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Introduction

The book of nature you can only understand, if you have
previously learnt its language and the letters. It is written in
mathematical language and the letters are geometrical figures,
and without these means it is impossible for human beings to
understand even a word of it.

Galileo Galilei, 16th century

1.1

Theory and Models – Interpretation of Experimental Data

Every experimental result is – at the best – as good as the theoretical model used for its
interpretation. . . . This sentence has been chosen as a leading remark for this

book, as chemistry is still largely a field of science dominated by more or less sim-

ple models employed to ‘explain’ (rather: describe) the behaviour of molecules,

their interactions and reactions, and to interpret all the data acquired by sophisti-

cated measurements. The terminology introduced by these models is very rarely

questioned for its validity and compatibility with state-of-the-art theoretical knowl-

edge, and thus many of the interpretations of experimental data and subsequent

conclusions could be inappropriate or even erroneous. On the other hand, a valid

theoretical background for chemistry has been existent since 1926, when Erwin

Schrödinger formulated his famous equation. The reason why theory has not yet

penetrated chemistry as it did physics during the early 20th century is to be seen

in the inability to solve Schrödinger’s equation by analytical methods for other

than one-electron systems. To date, only numerical solutions are possible, and

one had to wait for the capacity of high-performance computers to deal with

chemically relevant systems to test, prove, and successfully apply theoretical

chemistry methods. This capability has been reached only recently – for a larger

scientific community during the past two decades – and it can be expected, there-

fore, that the 21st century will be the one in which theory is given a much greater

role in chemistry, reforming curricula and research practice similar to the devel-

opment of physics some 100 years ago.
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Today, computational chemistry methods are almost ubiquitously used, and

publications frequently contain ‘theoretical’ sections which are often nothing

more than black-box applications of commercial program packages. Such an in-

appropriate use of theoretical methods is often caused by a lack of knowledge of

the quantum theoretical foundations of the available programs and a simultane-

ous adherence to simplistic models employed to interpret the quantitative results

obtained by the computations in qualitative terms of these models.

The purpose of this book is to familiarise not only chemistry students, but also

those chemists who did not have the chance to obtain a good theoretical back-

ground during their studies, with the basics of theoretical and computational

chemistry. To an extent, this should enable them to understand the underlying

physical principles, to judge the validity of the commonly used models, and to ob-

tain sufficient knowledge to use computational chemistry methods in a prudent

and appropriate way. In order to achieve these goals, mathematical requirements

have been reduced to a minimum, without sacrificing physical rigour in the theo-

retical framework. This could be realised by using the vector space theory of

matter with its largely linear algebraic formalism instead of the commonly em-

ployed formalism of integro-differential equations following the historical devel-

opment of quantum chemistry. Detailed descriptions of procedures that might

be important for the specialist – but not for the generally interested reader –

have been omitted for the sake of clarity and conciseness. In the final sections,

the basic principles of perturbation theory and group theory are outlined with

regard to their use in chemistry, and a brief overview of the most important

methods in contemporary computational chemistry is provided. Thus, the book

should serve as a good general introduction into theory of chemistry and create

a good basis for further, more specialised reading, wherever this is needed or

desired.

Before starting the first chapters of this book, it seems important to attempt a

definition of the difference between ‘models’ and ‘theory’. A ‘model’ can be con-

sidered a fiction with a certain power to indicate some aspects of ‘reality’ and to

rationalise a (limited) number of observations, sometimes also allowing some

predictions. A ‘theory’ should allow a general and precise explanation/description

of all (or at least as many as possible) phenomena and a reliable prediction of

the results of any future observation. In this case, the fewer postulates needed

in its formalism and the wider its field of validity, the better the theory. Chemistry

is in the somewhat fortunate situation of being mainly concerned with very

few of the manifold elementary particles, namely with electrons, nuclei (which

can mostly be treated as charged masses of virtually no dimension), and photons.

During the course of this book it will be seen that a theoretical concept for

this case can be built on three well-proven postulates and two empirical obser-

vations, and that all further aspects of the theory result as logical conse-

quences, thus making the development of the theory a straightforward procedure.

Figure 1.1 provides a schematic overview of the general concept followed in this

book.
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1.2

The Notation

To facilitate reading of this book, the consistent notation used in it will be sum-

marised here, defining symbols and associated meanings. The following list

should also serve as a convenient tool to identify any specific notation used in

the text.

jxi denotes a vector in the ‘ket’ space, hxj denotes the complex conjugated and

transposed of jxi, and thus a vector of the ‘bra’ space.

Fig. 1.1 ‘Float Chart’ of the concept followed by this book. Postulates

are indicated by red, empirical observations by green, and mathematical

concepts by blue.
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The associated sets of vectors are called ‘bra’ and ‘ket’, because h i corresponds

to a ‘bracket’. This notation is also known as Dirac notation. In detail, the vectors

are defined as follows:

jxi ¼ ðx1; x2; . . .Þ hxj ¼
x�
1

x�
2

� � �

0B@
1CA

j denotes a function, and is usually also written as a vector jji, due to the essen-

tial equivalence of a function with a vector: if we write the values of a function at

subsequent values of its variable, we obtain an n-tuple of numbers, i.e., a vector

(‘digitised function’).

A or S (‘fat symbols’) are used for matrices, and this is equally applied to Greek

letters: F and C denotes matrices.

The determinant of a matrix is given by jAj ¼ detðAÞ. The transposed matrix A
is written as AT , the adjugate matrix as Aþ and the inverse as A�1.

1 ¼

1 � � � j

j � � � j

� � � � � � � � �
j � � � 1

0BBB@
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is the unit matrix and 0 the zero-matrix (containing only j values).

Vectors and functions are often constructed from sets of more or less simple

‘basis’ vectors/functions. feign and fjign indicate such basis sets.

Operators will be marked with a hat; for example, ĤH stands for the Hamilton

operator. Special operators are the direct-suml and the direct-productn opera-

tors and the 1̂1 (identity) and 0̂0 (annihilation) operators.

Two other frequently used special operators are the Nabla and the Laplace oper-

ator:

Nabla operator: ‘ ¼ q

qx
jiiþ q

qy
j jiþ q

qz
jki

Laplace operator: D ¼ q2

qx2
þ q2

qy2
þ q2

qz2

The Nabla operator is a vector operator, while the Laplace operator is scalar, re-

sulting from the scalar product of the Nabla Operator with itself: D ¼ h‘j‘i.
The Kronecker–Delta is another important notation, meaning:

dij ¼
1 Ei ¼ j

j otherwise

�
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The following symbols are also used in this book with the meanings:

b . . . there is

E . . . for all

A . . . is an element of

iff . . . if and only if

dt ¼ dx dy dz

1.3

Vector Space V n and Function Space F n

V n denotes a vector space of the dimension n. Thus, V 2 is a two-dimensional vec-

tor space (i.e., a plane) and V 3 is a three-dimensional vector space, corresponding

to our familiar x/y/z coordinate system. To describe a vector space, one needs

‘basis vectors’: n linearly independent vectors span an n-dimensional vector

space. Linear independence means that none of these basis vectors can be con-

structed by a linear combination of the other n� 1 basis vectors. If all basis vec-

tors are perpendicular to each other, they form an orthogonal basis set.

Basis sets are denoted as feign for V n. In Cartesian coordinates the basis for the

V 3 consists of three basis vectors in x-, y-, and z-direction:

feig3 ¼ ðjii; j ji; jkiÞ

The function space Fn is the analogue of the vector space, using n linearly in-

dependent functions ji as basis fjign.
Basically, a function is a transformation from the variable x to its function

value f ðxÞ. In fact it is a continuous transformation, but if one digitizes the func-

tion in steps Dx, a finite vector is obtained instead of the function. So, x is repro-

duced as f1, x þ Dx as f2 and so on, resulting in an n-tuple of numbers

ð f1; f2; . . .Þ. If Dx decreases toward zero, the dimension of the vectors grows, fi-

nally reaching infinity, i.e., a vector in Vy.

The equivalence between vector and function space will be used throughout

this book, as it allows a much more convenient and easier-to-manipulate formu-

lation of equations, which can easily be transformed into computer language.

The Scalar Product

Given, the vectors jai and jbi, the scalar product hajbi is obtained by
P

i a
�
i � bi.

The analogue for functions is a sum with infinitesimal step width, i.e., an inte-

gral. Thus, hj1jj2i corresponds to
Ð
j�
1 � j2 dt. We will make continuous use of
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this simplified notation of integrals in function space as scalar products in vector

space.

1.4

Linear Transformation – Change of Basis

Often it is an advantage to change bases. To change from a basis feign ¼ ðe1 . . . enÞ
to another basis of the same dimension n, fxign ¼ ðx1 . . . xnÞ, one performs a

linear tranformation. As an example we will consider a vector jui, represented in

both bases.

Let jui be an element of V 2, given in feig2 as jui e ¼ 3je1iþ 2je2i. We wish to

obtain its representation in fxig2, namely juix. For this purpose, we must know

the relationship between the two bases. As every vector of V 2 can be constructed

from a given basis set, the two vectors forming the basis fxig2 can also be con-

structed from the basis vectors of feig2. In our example, let the connection be-

tween the different basis vectors be given by:

jx1i ¼ 2je1i� je2i and jx2i ¼ je1iþ 3je2i:

In matrix notation this reads X ¼ E �
2 1

�1 3

� �
¼ E � T, or XT�1 ¼ E, where T

is the transformation matrix from E to X.

We can now write

U ¼ E
3

2

� �
¼ XT�1

3

2

� �

with T�1 ¼
3
7 �1

7
1
7

2
7

 !
, we obtain U ¼ X �

1

1

� �
or juix ¼ jx1iþ jx2i. This

small example demonstrates that we only have to know the transformation matrix

between two bases to calculate the coefficients of a vector given in one basis in the

other one.

1.5

Normalisation and Orthogonalisation of Vectors

A vector is called normalised, if the scalar product with itself equals 1, and when

the scalar product of two different vectors yields zero, they are called orthogonal

to each other. If a set of vectors fulfils the condition heijeji ¼ dij, they form an

orthonormalised or unitary vector system, respectively. To normalise a vector jui,
one calculates

juiffiffiffiffiffiffiffiffiffi
hujui

p ¼ jui
juj ¼ jeui, where jeui results as a normalised or ‘unit’
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vector in the direction of jui. Orthogonalisation of basis vectors can be achieved

by a stepwise procedure (‘Schmidt Orthogonalisation’), but there is a very conve-

nient way to orthonormalise a complete basis set at once applying the Löwdin Or-
thonormalisation.
Let us note the basis fxig as matrix X. hXjXi ¼ D and is called the metrix of

X. The metrix is defined by:

D ¼

hx1jx1i hx1jx2i � � � hx1jxni
hx2jx1i � � � � � � � � �

� � � � � � � � � � � �
hxnjx1i � � � � � � hxnjxni

0BBBB@
1CCCCA

We now form a new basis matrix X 0 by multiplying the original basis by D�1
2:

X � D�1
2 ¼ X 0

It is easily shown that the new basis set fx 0
i g consists of orthonormalised vectors:

hX 0jX 0i ¼ hD�1
2 �XjX � D�1

2i ¼ D�1
2hXjXiD�1

2 ¼ D�1
2 � D � D�1

2

¼ Dþ1
2 � D�1

2 ¼ 1

It will prove very convenient to use orthonormalised basis sets in many cases.

With the help of the Löwdin procedure, we can always convert any primary choice

of basis set into an orthonormalised one.

1.6

Matrix Representation of the Scalar Product

The scalar product of two vectors is given by

hujvi ¼
X
i

u�
i � vi ¼ Uþ �V

The latter expression corresponds to the matrix notation, and it is evident that the

matrices U and V have to correspond to the same basis feig. Explicitly, the vec-

tors are given as:

jui ¼ cu1 � je1iþ cu2 � je2iþ � � � þ cun � jeni ¼ E �Cu

jvi ¼ cv1 � je1iþ cv2 � je2iþ � � � þ cvn � jeni ¼ E �Cv

where E represents the basis, and the coefficients ðcu1 ; cu2 ; . . . ; cunÞ of jui form

the column vector Cu, the coefficients of jvi the column vector Cv. Thus, the
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scalar product of jui and jvi is given by:

hujvi ¼ Uþ �V ¼ Cþ
u hEjEiCv ¼ Cþ

u DCv

or simply by Cþ
u Cv, if the basis is orthonormalised.

The same formalism is valid in function space. Instead of feig we use fjig

cu ¼ F �Cu

cv ¼ F �Cv

The scalar product hcujcvi – corresponding to integration – is thus given as

Cþ
u hFjFiCv with hFjFi ¼ S, the metrix, which is called the overlap integral

matrix in function space.

S ¼
hj1jj1i � � � hj1jjni

� � �
hjnjj1i � � � hjnjjni

0B@
1CA

S ¼

Ð
j�
1j1 dt � � �

Ð
j�
1jn dt

� � �Ð
j�
nj1 dt � � �

Ð
j�
njn dt

0BB@
1CCA

if hjijjji ¼ dij, then S ¼ 1.

The Löwdin orthonormalisation can be analogously performed in function

space: starting from an arbitrary basis fjig one obtains hFjFi ¼ S, and trans-

forming the basis by F 0 ¼ F � S�1
2, one has hF 0jF 0i ¼ 1, which means that F 0

is the desired orthonormalised basis.

1.7

Dual Vector Space and Hilbert Space

While talking of scalar products, we have silently assumed that we can find a

transposed, complex conjugated form for every vector as well, thus implying the

condition:

bhajEjai A V n

A vector space fulfilling this condition is called a Dual Vector Space. This condi-
tion is essential for a vector space describing a physical system, as the evaluation

of physical quantities implies the formation of scalar products. In addition to

that, two further conditions will be imposed on the vector space we are going to

use for the description of matter, namely the two Cauchy convergence criteria:

Xy
i¼1

hCijCii < y
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and

lim
M;N!y

X
n

jCM
n �CN

n j
2 ¼ j

employing different representations of C.

These criteria are also termed ‘quadratic convergence’ of the vector space/

function space, and a dual vector space fulfilling them is called a Hilbert Space.
In the next section we will see that quadratic convergence is required in order to

guarantee the normalisability of a system to a finite number of particles.

1.8

Probability Concept and the C Function

The probability concept implies that we can describe any physical system by a

function/vector containing all the information about this system, i.e. its proper-

ties as a function of coordinates, and that we can evaluate the probability for any

state of the system from this function by the product C�C. The overall probability

is then given by the scalar productðy
�y

C� �C dt ¼ hCjCi

It is now understood, why quadratic convergence of the vector space to which

jCi belongs is required, as otherwise the overall probability could not be re-

strained to a finite value.

The probability function is usually formulated as a function of space coordi-

nates and the time coordinate as Cðri; tÞ, but in some cases the use of momen-

tum coordinates (‘momentum space’) and time as Cðjpii; tÞ is advantageous.
The concept describing a physical system by a probability function/vector de-

pending on a few variables implies that other physical variables must be eval-

uated from this function/vector. The mathematical instruments achieving this

are called operators, and the general definition and properties of such operators

will be detailed in the next section.

1.9

Operators

In this textbook, an operator is marked with a ‘hat’, (e.g., ĤH). The operator’s

action in vector space can be illustrated, if we consider the vector jxi and an op-

erator ÂA: ÂAjxi ¼ jx 0i, i.e., the operator transforms the original vector, in general

by changing its amount and its direction, into a new vector. One also says that the

original vector is mapped onto an image vector. Some examples of operators are
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bC2C2, representing a rotation by 180 degrees and bCjCj, corresponding to a rotation by

the angle j. Another example is the inversion operator îi, by which every compo-

nent of the vector is mapped onto its inverse, such as x ! �x. In V 3 the matrix I
representing this operator is:

I ¼
�1 0 0

0 �1 0

0 0 �1

0B@
1CA

As the inversion operator and this matrix are associated by îiX ¼ XI, every oper-

ator can be represented in matrix form, once a vector space has been defined by a

concrete basis.

It will be useful to summarise a few basic definitions and rules for operators.

There are two types of operator: (i) regular operators, for which a one-to-one cor-

respondence between original vectors and image vectors exists; and (ii) singular
operators, for which the correspondence is only unidirectional from original vec-

tors to image vectors. The previously given inversion operator is an example of a

regular operator, the square operator ð Þ2 is a singular operator, as it is not possi-

ble to distinguish from a value 4 whether the original value in the domain of the

operator was 2 or �2 (the set of all original vectors is called its ‘domain’).

An inverse operator multiplied with its source operator results in the unity oper-
ator, according to ÂA�1ÂA ¼ 1̂1.

In general, operators are not commutative, i.e., ÂAB̂B0 B̂BÂA.
Linear operators are defined by the following conditions:

� ÂAðjuiþ jviÞ ¼ ÂAjuiþ ÂAjvi
� ÂAðkjuiÞ ¼ kÂAjui, k being a scalar
� ð bA1A1 þ bA2A2Þjui ¼ bA1A1juiþ bA2A2jui

Most of the operators we are using in vector space theory of matter are linear

operators.

1.10

Representation of Operators in a Basis

In a given basis feign, an operator will act on each of the basis vectors by trans-

forming it into another vector, which will also be an element of the same vector

space ÂAje1i ¼ je 0i A V n, and can be constructed, therefore, as a linear combina-

tion of all original basis vectors:

ÂAje1i ¼ a11je1iþ a12je2iþ � � � þ a1njeni ¼
X
i

a1ijeii

ÂAje2i ¼
X
i

a2ijeii; until ÂAjeni ¼
X
i

anijeii
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The first index of a1i; a2i; . . . ani specifies which basis vector is transformed. All of

these equations can be shortly summarised in matrix form as

ÂAE ¼ EAe ð1Þ

where Ae contains all coefficients aij and is thus a complete representation of the

operator in the basis feign. If Eq. (1) is multiplied with the basis in the bra space,

one obtains: hEjÂAEi ¼ hEjEiAe and from this

Ae ¼ hEjÂAEi

hEjEi

which is the general expression for the representation of the operator in the given

basis. This expression is also termed the expectation value of the operator ÂA. For
orthonormal bases, this reduces to Ae ¼ hEjÂAEi.
The matrix Ae contains the following elements:

Ae ¼

he1jÂAe1i he1jÂAe2i � � � he1jÂAeni
he2jÂAe1i � � � � � � � � �

� � � � � � � � � � � �
henjÂAe1i � � � � � � henjÂAeni

0BBBB@
1CCCCA

In function space the analogous representation of an operator in a basis of func-

tions is given as

Aj ¼ hFjÂAFi

hFjFi
or hFjÂAFi

for an orthonormalised basis set. In detail, this matrix consists of the elements:

Aj ¼

Ð
j�
1 ÂAj1 dt � � �

Ð
j�
1 ÂAjn dt

� � � � � � � � �Ð
j�
nÂAj1 dt � � �

Ð
j�
nÂAjn dt

0BB@
1CCA

In order to recall the correspondence between scalar products and integrals, the

elements of this matrix have been written as integrals.

1.11

Change of Basis in Representations of Operators

If we have two different bases feig and f fig, whose connection is given by

F ¼ ET (linear transformation), we can connotate the equation ÂAjui ¼ jvi as

V e ¼ AeUe or V f ¼ A fU f , depending on the chosen basis.
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Based on Ue ¼ TU f and V e ¼ TV f we can formulate TV f ¼ AeTU f , which

upon multiplication with T�1 from the left leads to

V f ¼ T�1AeTU f ¼ A fV f ;

from which follows

A f ¼ T�1AeT

Such a transformation is called similarity transformation, and if T�1 ¼ Tþ, unitary
transformation.
Changing the basis (e.g., a coordinate system) must not change the physics of

the system. Besides the expectation value, two further properties of a matrix are

invariant in similarity transformations, namely the determinant and the trace of

the matrix:

detðAÞ ¼ detðT�1ATÞ

trðAÞ ¼
X
i

aii ¼ trðT�1ATÞ

Consequently, all physical quantities associated with the operator will have to

be associated with its expectation value, the determinant, and/or trace of its rep-

resentation matrix.

Test Questions Related to this Chapter

1. Why can we treat functions as vectors?

2. What are the differences between a model and a theory?

3. Why does vector space designed to describe matter have to be

a Hilbert space?

4. Can we use the probability concept in classical physics?

5. What possibilities exceeding classical physics offer the

probability concept in the description of particle behaviour?

6. What consequences does the probability concept have for the

evaluation of physical variables?

7. What is a unitary transformation, and which characteristics

of a matrix are invariant to it?
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