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1.1

Introduction

All living organisms contain DNA, a molecule that encodes all the information

required for the development and functioning of an organism. Finding and

deciphering the information encoded in DNA, and understanding how such a

simple molecule can give rise to the amazing biological diversity of life, is a goal

shared in some way by all life scientists. Microarrays provide an unprecedented view

into the biology of DNA, and thus a rich way to examine living systems. DNA is a

physical molecule that is able to encode information in a linear structure. Cells

express information from different parts of this structure in a context-dependent

fashion. DNA encodes for genes, and regulatory elements control whether genes are

on or off. For instance, all the cells of the human body contain the same DNA, yet

there are hundreds of different types of cells, each expressing a unique configuration

of genes from the DNA. In this regard, DNA could be described as existing in some

number of states. Microarrays are a tool used to read the states of DNA.

Microarrays have had a transforming effect on the biological sciences. In the past,

biologists had to work very hard to generate small amounts of data that could be

used to explore a hypothesis with one observation at a time. With the advent of

microarrays, individual experiments generate thousands of data points or observa-

tions. This turns the experiment from a hypothesis-driven endeavor to a hypothesis-

generating endeavor because every experiment sheds light across an entire terrain of

gene expression, letting relevant genes reveal themselves, often in surprising ways.

Concomitantly, what used to be primarily wet science becomes in large part infor-

mation science. The highly parallel nature of microarrays that are used to make

biological observations signifies that most experiments generate more information

than the experimenter could possibly interpret. Indeed, from a statistical point of

view, every gene measured on a microarray is an independent variable in a highly

parallel experiment. The number of hypotheses to which the data may or may

not lend support cannot be known in advance. To take advantage of the excess
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information in microarray data, repositories have been set up in which people can

deposit their experiments, thus making them available to a wide community

of researchers with questions to explore (Gene Expression Ominbus GEO,

ArrayExpress).

1.1.1

The Genome is an Information Scaffold

Microarrays measure events in the genome. An event may be the transcription of a

gene, the binding of a protein to a segment of the DNA, the presence or absence of a

mutation, a change in the copy number of a locus, a change in the methylation state

of the DNA, or any of a number of states or activities that are associated with DNA or

RNA molecules. As a genomic readout, microarrays identify where these events

occur.

The idea that one can accurately describe the genome, let alone measure its

activity in a comprehensive way, is a relatively novel concept. Several factors have

led to the recent enhancement and blending of molecular biology into a field

called genomics. The first is genome-sequencing projects. Today, sequencing a

genome is considered a routine activity. However, in the late 1980s when

sequencing the human genome was first suggested as a serious endeavor, the

community was divided. Given the sequencing technology available at the time,

the project looked as if it would consume colossal resources over a long

time frame that many thought could be put to better use on more practical

projects. However, visionaries were banking on two precepts: once given the

mandate, the technology would transform itself and new sequencing methods

would be invented that would increase the rate of sequence accumulation. The

second aspect is that the finished project, full genome sequences, would be a

public gold mine of a resource that would pay off for all biologists. Both of these

assumptions have come to fruition. Genome sequences accumulate at rates few

imagined possible. Biologists can expect the sequence of their model organism to

exist in GenBank or to be in someone’s sequencing pipeline. More important,

having a map of the full genomic sequence of an organism has transformed the

way biology is studied.

DNA gives rise to the organism and so is a scaffold for information. The genomic

map is like a landscape of code, openly visible to all and for anyone to figure out.

Through experimentation, often involving microarrays, DNA is annotated with

functional information. In addition, the large-scale sequencing effort served as a

kind of space program for biology, whereby the genome was a new frontier [1]. It

made possible previously unforeseen possibilities and conceptually paved the way

for a host of parallel analysis methods. The unveiling of a unified map begged the

creation of microarrays, as well as other large genome-sized projects, such as the

systematic deletion of every yeast gene [2], the systematic fusion of every yeast

promoter to a reporter gene [3], andmany other similar projects [4]. As the invention

of the telescope changed how we view the universe, microarrays have changed the

way we view the genome.
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1.1.2

Gene Expression is Detected by Hybridization

The purpose of a microarray is to examine expression of multiple genes simulta-

neously in response to some biological perturbation. More generally, a microarray

serves to interrogate the concentrations of molecules in a complex mixture and thus

can serve as a powerful analytical tool for many kinds of experiments. To understand

how this occurs, it may be useful to review the structure of DNA and examine how

the unique structure of this molecule plays a role in identifying itself.

Although DNA is remarkably informationally complex, the general structure of

themolecule is really quite simple. DNA ismade up of four chemical building blocks

called bases: adenine, cytosine, guanosine, and thymidine (abbreviated respectively

as A, C, G, or T). As individual subunits these building blocks are also referred to as

nucleotides. A strand of DNA consists of a sugar phosphate backbone to which these

bases are covalently linked such that they form a series. Because these four bases can

form sequences, it is possible to use them to encode information based on their

patterns of occurrence. Indeed, from an information point of view, DNA has a

potential data density of 145 million bits per inch and has been considered as a

substrate for computation whereby the sequences are referred to as software [5,6].

Like strings of text in a book, the sequences that make up a strand of DNA have

directionality such that information can be encoded in a given direction. The

amount of DNA, and thus the amount of sequence, varies from organism to

organism. For instance, the microorganism Escherichia coli has 4.5 million bases

of sequence, whereas human cells have about 3 billion bases. Exactly how much

biological information is encoded in these sequences is unknown, representing one

of the deepest mysteries of biology, but microarrays provide a way to gain clues.

Cellular DNA most often consists not just of one strand but of two strands

antiparallel to each other. The two strands are hydrogen bonded together by inter-

actions between the bases, forming a structure in the cell. The structure is helical,

similar to a spiral staircase in which the bases are attached to each side and interact

in a plane to form the steps of the staircase. Besides the hydrogen bonds between the

bases of opposite strands, the overlapping and proximity of the bases to each other

lead to a second kind of noncovalent force called a stacking interaction that con-

tributes to the stability of the double-stranded structure.

The bases of one strand interact with the bases of the other strand according to a

set of pairing rules, such that A pairs with Tand C pairs with G. Thus, if one knows

the sequence of one strand, by definition, one then knows the sequence of the

opposite strand. This property has profound consequences in the study of biology.

It is also what the cell uses to replicate itself. As the interaction between the bases is

noncovalent, consisting only of hydrogen bonds, the strands can essentially be

melted apart and separated, thus opening the way for a copying mechanism to

read each single strand and re-create the second complementary strand for each

half of the pair, resulting in a new double-stranded molecule for each cell. This is

also the mechanism by which cells express genes. The strands are opened by

the gene expression machinery so that some number of RNA copies of a gene can
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be synthesized. The RNA transcript has the same sequence as the gene with the

exception that uracil (U) replaces T, though the hybridization pairing rules remain

the same (U and T can both pair with A).

This property of complementarity is also what is used for measuring gene ex-

pression on microarrays. Just as energy can melt strands apart and separate them

into single molecules, the process is reversible such that single strands that are

complementary to each other can come together and reanneal to form a double-

stranded complex [109]. This process is called hybridization and is the basis for

many assays or experiments in molecular biology. In the cell, hybridization is at the

center of several biological processes, whereas in the lab complementarity is identity

and thus hybridization is at the center of many in vitro reactions and analytical

techniques. The molecules can come from completely different sources, but if they

match, they will hybridize.

1.1.2.1 Hybridization is Used to Measure Gene Expression

Hybridization-based methods for measuring nucleic acid sequences have been used

as a standard technique for decades [7]. The most widely accepted and understood

standard for measuring gene expression is a hybridization-based assay called the

Northern blot [8]. Microarrays are derived from blotting assays. Thus, it is useful

to understand the basics of how they work and explain the origin of some of the

terminology. Northern blots are also a common method for verifying the results

from a microarray study.

The purpose of a Northern blot is to measure the size and abundance of RNA

transcribed from a gene. To compare the expression of a gene under various

conditions, extracts of cellular RNA are prepared from different batches of cells or

tissues and fractionated by size on agarose gels prior to being transferred to a

nylon membrane. The membrane binds nucleic acid quantitatively and preserves

the pattern of RNA from the gel. The result is a porous membrane with RNA from

different samples in discrete regions of the membrane. To quantify the expression

level of a gene of interest in each sample, a radioactive DNA probe complemen-

tary to the gene of interest is prepared. Upon applying the probe to the mem-

brane, hybridization will occur between the probe and the messenger ribonucleic

acid (mRNA) from the gene of interest. In this way, both the location of the

RNA within the fractionated sample and the relative abundance will be revealed.

The amount of radioactivity captured by each sample on the membrane is a

readout of the relative expression level of the gene of interest between the two

samples.

In this scenario, the mRNA sample on the membrane is a complex mixture of

molecules of unknown concentrations. Somewhere in the discrete region occupied

by the sample RNA is a target transcript, which will be revealed when the probe

hybridizes to it. Thus, the probe is known, and the target is what is revealed by

hybridization. Although this process is robust, it is limited to questions of one target

at a time. To measure a second gene, the membrane must be washed under con-

ditions that disrupt hybridization and strip the membrane of radioactivity, so that it

can be reprobed for another target.
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1.1.2.2 Microarrays Provide a New Twist to an Old Technique

Microarrays provide a way to measure many genes at once by reversing and par-

allelizing this process. Instead of labeling what is known and probing a complex

mixture of unknowns to highlight a single target, microarray methods label the

complexmixture that is in a solution and utilize a two-dimensional surface of known

molecules or probes in discrete locations, as a readout. In this context, the cellular

RNA mixture is labeled, creating a labeled complex mixture of unknowns. Comple-

mentarity between target molecules in the complex mixture and probes arrayed on

the solid surface will result in annealing and hybridization, thus capturing the

labeled molecules on the surface. Unhybridized molecules are washed away prior

to quantification.

Although this technique has been used in the past with membranes to create

macroarrays, usually for screening libraries of clones [9], including identification of

differentially expressed genes [10], the success of microarrays has to do with mini-

aturization. The interaction between a probe and its target is a binding assay. As

many genes are expressed at low levels, sensitivity is often an issue. In a findingmost

would consider counterintuitive, a series of studies on binding assays in the mid-

1980s found that decreasing the size of a binding target does not reduce the sensi-

tivity or accuracy of an assay and actually leads to an increase in sensitivity [11,12].

Thus, miniaturization of the assay is possible. As the size of a spot decreases, the

fractional occupancy of the immobilized probe is dependent only on the concentra-

tion of the corresponding target molecule in solution. This is the principle by which

microarrays operate.

Other developments have contributed to efficient parallelization through minia-

turization. The use of glass substrates instead of porous filters as a medium for

capturing nucleic acid in an array format means that small hybridization volumes

can be used. The rate of hybridization is concentration dependent. Thus, smaller

volumes mean higher rates of hybridization and increased sensitivity. In addition,

solid glass surfaces have low inherent fluorescence, allowing the use of fluorescent

dyes for labeling samples, and along with methods adapted from confocal micros-

copy, they allow for efficient quantification of a highly parallel miniaturized assay.

Several groups developed and applied these concepts, combiningminiaturization,

robots, and genomes to develop new assays for the measurement of gene expression

in parallel [13,14].

1.2

Types of Arrays

There are predominantly three kinds of microarray technologies in widespread use

amongmost laboratories: spottedmicroarrays consisting of presynthesized oligos or

PCR products robotically deposited onto a surface, Affymetrix GeneChips composed

of relatively short oligonucleotides synthesized on a chip surface, and other in situ
synthesis platforms such as arrays made by Agilent and NimbleGen. Although each

technology effectively serves as a genomic readout, each has unique characteristics
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that offer advantages or disadvantages in a given context. Parallel forms of measur-

ing DNA and RNA will continue to change and evolve; however, these three plat-

forms are currently the most ubiquitous.

1.2.1

Spotted Microarrays

Spotted microarrays were the first widely available array platform and continue to

enjoy broad use. Originating in the laboratory of Pat Brown, they consist of glass

microscope slides onto which libraries of PCR products or long oligonucleotides are

printed using a robot equipped with nibs capable of wicking up DNA from microti-

ter plates and depositing it onto the glass surface with micron precision [13,15].

Since their inception, demand for microarrays has exceeded availability. Because the

Brown laboratory expended effort in every aspect of distributing the technology,

including plans to build the robot and all protocols required for array manufacture

and use, many academic laboratories invest resources into producing these arrays

locally. This includes building or purchasing a robot, as well as performing PCR or

oligo design and synthesis to create probes for spotting onto glass. The basic prin-

ciple by which the arrays function is fairly simple, and all the reagents required are

available to most researchers with some initial investment. However, apart from

praising the benefits of putting technology into the hands of researchers, the reason

for highlighting this aspect of spotted arrays is to point out the nonuniform nature of

spottedmicroarrays. Because there is not onemanufacturer, one source ofmaterials,

or a uniform method of production, variability exists among batches of microarrays

and must be considered when planning experiments or when comparing experi-

ments from different array sources.

Spotted microarrays are primarily a comparative technology. They are used to

examine relative concentrations of targets between two samples. Complex samples

to be compared are labeled with uniquely colored fluorescent tags before being

mixed together and allowed to compete for hybridization to the microarray spots

(see [16,17] for review). In this way, differences between the samples are observed on

a per spot basis because the fractional occupancy of the spot hybridized by each

sample reflects the relative concentration of that gene or target in the original

complex mixture. Thus, for any probe on the microarray, one gets a readout of the

relative concentrations of the target between the two input samples. For this reason,

spotted microarrays are often called two-color or two-sample arrays.

1.2.2

Affymetrix GeneChips

Affymetrix GeneChips are the most ubiquitous and long-standing commercial array

platform in use. The arrays consist of 25-mer oligonucleotides synthesized in situ on

the surface of a glass chip. Aphotolithographymask, similar to that used to construct

semiconductor chips, is used to control light-directed DNA synthesis chemistry

such that oligo sequences are built up one nucleotide at a time at defined locations
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on a solid substrate or glass chip [18,19]. Current chips contain 6.5 million unique

probes in an area of 1.28 cm2. The highly precise nature of the lithographic method

allows the construction of compact matrices of square patches of probes.

Instead of using a single sequence to probe expression of each gene, as would be

common for a spotted array, Affymetrix employs a set of probes to measure expres-

sion of a gene. Probe sets contain two types of probes tomeasure the gene of interest,

perfect match (PM) andmismatch (MM) probes. Perfect match probes are chosen to

match the gene exactly and are designed against an exemplar sequence representing

the gene. Although each probe is unique, probes may occasionally overlap. Mis-

match probes are identical to the perfect match probes except that they contain a

single base mismatch in the center of the probe. A single mismatch in a short

sequence such as a 25-mer is very disruptive to hybridization. The purpose of the

mismatch probe is to serve as a negative control for background hybridization. A

typical probe set contains 11 perfect match probes and 11 mismatch probes. The

positioning of probes for a single gene on the array is chosen by a random process to

protect against local hybridization artifacts that could otherwise affect all the probes

for a gene if they were clustered together. As most spotted arrays use only one probe

per gene, local hybridization artifacts can be a problem.

To read the expression level of a gene, the perfect match and mismatch probe

readings must be summarized. Although Affymetrix has a standard method for

summarizing 22 readouts to obtain a single number for gene expression [20], many

approaches are available [21].

Affymetrix GeneChips are single sample microarrays (also known as one color or

one channel). These arrays measure the relative abundance of every gene in a single

sample. In this way, one can examine whether one gene is expressed at a higher or

lower level than some other gene in the same sample. If samples are to be compared,

a separate chip must be performed for each sample, and the data adjusted by scaling

or normalization before comparison.

1.2.2.1 Other In Situ Synthesis Platforms

Apart from Affymetrix, two alternative in situ synthesis methods exist by which

oligonucleotides are built up one nucleotide at a time in successive steps to create

probes of length 25–60 nucleotides long [108]. These methods are almost exclusively

commercial and different companies take different approaches. Although Affyme-

trix uses a mask-based photolithographic process to control light-directed DNA

synthesis, an alternative method employed by NimbleGen makes use of small

rotating mirrors to control light and accomplish a similar task [22]. This approach

is called Maskless Photolithography, and uses technology developed by Texas

Instruments for projection televisions in which arrays of digitally controlled micro-

mirrors can be used to direct light. In combination with light activated chemistry,

light of the appropriate intensity and wavelength can be actuated in patterns

required to build up any series of nucleotides into an oligonucleotide on a solid

surface [23,24].

The NimbleGen approach has two great advantages over the method worked out

by Affymetrix. The first is that it does not require a mask. To build an array of

1.2 Types of Arrays j7



different oligonucleotides of length N requires a series of 4N synthesis steps. Thus,

to build a library of unique 25-mers on a surface requires 100 chemical synthesis

steps. For Affymetrix, a unique photolithography mask is required to control the

chemistry at each step. These masks are expensive to construct; thus, the arrays are

very costly. In addition, once a set of masks is constructed, it describes only a single

array design. Changing the design requires a whole new set of masks. However,

changing a pattern of micromirrors under electronic control is very easy; thus, each

array produced by NimbleGen can have a different design.

The second alternative in situ synthesis approach to array construction uses

traditional oligo synthesis chemistry, but the method of controlling base addition

is novel. Ink-jet technology, developed by Hewlett Packard for consumer printers,

has been adapted to control the liquid precursors of DNA synthesis. Agilent, a spin-

off of Hewlett Packard, uses this technology to synthesize 60-mer oligos on glass

slides [22,25]. Like ink-jet printing itself, this technology is very flexible. Every array

can be customized and thus possess unique content.

The flexibility to change the design of an array easily is both a blessing and a curse.

The positive aspect is that one can easily change the array design to explore the

genome or expression space as required by the experiment. The negative aspect is

that data analysis becomes more cumbersome, in general, because one can easily

change the probes used to represent a gene from array to array, as well as the content

of the array from experiment to experiment. When everyone is using the same chip,

as in chips mass produced by Affymetrix, comparisons between data sets are fairly

easy. If every chip is unique, comparison between data sets becomes difficult.

Another positive aspect of arrays created using in situ synthesis methods is that

they do not depend on libraries of clones or molecules created elsewhere. Instead,

the content is freshly created with each array. This is good because with spotted

arrays one never knows the history of the library, or howmany times it has been used

to create arrays. However, quality control for in situ synthesized arrays remains

obscure.

1.2.2.2 Uses of Microarrays

An example of the power of microarrays can be seen in Figure 1.1. Four sets of cells

purified in triplicate by the abundance of two cell surface markers exhibit different

differentiation fates yet are otherwise indistinguishable. However, microarray anal-

ysis and simple clustering of differentially expressed genes reveal previously un-

known differences.

As a genomic readout, microarrays can serve many purposes, and novel appli-

cations continue to emerge. A common application of microarrays has been

the measurement of gene expression, from characterizing cells and processes

[26–28] to clinical applications such as tumor classification [29,30]. Another very

common use of microarrays is in genotyping and the measurement of genetic

variation [31,32].

As microarrays are capable of quantifying complex mixtures of DNA or RNA

fragments derived from a variety of experiments, they have been used for a number

of purposes. For instance, RNA interacts with many proteins in the cell and is a part
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of many molecular complexes, which have traditionally been difficult to character-

ize. Microarrays have been used to identify the RNA components of various com-

plexes, shedding light on biological mechanisms of RNA translation and transport

[33,34]. Recently identified complexes of protein and RNA, called P-bodies, are

thought to be involved in gene expression by regulating mRNA in the cytoplasm

[35]. Microarrays could be used tomonitor and characterize the trafficking of cellular

RNA through this complex. Changes in DNA copy number at various loci have been

implicated in tumorigenesis and cancer. Using comparative genomic hybridization,

microarrays have been used to examine aneuploidy and changes in loci copy number

in a variety of cell types [36,37]. Microarrays have been used to examine the progress

of replication forks as they copy the genome [38], as well as for genome-wide screens

of RNA modifying enzymes [39]. The full range of applications is too numerous to

mention, improvements and adaptations are continually being made, and one must

continually review the literature (see [40] for review).

Figure 1.1 Simple clustering to find cell types. Four sets of cells

cytometrically sorted in triplicate based on two surface markers

are assayed by expression microarray. Clustering of differentially

expressed genes defines states of gene expression for each class.
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However, a rapidly burgeoning area of microarray research over the past few years

involves the use of microarrays to identify functional elements in the genome.

Expression of a gene in the form of an RNA transcript is but one small slice of

the biology of a gene. A fundamental aspect of gene expression currently being

explored by microarrays is the revelation of control elements in the genome that are

responsible for turning genes on and off. Every gene is under the control of a

regulatory code. However, this code is largely unknown. The code is composed of

relatively short sequences termed cis-acting regulatory sites. These sites are bound

by transcription factors, proteins that are responsible for activating or repressing the

transcription of a gene. A majority of these sites, and combinations in which they

occur, are not known or understood. However, it is possible to map the locations

where proteins interact with the genome using a technique called chromatin immu-

noprecipitation (see [41–43] for review). This technique has been used to map the

locations where specific transcription factors bind to the genome under a specific set

of conditions [44], as well as to map proteins that interact with the genome on a

larger scale, such as cohesins [45] and histones [46].

The general idea is to map protein/nucleic acid interactions by utilizing the

specificity of antibodies for a protein of interest. Armed with an antibody against

a specific protein, one can target and purify the protein as well as the associated

nucleic acid. After purification the nucleic acid is removed, labeled, and hybridized

to the microarray to identify which regions of the genome were associated with the

protein in the cell. The identification of regulatory elements in this way has had

profound implications on our understanding of gene regulatory circuitry [47,48],

and provides data for a system’s biological approach to understanding the cell.

The ability of chromatin IP experiments to detect functional elements such as

protein binding sites in the genome depends on the resolution of probes on the

microarray. Early ChIP-chip experiments in yeast used PCR products representing

each gene and each intergenic region as a single DNA segment. Thus, the resolution

of the technique was limited by the size of the DNA fragment.

However, advances in probe technology, such as the use of long oligos (60–90

bases) for spotted arrays and the ability to create higher and higher density in situ
synthesized arrays (25–60mers), have allowed for the creation of tiling arrays. In a

tiling array, probes are laid down across the genome, either overlapping or at some

degree of spacing. Experiments with these arrays have yielded a number of amaz-

ing findings, including the ability to view single nucleosome resolution in the

genome [49].

Tiling arrays have also had another benefit. High-density arrays consisting of

probes that cover both strands of DNA have been used to show that transcription in

the genome is ubiquitous [50,51]. The majority of nucleotides that make up the

genome are part of a primary transcript, and the amount of antisense transcription is

much higher than previously appreciated. In this regard, microarrays serve to

directly identify functional components of the genome.

Taken together, the data being collected by tiling arrays for both protein/DNA

interactions and identification of novel transcripts in humans are being systemati-

cally and jointly analyzed as part of a large consortium termed as the ENCODE
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Project with the aim of compiling a comprehensive encyclopedia of DNA elements

[52,53]. Microarrays are a fundamental aspect of this effort.

Although tiling arrays are yielding a wealth of productive information, they are

still relatively nonstandard both in terms of design and analysis. Depending on the

question being asked, a number of analysis and normalization strategies have been

developed.

1.3

Array Content

1.3.1

ESTs Are the First View

Microarrays are designed tomeasure active parts of the genome. Themost obviously

functional parts of the genome are genes. These are also the parts where sequencing

efforts were initially focused and used to start building sequence-based maps of the

genome. Organisms express the genome by copying parts of the DNA into a form

called mRNA, which is easy to isolate and obtain sequence from. Thus, the first

sequenced parts of a genome that have traditionally been available are usually the

expressed parts. RNA isolated from cells is converted to DNA and sequenced;

however, due to certain technical aspects of the enzymes involved, it is often difficult

to get a complete sequence for each RNA molecule. Thus, the resulting sequences

are termed as expressed sequence tags (ESTs) because they represent short reads of

an expressed sequence. It is through the collection and assembly of ESTs that we get

our first view of the genome, and from which gene models are built [54]. Even after

genomes are completely sequenced through systematic conventional means, ESTs

are mapped back onto the genome to define or indicate which parts of the genome

are expressed as genes. Microarrays used to measure gene expression have tradi-

tionally been constructed with probes designed against assemblies of ESTs.

The human body contains hundreds of cell types. Consider for amoment how even

a single tissue such as skin can be different depending on where from the body it is

isolated. As all the tissues and cell types arise from the same DNA, each has a unique

gene expression program. As mentioned above, RNA is easy to isolate and convert to

DNA. The RNA isolated from cells or tissues represents the result of gene expression

occurring in that cell or tissue at the time of isolation.OnceRNAhas been converted to

DNA, techniques exist for cloning the DNA fragments into plasmids or other vectors

such that eachmolecule can be treated as a separate isolate, and thus can be amplified

or manipulated at will. The process of converting a complex population of molecules

into a collection of individuallymanipulatablemolecules is called library construction.

Many microarrays are constructed by individually amplifying the DNA segments

represented by a library and printing them onto glass. In this way, one can study the

activity of genes expressed in a certain tissue by performing array analysis using arrays

constructed from a library of genes isolated from that tissue [55]. In some cases,

libraries are constructed from organisms that have not been sequenced. For instance,
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microarray studies of the human pathogen Histoplasma began before a sequence of

the genomewas known. Libraries ofHistoplasma geneswere constructed and used to

create microarrays that led to the identity of genes active during infection [56]. In this

situation, the identity of the spots on the array is often not known at the outset.

Through array analysis, genes that appear to change under certain conditions can

then be sequenced to get a foothold into the biology of the organism.

However, another way in which ESTs are used to createmicroarrays is through the

use of a rational design process to create and design microarray probes from

assemblies of ESTs. As also mentioned above, ESTs are assembled to create gene

models in silico. Thus, with a collection of gene models, it is possible to design

complementary DNA sequences that can be synthetically produced for microarray

construction and that can be used to identify the expression of the target gene

uniquely. Affymetrix arrays, since they are produced in situ, have always been based

on a rational design process.

1.3.1.1 Probe Design

The ability of a microarray to report on the identity of a hybridization target depends

on the probes attached to the microarray surface. Spotted arrays have traditionally

been produced with experimentally derived libraries or with PCR products repre-

senting known gene segments [57]. Many genes share some degree of sequence

identity; thus, cross-hybridization of labeled transcripts can occur between them,

making it difficult to interpret results. However, most genes can be uniquely dis-

tinguished using optimized probes, which can be accomplished using synthetic

DNA oligonucleotides. The wealth of sequence information available and the reali-

zation that long oligonucleotides could be substituted for PCR products with little

modification to existing array production protocols [58] have changed the content of

most spotted arrays to rationally designed probes.

Although PCR products serve as effective array reagents, because they are easy to

produce and they stick well to glass without advanced chemistry, they can also be a

source of error and variability. For instance, early attempts to create yeast genome

microarrays representing more than 6000 yeast genes involved weeks and months

of effort to perform 6000 PCR reactions with a typical success rate of 85%. The

resulting library represented a collection of printable DNA fragments at various

concentrations and of varying purity. This kind of variation differs from amplifica-

tion to amplification and from group to group. Systematic errors such as erroneous

plate mappings are not uncommon. Some widely used libraries have well-

documented problems of misidentified or contaminated clones [59].

The length of a PCR product makes it a sensitive hybridization reagent, as after

a certain length DNA molecules converge on a general melting temperature.

However, length also serves a disadvantage because long pieces of DNA are likely

to have a region of homology or similarity to more than one place in a genome.

Experiments with differing lengths of long oligonucleotides found that long oligos

were capable of sticking to glass, and exhibited sensitivity similar to or better than

PCR products in a spotted array format [60]. A number of groups have evaluated the

use of long oligos as array reagents [61,62].
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Long oligos are synthetically produced array reagents, and thus are amenable to

bioinformatic optimization. General considerations when designing probes for

measuring gene expression are the uniqueness in the genome, temperature of

hybridization, secondary structure, and proximity to the 30 end of a gene [63,64].

To find probes targeted to measure the expression of a single gene, design targets,

usually consisting of cDNA sequences or unigene clusters, are screened against a

genomic background to find unique regions from which probes can be designed.

The oligos are chosen to have similar melting temperatures, so that they behave

similarly under a single hybridization condition on the array. They are also chosen to

be free of secondary structures that would interfere with hybridization. Long oligo

probes for gene expression are also chosen with a bias toward the 30 end of a gene.

The labeling procedure for most gene expression experiments in eukaryotes utilizes

the polyA tail at the end of the transcript resulting in a 30-end bias, so the probe is

chosen to be near the 30 end to have a higher chance of detecting the labeled

transcript. Although these criteria have made for good quality data collection on

gene expression, it is likely that design criteria can be improved further [65].

Advances in oligo synthesis technology have lowered costs significantly such that

design and production of a genome-sized reagent is within reach of an organized

group of researchers. A variety of long oligo design programs have become available.

An additional advantage of printing spotted arrays with long oligonucleotides is the

practical matter that the oligos are synthesized bymachine; thus, many of the pitfalls

associated with PCR products are avoided. For example, every oligo is guaranteed to

exist, plate location errors are avoided, and the concentration of oligos is made

uniform for printing.

Since Affymetrix arrays are a commercial reagent, oligo design for the arrays is not

usually in the hands of researchers. However, some of the principles are worth

noting both for issues of data analysis and for design considerations when using

other in situ synthesis platforms. In early work, Affymetrix performed a careful

examination of characteristics required for the design of probes from which hybrid-

ization signals could be used to determine relative expression level of a gene from a

complex sample. An array consisting of 16 000 probes was used to examine the

expression of just 12 genes [14]. By making hundreds of probes per gene and then

examining the characteristics of the probes that most accurately reported the

expression level of the gene, a set of heuristic probe design criteria was derived.

These results were then applied to larger numbers of genes. In addition, aminimum

number of probes required was determined, leading to a current set size of 11–20

probes per gene.

Tiling arrays have been designed both with and without regard to bioinformatic

optimization. The presence of repeat regions and elements with sequence similarity

in multiple places is likely to cause problems and should be taken into account in

some way. Fortunately, such issues are being examined and addressed, and tools are

beginning to emerge [66].

The importance of good probe design has to do with hybridization. Hybridization

signal is used to infer the expression level of a gene. By comparing hybridization

signals between different genes, quantitative statements can be made about the
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expression levels of those genes. However, the signal derived from hybridization is

affected by many factors, and unless those factors are identical from one gene to the

next on a chip, our inferences about gene levels may be incorrect. In addition, the

hybridization characteristics of a DNA probe are unique and sequence dependent.

Each type of array that utilizes hybridization as a readout suffers from the effects of

hybridization differences between DNA sequences representing genes, and mea-

sures are taken to minimize them. Affymetrix and NimbleGen address this problem

by using multiple probes to represent a gene.

For spotted arrays the problem of hybridization differences between probes is less

of an issue because comparisons are not made on a gene-by-gene basis within a

sample. Instead, spotted arrays are used for comparing gene expression differences

between two samples. The samples are uniquely labeled and then mixed together

prior to array hybridization. Thus, for any given gene, what is observed on the array

is not an absolute hybridization signal for a gene, but rather a ratio of hybridization

signals for a gene – one from each sample. Whatever the characteristics of the

hybridization probe on the chip surface, uniquely labeled complements from each

sample are competing for hybridization to the spot on the array surface, and the ratio

of hybridization is the primary quantity of interest.

1.4

Normalization and Scaling

Microarray experiments, whether utilizing one-channel or two-channel technology,

are comparative experiments involving populations of measurements, with the end

goal being to compare abundance of targets in complex populations. Most of the

time, targets are compared between populations. To compare two populations to find

meaningful differences, one must make assumptions about the populations. As

such, the set of fluorescent measurements representing a population must undergo

a process of normalization so that the parts that have changed can be distinguished

from the parts that have not changed.

In the generation and collection of microarray data, many factors can give rise to

systematic differences in the population. For instance, samples to be compared are

not always labeled with the same efficiency. Purification steps for each sample often

have differing yields. Samples to be compared on an array are not always mixed in

equal proportions prior to hybridization (either by mass or by moles of dye). The

dyes themselves have differing rates of decay from atmospheric elements such as

ozone [67], as well as photo bleaching during the scanning of the array. Thus, if the

labeled transcripts from one sample are uniformly less bright than those of the other

sample, the uniform nature of such an effect allows for correction by adjusting the

brightness of the dim sample by a correction factor. One goal of normalization is to

remove these systematic biases [68].

Embedded within the goal of normalization is an assumption about gene expres-

sion and how large populations of gene expression measurements should be com-

pared. For two-color experiments to be compared on one chip, the assumption is that
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in response to some factor – whether it is genotype – or treatment, the majority of

genes will remain unchanged, and some small fraction of genes (e.g., 2%) involved

in pathways responsive to the effect being studied will be regulated up or down in

roughly equal proportion [69]. According to this assumption, the average signal

coming from each population as measured on the array should be equal, whereas

small numbers of specific genes will change their levels and show ratios of expres-

sion significantly different from the overall population. Of course, this assumption

is not always true.

Early normalizationmethods consisted of calculating amedian of each population

after excluding the upper and lower ends of the distribution of the data, and then

adjusting one population through multiplication of a constant to bring the means of

the populations to equality. However, in plotting one population against the other,

one often notices that the populations too do not differ by a single constant across

their range; that is, an intensity dependence is often observed for differences be-

tween populations. This is illustrated in Figure 1.2a. A common method of viewing

two-color microarray data is to examine the ratio and the intensity together on a

microarray plot [70]. In this kind of plot, the ratio of colors (R for red and G for

green) is represented on the y-axis byM and is calculated asM¼ log2(R/G), and the

combined intensity from each fluorescent dye is represented on the x-axis by A,
which is calculated as A¼ (1/2) (log2(R)þ log2(G)). Figure 1.2a illustrates raw data

from a pair of wild-type (wt) and mutant samples hybridized on a two-color array.

The observed skew in the ratio is not a function of the difference between wt and

mutant gene expression, but rather comes from a systematic difference arising in

the process from the microarray experiment. Such plots are not uncommon and can

Figure 1.2 Lowess normalization of data. MA plot of a single-

spotted array of expression data from a wt versus a mutant cell.

Systematic skew in the data is corrected by lowess normalization.

Control targets mixed at known ratios are indicated by color.

(a) Left panel: unnormalized data. (b) Right panel: normalized data.
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be seen even from single samples that are split in two, separately labeled and

hybridized.

To alleviate this effect, many methods of normalization have been developed. The

most popular is a lowess normalization method utilizing local regression to fit each

population in an intensity-dependent fashion [69]. Figure 1.2b illustrates the same

data as in Figure 1.2a after lowess normalization. Much of the skew from the original

data set has been removed. A variety of methods have been developed for the

normalization of two-color array data [71–75].

The methods above assume that the populations to be normalized are roughly

equally distributed, and that the number of genes differentially expressed is small

and the direction of expression is symmetric. This assumption may not be valid in

some cases. For instance, small custom arrays consisting of only a subset of genes

can invalidate the assumption that the effect being studied is evenly and symmetri-

cally distributed across the gene set. However, in simulated experiments lowess

normalization has been found to be robust even when 20% of the genes show

differential expression in just one direction [76]. Chromatin immunoprecipitation

experiments represent another area where normalization methods for the popula-

tions being compared may require special consideration [42]. In this regard, the

relatively new emergence of tiling arrays has prompted the development of new

methods for normalization [77]. Current methods do not take sequence composition

into account, yet is clear that sequence effects will contribute to hybridization signals

and should be accounted for.

Affymetrix GeneChips use hybridization intensities of single samples as a readout

of gene expression. Since many factors unrelated to gene expression can affect

the hybridization properties of a probe, each gene is represented not by one probe

(like most other types of arrays) but by a population of probes. Summarizing a

readout of several probes into a single value for gene expression adds a layer of

complexity to data analysis because there are several ways probe sets can be polled

and opinions differ on which method is best. Indeed, dozens of methods have been

developed [21].

In dealing with Affymetrix arrays, there are two basic steps involved in data

analysis. The first is summarizing the probe sets representing a gene into a readout

of expression for that gene. If gene expression between two samples is to be com-

pared, the results from each chip must be scaled to each other in a second step to

account for differences in labeling and scanning of the samples. There are numer-

ous different approaches for carrying out these steps. As of 2006, more than

30 methods had been identified [21].

The most popular methods are MAS5 [20], RMA (Robust Multichip Average) [78],

and dCHIP [79]. Some methods such as GCRMA (GC Robust Multichip Average)

take probe sequence into account [80]. No method is clearly the best [81], each has

trade-offs and makes different assumptions about the data. The Affymetrix algo-

rithm (MAS5) includes a background subtraction that considers both the perfect

match and mismatch probes, whereas some algorithms such as RMA and GLA

(Generalized LogarithmAverage) [82] do not consider data from theMMprobes. In a

small data set with many values close to background, such differences may lead to
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very different views of the data. Figure 1.3 shows MA plots of a pair of arrays

summarized with MAS5 or RMA. An unsophisticated user taking only ratios into

account might be misled. However, such a difference should be seen as a cautionary

tail that replicates should be performed, as the two methods would otherwise have

more agreement.

Control data sets have been generated and analyzed for the comparison and

validation of different analysis methods [83], and then analyzed by others with

different conclusions [84]. Validated data sets will be an important component in

deciphering which method to apply to the analysis of raw microarray data. It is

important to note the existence of different approaches, and realize trade-offs of

various methods. However, most agree that the biology of the system is usually the

noisiest component in the analysis. Regardless of the analysis method, microarrays

are sensitive, and it is important to be a good experimentalist.

Microarrays have a difficult job to do. Expression of RNA in the cell can vary over

several orders of magnitude. It is estimated that the majority of mRNA extracted

from the cell contains transcripts from a small minority of genes [85]. Themajority

of transcripts are considered rare and expressed at very low levels [86,87]. Thus, it

is not surprising that a typical Affymetrix GeneChip hybridized with a mammalian

sample and analyzed with Affymetrix software reports that half of the probes are

considered ‘‘absent’’ such that the signal was too low to be reliably detected.

In addition, many protocols for array hybridization are suboptimal. Historically,

quantitative PCR and Northern blots represent a standard method for measuring

gene expression, and are used as a way to verify microarray results. It is common

when performing Northern blot analysis, or qPCR, to optimize the probe

Figure 1.3 MAS5 versus RMA comparison of two data sets. Two

Affymetrix expression data sets on amplified mouse cell RNA

comparing a wt and mutant mouse using either MAS5- or

RMA-treated data. Replicates should be performed as small data

sets can exhibit large differences with different data treatments.
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and hybridization conditions. In a microarray experiment, all the probes are

different, yet they all experience identical hybridization conditions. Few experi-

mentalists take time to optimize one of the most important steps: hybridization

and wash conditions. Most spotted array protocols call for suboptimal hybridiza-

tion times [88]. In addition, the specificity of hybridization is established in the

washing steps when nonhybridized material is washed away. Unlike Northern

blotting, few optimize this step, yet doing so would decrease noise from back-

ground hybridization, and increase the reproducibility of expression values [89].

Despite the caveats of different analysis methods, and the general difficulty of

measuring gene expression, comparisons of different kinds of microarrays and

across different laboratories show that the technology is robust [90–94], though

issues in lack of concordance have been observed [95,96]. Most would agree that

the majority of noise is associated with biological variability rather than with micro-

array measurement platform. Often, the question arises as to which microarray

platform to use in an experiment. In terms of sensitivity, specificity, and reproduc-

ibility, a large comprehensive study recently indicated that both single and double

sample platforms are equivalent [97].

1.4.1

Be Unbiased, Be Complete

Microarrays afford a new luxury that changes the way science is done. Just a short

time ago, the measurement of gene expression was performed one or two genes at a

time, and almost always with a hypothesis about the gene in mind. These days,

however, this would be considered a biased approach. Since microarrays confer the

ability to measure virtually all the genes, one can take an unbiased approach to a

problem by examining all genes and identifying those genes or elements that exhibit

change under some condition. Thus, the idea that one can be unbiased and complete

when looking for a gene expression response emerges.

However, even here technological advances show us how biased we still are.

Because microarrays will measure only what they are designed to measure, if they

contain only sequences corresponding to known genes, they will miss novel biolog-

ical responses that occur in unexpected places.

For example, a genomic probe set from Operon Technologies has been designed

to perform whole genome analysis of gene expression in yeast, but since it consists

of 70-mer oligonucleotides for 6300 known and predicted genes, the probes repre-

sent only 1.8% of the genome when taking both strands into account. Given the

ubiquity of genomic transcription recently observed on tiling arrays, we can see that

there are many transcriptional events that will not be detected.

1.4.2

Sequence Counts

There are two ways to identify a nucleic acid sequence: match it to some-

thing that is known or sequence it directly. Microarrays identify DNA by
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hybridizing it to a known complement. However, new advances in sequencing

technologies allow large populations of molecules to be identified by direct

sequencing.

Asmentioned earlier, advances in sequencing technology seeded a paradigm shift

by creating an appetite for parallel gene expression. The switch from serial to parallel

has extended into other areas such as protein arrays [98], cellular arrays [99], and

phenotype arrays [100]. Recent advances in sequencing technology are poised to take

over for microarrays and change the way we measure gene expression, or quantify

nucleic acids in complex mixtures, yet again. Bead-based sequencing technologies

allow the collection of hundreds ofmillions of sequence reads on individual samples

[101–103]. Thus, rather than label fragments and hybridize them to an array of

probes, one can simply gather sequences and count the occurrence of tags as a

readout of expression.

This technology fundamentally changes what is measured in a gene expression

experiment. It does not depend on gene models or building a probe, rather it counts

the nucleotides directly, thus directly reading the results of gene expression. This

opens the door to a long sought goal of understanding splice variation in the

genome. It also sidesteps many of the technical issues behind hybridization-based

methods such as designing good probes or carefully controlling hybridization con-

ditions. Much like SAGE (Serial Analysis of Gene Expression) techniques that

provide a more digital view of transcription [104] and have nucleotide level resolu-

tion, high volume sequencing techniques will do the same but are much more

efficient.

As mentioned previously, the highly parallel nature of microarray data means that

more is measured in a typical experiment than may be realized by the experimenter.

To keep data available as a resource for mining, standards have been created for the

capture and description of microarray data [105], and public repositories such as

GEO [106] and ArrayExpress [107] have sprung up to archive data for public mining.

The bottleneck is no longer in the generation of data, but in our ability tomake sense

of it.
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