Contents

List of Contributors XV Preface XIX A Personal Foreword XXI

Part One Overview of Aspartic Acid Proteases 1

1 Introduction to the Aspartic Proteinase Family 3

v

Ben M. Dunn

- 1.1 Introduction 3
- 1.2 Sequence Alignment and Family Tree 4
- 1.3 Three-Dimensional Structure 5
- 1.4 Conferences and Progress 13
- Exploration of the Active Sites of Aspartic Proteinase and Relation to Drug Discovery 15 References 19
- 2 Aspartic Proteases: Structure, Function, and Inhibition 23 Jordan Tang
- 2.1 Introduction 23
- 2.2 Structures of Aspartic Proteases 25
- 2.2.1 Aspartic Proteases of the Pepsin Family 25
- 2.2.2 Aspartic Proteases Involved in Intramembrane Proteolysis 28
- 2.3 Catalytic Mechanism and Substrate Specificity 28
- 2.3.1 Catalytic Mechanism of Aspartic Proteases of the Pepsin Family 28
- 2.3.2 Specificity of Aspartic Proteases of the Pepsin Family 29
- 2.3.3 Catalytic Mechanism of Intramembrane Aspartic Proteases 30
- 2.4 Zymogen Activation 31
- 2.5 Inhibition and the Development of Inhibitor Drugs 32
- 2.5.1 Inhibition by Mimicking the Catalytic Transition State 32
- 2.5.2 Inhibition Not Involving Transition-State Mimicking 36
- 2.6 Perspectives 36

VI Contents

l.	
2.7	Information Resource on Aspartic Proteases 38
	References 39
3	Human Aspartic Proteinases 43
5	John Kay and Daniel Bur
3.1	Introduction 43
3.2	Human Aspartic Proteinases 44
3.2.1	
3.2.2	(Pro)Gastricsin 48
3.2.3	(Pro)Renin 51
3.2.4	(Pro)Cathepsin D 53
3.2.5	(Pro)Cathepsin E 54
3.3	New Human Aspartic Proteinases 59
3.3.1	(Pro)Napsin A 59
3.3.2	(Pro)Napsin B 61
3.4	Concluding Remarks 64
	References 64
4	Structure-Based Drug Design Strategies for Inhibition
	of Aspartic Proteinases 71
	Jon B. Cooper
4.1	Introduction 72
4.2	Associated Disease States 72
4.2.1	Hypertension 72
4.2.2	AIDS 73
4.2.3	Amyloid Disease 74
4.2.4	Candidiasis 76
4.2.5	Peptic Ulcer Disease 76
4.2.6	Neoplasia 77
4.2.7	Malaria 78
4.3	Development of Aspartic Proteinase Inhibitors 78
4.4	General Strategies for Design of Renin Inhibitors 80
4.4.1	Elaboration of the Transition-State Analogue 80
4.4.1.1	Statine Analogues 83
4.4.1.2	Aminoalcohols 83
4.4.1.3	Glycols 84
4.4.1.4	Phosphinic Acid Analogues 84
4.4.1.5	Fluoroketone Analogues and Implications for Catalysis 84
4.4.2	Optimizing Complementarity of the Inhibitor 85
4.4.3	Rigidification 86
4.4.4	Optimizing In Vivo Stability 88
4.5	Structural Studies of Renin Complexed with Inhibitors 88
4.5 4.5.1	-
	, 0 0
4.5.2	Specificity 89 Desent Suggest with a Nonportida Banin Inhibitor 01
4.5.3	Recent Success with a Nonpeptide Renin Inhibitor 91
4.6	Structure-Based Drug Design for the HIV Proteinase 92

Contents VII

4.6.1 4.7 4.8 4.9	The Problem of Drug Resistance with HIV 95 Structure-Based Drug Design for Other Aspartic Proteinases 96 Possible New Leads from Macromolecular Inhibitor Complexes and Zymogen Structures 97 Conclusions 99 References 99
Part Two	HIV-1 Protease as Target for the Treatment of HIV/AIDS 107
5	HIV-1 Protease: Role in Viral Replication, Protein–Ligand X-Ray Crystal Structures and Inhibitor Design 109 Irene T. Weber and Yuan-Fang Wang
5.1	Introduction 109
5.2	HIV-1 and the AIDS Pandemic 110
5.2.1	HIV Genome and Life Cycle Define Targets for Antiviral
5.2.1	Therapy 110
5.2.2	HIV Protease is Essential for Viral Maturation 112
5.2.3	Substrate Specificity of HIV-1 PR 113
5.2.4	X-Ray Crystal Structures of HIV-1 PR 113
5.2.5	Reaction Mechanism of HIV PR 115
5.3	PR Interactions with Peptidic Inhibitors and Design
	of First Antiviral Inhibitors 117
5.4	PR–Inhibitor Interactions Revealed in Atomic Resolution
	Structures 119
5.5	The Challenge of Drug Resistance in HIV 123
5.5.1	Structures of Protease Variants with Darunavir and Insight
	into the Emergence of Multidrug Resistance 124
5.5.2	Our Crystallographic Studies and Development of the
	Next Generation of PRs with Ghosh Research Group 126
5.6	Future Perspectives 129
	References 130
6	First-Generation HIV-1 Protease Inhibitors for the Treatment of
	HIV/AIDS 139
	Scott C. Virgil
6.1	Introduction 139
6.2	Structure of HIV Protease 140
6.3	Design of Inhibitors 141
6.3.1	Saquinavir 143
6.3.2	Ritonavir 147
6.3.3	Indinavir 152
6.3.4	Nelfinavir 155
6.3.5	Amprenavir 157
6.4	Viral Resistance to First-Generation Protease Inhibitors 159
6.5	Perspectives 161
	References 162

VIII Contents

7	Second-Generation Approved HIV Protease Inhibitors
	for the Treatment of HIV/AIDS 169
	Arun K. Ghosh and Bruno D. Chapsal
7.1	Introduction 169
7.2	Second-Generation Protease Inhibitors 171
7.2.1	Lopinavir 171
7.2.2	Atazanavir 175
7.2.2.1	CTP-518: A Partially Deuterated Version of Atazanavir
	with Improved ADME Properties 179
7.2.3	Fosamprenavir 180
7.2.4	Tipranavir 181
7.2.5	Darunavir and Subsequent Investigational Bis-THF-Based
	Protease Inhibitors 187
7.2.5.1	Brecanavir (BCV, GW640385) 188
7.2.5.2	Novel Bis-THF-Based GS-8374 189
7.2.5.3	SPI-256 190
7.2.6	Recent Investigational Inhibitors 190
7.2.6.1	PL100 190
7.3	Conclusion 194
	References 195
8	Darunavir, a New PI with Dual Mechanism: From a Novel Drug
	Design Concept to New Hope Against Drug-Resistant HIV 205
	Arun K. Ghosh, Bruno D. Chapsal, and Hiroaki Mitsuya
8.1	Introduction 205
8.2	Molecular Insights from Protein–Ligand X-Ray Crystal Structures
	of Early PIs and Design of Novel PIs Inspired by Nature 207
8.3	Design of Novel Protease Inhibitors Containing Cyclic and Polycyclic
	Ether Templates 209
8.3.1	Further Optimization of Ligand Binding: Creation of the Bis-THF
	and Cp-THF Ligands 210
8.4	Development of PIs Based Upon Our "Backbone Binding Concept"
	to Combat Drug-Resistant HIV 213
8.4.1	Design Strategy to Maximize Backbone Hydrogen Bonding
	Throughout the Active Site 213
8.4.2	Structural Evidence of a Network of Hydrogen Bonding
	with Backbone Atoms 215
8.5	Antiviral Activities, Resistance Profiles of TMC 126 (20),
	and Relevance to "Backbone Binding Concept" 217
8.6	Solartion of TMC114 and Its Subsequent Development
	Selection of TMC114 and Its Subsequent Development
	to Darunavir 219
8.7	
8.7	to Darunavir 219
8.7 8.8	to Darunavir 219 High-Resolution X-Ray Structure of Darunavir-Bound

Contents IX

- 8.9 Optically Active Synthesis of Bis-THF Ligand for Initial Clinical Studies and Beyond 224
- 8.10 Pharmacological Profile of Darunavir: ADME Properties 225
- 8.10.1 Absorption 226
- 8.10.2 Distribution 227
- 8.10.3 Metabolism and Excretion 227
- 8.11 Therapeutic Evaluation of DRV 228
- 8.11.1 Clinical Efficacy 228
- 8.11.2 Safety and Tolerability 230
- 8.11.3 Resistance Profile of Darunavir 231
- 8.11.4 Darunavir and the Previously Implausible Prospective of HIV Monotherapy 232
- 8.11.5 Clinical Use of Darunavir and Cost-Efficacy 234
- 8.12 Conclusion 234
 - References 235

9 Development of HIV-1 Protease Inhibitors, Antiretroviral Resistance, and Current Challenges of HIV/AIDS Management 245

Hiroaki Mitsuya and Arun K. Ghosh

- 9.1 Introduction 245
- 9.2 Targeting the Viral Protease 246
- 9.3 The Role of PIs and the Challenges Faced by HAART 247
- 9.4 "Boosting": A Critical Modification to the Clinical Efficacy of PIs 249
- 9.5 HIV-1 Variants Resistant to Conventional PIs 250
- 9.5.1 Primary and Secondary Mutations 250
- 9.5.2 Active Site Mutations 251
- 9.5.3 Nonactive Site Mutations 252
- 9.6 New Generation PIs with Activity against Drug-Resistant HIV-1 253
- 9.7 A Novel Modality of HIV-1 Protease Inhibition: Dimerization Inhibition 254
- 9.8 HIV-1 Resistance to Darunavir 255
- 9.9 When to Start HAART with Protease Inhibitors 257
- 9.10 Conclusions 258 References 259

Part Three Renin as Target for the Treatment of Hypertension 263

10 Discovery and Development of Aliskiren, the First-in-Class Direct Renin Inhibitor for the Treatment of Hypertension 265 Jeanette M. Wood and Jürgen Maibaum
10.1 Introduction 265
10.2 The History of Renin and Aliskiren 265
10.3 The Renin–Angiotensin–Aldosterone System 267
10.3.1 The Role of RAAS in Cardiovascular Disease 267

X Contents

ļ			
	10.3.2	Biochemical Consequences of Different Modes	
	10.4	of RAAS Blockade 269 History of the Renin Inhibitor Project in Ciba–Geigy/Novartis 269	
	10.4 10.5	, , , , , , , , , , , , , , , , , , , ,	
	10.5	New Concept Toward (P ₃ –P ₁) Topological Peptidomimetic Inhibitors 272	
	10.6	Early Preclinical Leads 274	
	10.6.1	The Tetrahydroquinoline Series 274	
	10.6.2	The "Phenoxy" Series: The Road to Aliskiren 276	
	10.6.3	Multiple Chemotype (S_3-S_1) Topological Transition-State	
		Analogues 279	
	10.7	Scalable Synthesis Development of Aliskiren 280	
	10.8	Properties of Aliskiren 282	
	10.8.1	Biochemical and Pharmacological Properties 282	
	10.8.2	Effects of Aliskiren in Animal Cardiovascular Disease Models 284	
	10.8.3	Absorption, Distribution, Metabolism, and Safety Properties	
		of Aliskiren in Preclinical Models 285	
	10.8.4	Clinical Pharmacokinetics and Interactions with Other Drugs 286	
	10.8.5	Pharmacodynamic Effects of Aliskiren on Components	
		of the RAAS 287	
	10.8.6	Clinical Safety Profile of Aliskiren 287	
	10.9	Clinical Efficacy of Aliskiren 288	
	10.9.1	Patients with Hypertension 288	
	10.9.2	End Organ Protection of Aliskiren in Patients with Diabetes,	
		Chronic Renal Disease, and Heart Failure 289	
	10.10	Conclusions and Outlook 290	
		References 291	
	11	Evolution of Diverse Classes of Renin Inhibitors Through	
		the Years 297	
		Colin M. Tice and Suresh B. Singh	
	11.1	Introduction 297	
	11.2	Mechanism and Structural Biology of Renin 298	
	11.3	Screening and Animal Models 300	
	11.4	Peptidomimetic Renin Inhibitors 301	
	11.4.1	CGP-38560 301	
	11.4.2	Remikiren and Ciprokiren 304	
	11.4.3	Enalkiren and Zankiren 304	
	11.4.4	CI-992 305	
	11.5	Nonpeptidomimetic Renin Inhibitors 306	
	11.5.1	Aliskiren 306	
	11.5.2	Piperidines and Piperazines 308	
	11.5.3	Diaminopyrimidines 311	
	11.5.4	Alkylamines 312	
	11.6	Conclusions 313	
		References 314	

References 314

Contents XI

Part Four γ -Secretase as Target for the Treatment of Alzheimer's Disease 325

- 12 y-Secretase: An Unusual Enzyme with Many Possible Disease Targets, Including Alzheimer's Disease 327 Johan Lundkvist and Urban Lendahl
- Introduction 328 12.1
- 12.2 Presenilin: From a Zymogen to the Subunit of a Complex Enzyme 329
- 12.3 y-Secretase: A Promiscuous Enzyme That Mediates Regulated Intramembrane Proteolysis 333
- Structure of y-Secretase 335 12.4
- 12.5 Mechanism of y-Secretase 336
- Pharmacology of y-Secretase 337 12.6
- Concluding Remarks 343 12.7

References 343

13 y-Secretase Inhibition: An Overview of Development of Inhibitors for the Treatment of Alzheimer's Disease 353

> Christopher L. Hamblett, Sanjiv Shah, Richard Heidebrecht, Jr., and Benito Munoz

- Introduction 354 13.1
- APP Genetics 356 13.2
- 13.3 Amyloid Cascade Hypothesis 358
- 13.3.1 Presenilin Genetics 358
- y-Secretase Inhibitors: Compounds and Clinical Results 360 13.4
- Notch-Sparing γ-Secretase Inhibitors: Compounds 13.5 and Clinical Results 372
- y-Secretase Modulators: Compounds and Clinical Results 374 13.6
- Conclusion 379 13.7
 - References 380

β-Secretase as Target for the Treatment of Alzheimer's Disease 391 Part Five

- 14 BACE: A (Almost) Perfect Target for Staving Off Alzheimer's Disease 393 Sukanto Sinha
- 14.1 Introduction: APP Cloning, α -Secretase Pathway, and β-Secretase Hypothesis 393
- 14.2 Cell Biology Evidence for β-Secretase 394
- 14.2.1 β-Secretase Purification and Cloning 395
- 14.2.2 BACE Processing and Maturation 396
- 14.2.3 BACE Biochemistry 400
- 14.3 BACE-Deficient Mice: Effect on Aβ Production 403
- Other BACE Substrates 405 14.4
- BACE Structure and BACE Inhibitors 406 14.5
- 14.6 Conclusions 408
 - References 409

XII Contents

15	The Discovery of β -Secretase and Development Toward a Clinical
	Inhibitor for AD: An Exciting Academic Collaboration 413
	Jordan Tang, Lin Hong, and Arun K. Ghosh
15.1	Introduction 413
15.2	Discovery of Memapsin 2 and Its Identification as β -Secretase
	(by Jordan Tang) 414
15.2.1	Enzymatic Properties and Inhibition of Memapsin 2
	(by Jordan Tang) 416
15.3	Design of the First Substrate-Based Inhibitors: A Remarkable
	Scientific Adventure Between Two Laboratories (by Jordan
	Tang and Arun Ghosh) 416
15.3.1	Leu–Ala Design Implementation at My Laboratory
	(by Arun Ghosh) 418
15.3.2	Exciting Results with the Leu–Ala Design
	(by Jordan Tang and Arun Ghosh) 420
15.4	Crystal Structure of Memapsin 2 and Binding of Inhibitors
	(by Lin Hong) 421
15.4.1	Memapsin 2 Structure 422
15.4.2	Memapsin 2 Interactions with Inhibitors 423
15.5	Evolution of Memapsin 2 Inhibitors (by Arun Ghosh) 424
15.5.1	Early Structure–Activity Studies 425
15.5.2	Structure-Based Design of Macrocyclic Inhibitors 428
15.5.3	Design and Development of Selective Memapsin 2 Inhibitors 429
15.5.4	Structure-Based Design of Diverse Structural Leads 431
15.5.5	Inhibitors with "Drug-Like" Features 433
15.6	Perspective 437
	References 438
16	Peptidomimetic BACE1 Inhibitors for Treatment of Alzheimer's
	Disease: Design and Evolution 441
	Ulrich Iserloh and Jared N. Cumming
16.1	Introduction 441
16.2	Substrate-Based (Peptidic) Inhibitors 442
16.3	Peptidomimetic Statine and Homostatine Inhibitors 446
16.4	Hydroxyethylamine-Based Inhibitors 449
16.5	Other Peptidomimetics 460
16.6	Conclusions 465
	References 466
17	Nonpeptide BACE1 Inhibitors: Design and Synthesis 481
	Derek C. Cole and Matthew G. Bursavich 481
17.1	Introduction 481
17.2	Preliminary Peptidomimetic BACE1 Inhibitors 482
17.3	Acyl Guanidine-Based Inhibitors 484
17.4	Aminoimidazolone-Based Inhibitors 486

Contents XIII

- 17.5 2-Aminopyridine and Pyrimidine-Based Inhibitors 486
- 17.6 Aminoimidazopyrimidine-Based Inhibitors 488
- 17.7 2-Aminoquinazoline-Based Inhibitors 490
- 17.8 Piperidine and Piperazine-Based Inhibitors 492
- 17.9 Other Miscellaneous Scaffolds 495
- 17.10 Conclusions 500 References 500

Part Six Plasmepsins and Other Aspartic Proteases as Drug Targets 511

- **18** The Plasmepsin Family as Antimalarial Drug Targets 513
 - Adam J. Ruben, Yoshiaki Kiso and Ernesto Freire
- 18.1 Introduction 514
- 18.2 Plasmepsins In Vivo 514
- 18.2.1 Plasmepsin Function 515
- 18.2.2 Plasmepsins as Drug Design Targets 517
- 18.3 Plasmepsins In Vitro 518
- 18.4 Plasmepsin Family Structures 522
- 18.4.1 Structure-Based Insights into Plasmepsin Function 523
- 18.4.2 Activation 523
- 18.4.3 Quaternary Structure 523
- 18.5 Plasmepsin Inhibitors 528
- 18.6 Conclusions 535 References 536
- 19Plasmepsins Inhibitors as Potential Drugs Against Malaria:
Starving the Parasite549

Sandra Gemma

- 19.1 Introduction 549
- 19.2 The Plasmepsin Family of Enzymes 550
- 19.3 Inhibitors of the Plasmepsin Family of Enzymes 552
- 19.4 Transition-State Isostere-Based Inhibitors 553
- 19.5 Nonpeptidic Inhibitors 561
- 19.6 "Double-Drugs" 564
- 19.7 Conclusions 565 References 566

20 Fungal Aspartic Proteases as Possible Therapeutic Targets 573

- Michel Monod, Peter Staib, Utz Reichard, and Olivier Jousson
- 20.1 Introduction 574
- 20.2 Biochemical Properties of Fungal Aspartic Proteases (Table 20.1) 574
- 20.2.1 Secreted and Vacuolar Fungal Aspartic Proteases (Figure 20.1, Clades 3–6, 16, 19–21) 574
- 20.2.2 Barrierpepsin (Figure 20.1, Clade 9) 581
- 20.2.3 Yapsins (Figure 20.1, Clades 1, 2, 8, and 11) 582

XIV Contents

20.3	Phylogeny of Fungal Aspartic Proteases 582
20.3.1	Aspartic Proteases in Ascomycete Yeasts (Subphylum
	Saccharomycotina) (Figure 20.2) 584
20.3.2	Aspartic Proteases in Filamentous Fungi (Mucorous Fungi,
	Basidiomycetes, and Filamentous Ascomycetes) 585
20.4	Production of Fungal Aspartic Proteases 585
20.5	Biological Functions of Aspartic Proteases in Fungi 588
20.5.1	Major Secreted Proteases 588
20.5.2	Vacuolar Aspartic Proteases 588
20.5.3	Barrierpepsin 589
20.5.4	Yapsins 589
20.5.5	Other Aspartic Protease Functions 590
20.6	Secreted Aspartic Proteases in Virulence of C. albicans 590
20.7	Functions of Aspartic Protease in <i>C. albicans</i> Virulence Processes 592
20.8	Secreted Aspartic Proteases in the Virulence of Candida Species
	Other Than C. albicans 593
20.9	Secreted Aspartic Proteases During Infection by Opportunistic
	Filamentous Fungi 594
20.10	Fungal Aspartic Proteases as Possible Drug Targets 594
20.11	Conclusions 596
	References 596

Index 607