phase diagrams is necessary in many cases. Figure 1.9 shows an
example of considerable differences between published data and the reinvestigated
phase diagram.
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1.3.1
Solid-solution Systems

Segregation is always included in crystal growth of solid solution systems from
the melt. The Bridgman and (in parts) the Czochalski method are termed normal
freezing methods, i.e. the whole melt volume will be transferred into the solid state.
In this well-arranged case the distribution function is described by the so-called
Pfann/Scheil equation. A complete mixing of the melt at each time is assumed to
exist for the derivation of this equation

xs = ko · xo

(
1 − z

L

)ko−1

(1.18)

with xs – crystal composition, xo – starting melt composition, ko – (nearly
equilibrium) distribution coefficient, z – current axial position, L – total length of
the crystal.

The distribution situation for ko < 1 and ko > should be known and is given
in textbooks with respect to crystal growth. A nearly complete mixing at reduced
growth velocities can be realized in many growth processes and the simplified
conditions were very well reflected by Eq. (1.18).

A common problem in growth of solid solution crystals are striations, i.e.
growth bands with varying concentrations. Striations are caused by temperature
fluctuations, not by hydrodynamic fluctuations in a system of homogeneous tem-
perature (Scheel and Swendsen [13], Scheel [14]). For the example of KTa1−xNbxO3
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(KTN) Rytz and Scheel [15] have derived from the phase diagram the theo-
retical requirements of precise temperature control and forced convection to
homogenize the high-temperature solution in order to achieve striation-free KTN
crystals.

Considerable deviations from the ideal behavior expressed by Eq. (1.18) can be
seen in growth of the complete solid solution system (Hg,Cd)Te. This system
shows a remarkable separation between the solidus and liquidus curve [16].
Figure 1.10 shows the axial segregation curve for a Bridgman-grown Hg1−xCdxTe
crystal. The curve can be classified into three parts: a) the first-to-freeze region has
an abnormal course caused by spontaneous crystallization of the undercooled tip
region in the ampoule. If low axial temperature gradients ≈10 K/cm and very pure
(semiconducting) materials are used then an undercooling of several centimeter
is developed followed by a breaking down, abnormal segregation curve and a
multigrained tip region [17]. b) + c) ko ≈ 3 and ko ≈ 2 region: because the splitting
up of the liquidus and solidus curve, the values for ko are not constant during the
entire growth process.

1.3.2
Materials with a Congruently Melting Composition

A materials system with a congruently melting composition is particularly suitable
for crystal growth from the melt. Thus, only elements (e.g. silicon) or compounds
with a congruently melting composition can be grown as large crystals for im-
portant technical applications. Note that for thermodynamic reasons, the exact
congruently melting composition of compounds is not identical with its stoichio-
metric composition. There are deviations within the stability regions between
nearly 0 and about 2 mole fraction. Figure 1.11 shows the simple binary phase
diagram Pb–Te. PbTe crystallizing in the sodium chloride structure is the only
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Fig. 1.11 Phase diagram of the binary system Pb–Te and
stability region of PbTe (left). Te precipitations in PbTe
made visible by transmission electron microscopy (right)
[19].

compound in this system. The stability region of PbTe covers the stoichiometric
line and has been well investigated by Hall effect measurements of annealed
and quenched samples. Deviations up to 1019 cm−3 can be easily detected be-
cause this level is about three orders of magnitude higher than the impurity
level of the used 6N materials (impurity level corresponds to about 1016 cm−3).
All stability regions show a retrograde solubility. The retrograde solubility is respon-
sible for formation of precipitates during the cooling process of a grown crystal.
The right image in Fig. 1.11 shows small Te precipitations in PbTe detected by
transmission electron microscopy and identified by electron diffraction and Moiré
fringes.

An excellent introduction into the thermochemistry of nonstoichiometric com-
pounds was given by Albers and Haas [18].

1.3.3
Materials with an Incongruently Melting Composition

A distinctive feature in crystal growth of these materials is the composition
difference between the liquid and solid phase, especially at the growing interface.
The two right phase diagram types in Fig. 1.8 describe the crystal growth from
high- or low-temperature solutions or from nonstoichiometric melts. Growth
processes are characterized by a slow lowering of the temperature in order to
force the crystallization. The mentioned phase diagram types in Fig. 1.8 allow
growth of materials with incongruently melting compositions and materials with
a solid/solid phase transition. Furthermore, the application of a suitable solvent or
nonstoichiometric composition is capable of reducing a high growth temperature
or pressure, so that growth close to thermal equilibrium may yield crystals with a
high structural perfection. As am example, SrTiO3 can be mentioned that has been
grown from the melt (Verneuil method), by top-seeded solution growth (TSSG), and
at the lowest temperature from a Sr-Li-borate flux (Scheel et al. [20]). The measured
dislocation densities of 106 − 107, 101 − 102, and 0 − 102 cm−2, respectively,
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demonstrate the improved structural perfection at decreasing growth temperature.
Adverse aspects are the low growth rate (≈ grams per day) and the low crystal yield,
especially if the slope ∆T

∆x of the liquidus curve is large. Concerning the solvent,
there are several requirements (see also Chapter 3 of Elwell and Scheel [9]): high
solubility of the component of interest, no (or low) chemical reactivity between
material and solvent, low vapor pressure, minor differences in heat conductivity
between the material and the solvent, easily removed after the growth process, high
purity, and low toxicity. In growth from high-temperature solutions the so-called
top-seeded solution growth (TSSG) method is widely used. Figure 1.12 shows three
examples of single crystals grown by the TSSG method. Note the well-defined
crystallographic equilibrium faces. As mentioned above, only a limited part of a
solution can be transferred into the solid state depending on the phase diagram.
It is shown from Fig. 1.13 that the growth is practicable in the range ∆xo = xe −
xo. The obtainable crystal size Vcr is a function of the steepness of the liquidus
curve and the inserted solution charge Vch. The relative crystal yield described

(a)

(c)

(b)

Fig. 1.12 Three examples for crystal growth from solu-
tion: Boron-sillenite Bi24B2O39 (PSG: 23) [15] (top left),
Bi2ZnB2O7 (PSG: mm2) [unpublished], Bi2Ga4O9 (PSG:
mmm) [22] (bottom).
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Fig. 1.13 Phase diagram of an incongruently melting com-
pound xc and representation of the limited yield of crystal
size at growth from solution.

by the ratio
( Vcr

Vch

)∗
can be estimated by a balance equation (see right image in

Fig. 1.13)

(xo − xc) ·
(

Vcr

Vch

)∗
= (xe − xo) ·

[
1 −

(
Vcr

Vch

)∗]
(1.19)

to be:(
Vcr

Vch

)∗
≈ xe − xo

xe − xc
= ∆xo

xe − xc
(1.20)

An estimation of the relative crystal size is based on the corresponding phase
diagrams. Using these equations the yields

( Vcr
Vch

)∗
represent for KNbO3 94%, for

BaTiO3 18% and for Bi2Al4O9 7% (!). Crystal growth of ZnSe from a SnSe solution
zone by the traveling heater method (THM) is an example of using a suitable
solvent [23], see Fig. 1.14. ZnSe is a high-melting semiconducting compound with
a melting point at about 1525 ◦C. Since the application of silica ampoules is limited
up to about 1200 ◦C, the solvent for ZnSe should be an end member of a eutectic
system with a eutectic line clearly below 1200 ◦C. SnSe melts at about 900 ◦C and
the eutectic line is at about 850 ◦C. If no detailed data are available then the rule
of Kordes [24] may be helpful for proposing an approximate phase diagram. This
rule states in a eutectic system that the higher the difference between the melting
temperatures of the end members the narrower the eutectic composition is located
at the end member with the lowest melting temperature. Figure 1.15 shows a
simple eutectic system, and on the right side some examples for the validity of
the rule of Kordes if a linear relationship of this rule is fitted. The rule is very
well fulfilled by the quasibinary system ZnSe–SnSe (see Fig. 1.15, left). Assuming
that two components form a eutectic system and the melting points are known
than the eutectic composition can be estimated on the basis of the rule of Kordes.
Knowing these three points, the approximate path of the liquidus lines can be
found.
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Fig. 1.14 The quasibinary phase diagram SnSe–ZnSe and
the setup for the traveling heater method (THM). ZnSe sin-
gle crystal grown by THM and using SnSe as solvent (top
right).

1.3.4
Materials with Solid–Solid Phase Transitions

Solid/solid phase transitions restrict the possibilities of successful crystal growth.
Depending on the types of phase transitions additional structural defects will
be involved in the grown ingot during the cooling process. A phase transition
handicap can be avoided if there exists a liquidus line at lower temperatures than
the transition temperature. Such a case is demonstrated in the right image of
Fig. 1.8. An example is BaTiO3 showing a congruent melting point at 1618 ◦C
[25]. At 1460 ◦C there is a phase transition from hexagonal to cubic BaTiO3.
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Fig. 1.15 Simple eutectic system and some examples for the validity of the rule of Kordes.

Successful growth is possible by the TSSG method using a mixture containing
an excess of TiO2. Furthermore, the cubic phase (PSG: m3m) is transformed
into the ferroelectric tetragonal phase (PSG: 4mm) at about 120 ◦C. Additional
phase transitions into a orthorhombic (mm2) and rhombohedral (3m) phase
will take place at 9 ◦C and −90 ◦C, respectively. Ferroelectric phase transitions are
correlated with the formation of domain structures obeying the laws of group theory.
Some examples of ferroelectric phase transitions are given in the left image of
Fig. 1.16. In many cases the phase transitions ‘‘are accepted’’ by the grown crystal.
Single-domain material can be formed by applying a high voltage electric field in
such cases like BaTiO3, KNbO3 and the ferroelectric tungsten bronzes SBN and
CBN. A special situation is given for LiNbO3. Single-domain LiNbO3 is produced
by applying an electric field during the growth process because the phase transition
3m → 3m is several degrees below the melting temperature.

Cracking or distortion occurs if the thermal expansion is strongly influenced
by the phase transition. The bottom left image of Fig. 1.16 shows the anomalous
thermal expansion in the [001] and [hk0] direction of the tetragonal calcium
barium niobate. This material undergoes a ferroelectric phase transition of the type
4/m mm−→4mm and formation of 180 ◦ domain structure. Potassium lithium
niobate shows the same transition type characterized by cracking along (hk0) faces
(see Fig. 1.16, right).

1.3.5
Growth from Aqueous Solution

The widely used crystal growth from aqueous solutions can be described in the
same manner as growth from high-temperature solutions. Figure 1.17 shows a
common phase diagram of a system H2O–anhydrous salt. It must be pointed
out that in many cases salt compounds exist with different water content in the
crystalline structure. Salts with a water content are regarded as discrete peritectic
melting compounds. Based on the phase diagram type of Fig. 1.17 these compounds



22 1 Phase Diagrams for Crystal Growth

(b)

Phase transition

[hk0]

[001]

0.0050

0.0040

0.0030

0.0020

D
ef

or
m

at
io

n 
e

11
 a

nd
 e

33

0.0010

0.0000
0 50 100 150 200 250 300 350 400 450

Temperature [°C](c)

3m m3m

m3m

4 / m mm

4 / m mm

3m

−90

−10

5 120

225

240-300

450-500

500 °C 1000 °C 1500 °C

1036-1070

1445-1470

418 1060

1460

m
m

2

mm2

4m
m

4mm

4mm

4mm

BaTiO3

KNbO3

(Ca, Ba)5Nb10O30

0.20 ≤ xca ≤ 0.40

K6Li4Nb10O30

non-stoich. comp.

Room
temperature

(a)

1618

Fig. 1.16 Some ferroelectric compounds and their phase
transition types and temperatures. Different thermal expan-
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Cracking along (hk0) faces in potassium lithium niobate
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can only be grown within a limited temperature region. The higher the growth
temperature the lower the water content in the salt. For this reason, only a
limited number of compounds can be obtained as anhydrous salt. The right image
in Fig. 1.17 shows solubility curves of several salts. It can be seen that in the
case of NaI the access to the anhydrous salt is only possible at a temperature
higher than about 65 ◦C. Convenient growth conditions are given if there is a
moderate slope dT/dx. Unfortunately, sodium chloride as the most common salt
on earth shows a very steep dependence dT/dx, and it is difficult to grow large
crystals.
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1.3.6
No Correlation to Phase Diagrams: Anisotropic Growth

Phase diagrams have only a thermodynamic background, but actual crystal growth is
also influenced by crystallographic characteristics, by kinetics, and by technological
parameters of the growth method. Materials with a cubic symmetry show isotropic
physical properties. Consequently, cubic crystals take an isometric shape and grow
with small differences in unequal [hkl] directions as long as crystals are grown in
stable growth conditions. Otherwise, unstable growth may lead to dendrites, to
platelet growth by the leading-edge growth mechanism (Scheel and Niedermann
[26]), or to needles and whiskers. All noncubic materials are characterized by a
more or less pronounced anisotropic growth behavior. In all other crystal systems
the habit is intermediate between two singularities referred to as plate and needle
shaped (see Fig. 1.18). This means that crystals can be elongated parallel to a
symmetry dominated axis, e.g. the c-axis in the tetragonal, hexagonal and trigonal
system or the b-axis in the monoclinic system. On the other side, in the case of
plate-shaped growth the influence of the symmetry dominated axis is extremely
suppressed.

An additional aspect of anisotropic growth is related to crystals with polar
structures. In particular, crystals with the point symmetry groups 2, 3, 3m, 4, 4mm,
6, 6mm can show a ratio in growth velocities along the polar axis up to 10(!).

1.4
Conclusions

Phase diagrams are the complete or partial graphical description of the existence
of an element or a compound in the pressure–temperature–composition (p–T–xi)
space. The validity of nearly equilibrium conditions are assumed. The knowledge
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Fig. 1.18 The three basic types of growth behaviors and typical examples.

and understanding of phase diagrams are the most important condition both
for the selection of the growth principle and the adjusting of several technological
parameters. For this reason there are several phase diagram collections and software
programs for calculation of phase relationships.

Many published phase diagrams have errors and/or inaccurate data. The thermal
analysis (differential thermal analysis (DTA), differential scanning calorimetry
(DSC) and thermogravimetry (TG)) in combination with phase analysis by X-ray
diffraction are the main methods for the investigation of phase diagrams in the
periphery of a crystal growth lab. Special measurement methods (e.g. Bourdon
manometer) are needed for phase analysis if any gaseous state must be considered.
Furthermore, the thermomechanical analysis (TMA) is a very sensitive method for
detection and characterization of solid/solid phase transitions.

The Gibbs phase rule is the most important tool for checking the correctness of
determined phase relations. There are also some additional useful rules like the
rule of Kordes for selection of applicable phase diagrams.

In all cases of crystal growth from solution, the precise knowledge of the liq-
uidus curve is necessary because inserting a seed crystal into the solution requires
conditions close to the thermal equilibrium. Finally, phase transitions of first,
second or higher order can influence successful growth and must be considered in
(re)investigations of phase-diagram studies. Note that only a thermodynamic back-
ground is reflected by phase diagrams. Actual growth conditions can be markedly
influenced by crystallographic characteristics, by kinetics and by technological pa-
rameters. More or less anisotropic growth behavior must be expected in materials
with lower crystal symmetry.
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