## Contents

Preface xi List of Contributors xiii

| 1       | Self-healing Materials: Fundamentals, Design Strategies, and Applications $1$                                               |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
|         | Swapan Kumar Ghosh                                                                                                          |  |  |
| 1.1     | Introduction 1                                                                                                              |  |  |
| 1.2     | Definition of Self-healing 1                                                                                                |  |  |
| 1.3     | Design Strategies 2                                                                                                         |  |  |
| 1.3.1   | Release of Healing Agents 2                                                                                                 |  |  |
| 1.3.1.1 | Microcapsule Embedment 3                                                                                                    |  |  |
| 1.3.1.2 | Hollow Fiber Embedment 4                                                                                                    |  |  |
| 1.3.1.3 | Microvascular System 8                                                                                                      |  |  |
| 1.3.2   | Reversible Cross-links 9                                                                                                    |  |  |
| 1.3.2.1 | Diels–Alder (DA) and Retro-DA Reactions 10                                                                                  |  |  |
| 1.3.2.2 | Ionomers 12                                                                                                                 |  |  |
| 1.3.2.3 | Supramolecular Polymers 13                                                                                                  |  |  |
| 1.3.3   | Miscellaneous Technologies 17                                                                                               |  |  |
| 1.3.3.1 | Electrohydrodynamics 17                                                                                                     |  |  |
| 1.3.3.2 | Conductivity 20                                                                                                             |  |  |
| 1.3.3.3 | Shape Memory Effect 21                                                                                                      |  |  |
| 1.3.3.4 | Nanoparticle Migrations 22                                                                                                  |  |  |
| 1.3.3.5 | Co-deposition 22                                                                                                            |  |  |
| 1.4     | Applications 23                                                                                                             |  |  |
| 1.5     | Concluding Remarks 25                                                                                                       |  |  |
| 2       | Self-healing Polymers and Polymer Composites 29                                                                             |  |  |
|         | Ming Qiu Zhang, Min Zhi Rong and Tao Yin                                                                                    |  |  |
| 2.1     | Introduction and the State of the Art 29                                                                                    |  |  |
| 2.2     | Preparation and Characterization of the Self-healing Agent Consisting of Microencapsulated Epoxy and Latent Curing Agent 35 |  |  |
| 2.2.1   | Preparation of Epoxy-loaded Microcapsules and the Latent Curing Agent $CuBr_2(2-MeIm)_4$ 35                                 |  |  |

۷

Self-healing Materials: Fundamentals, Design Strategies, and Applications. Edited by Swapan Kumar Ghosh Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31829-2

- VI Contents
  - 2.2.2 Characterization of the Microencapsulated Epoxy 36
  - 2.2.3 Curing Kinetics of Epoxy Catalyzed by CuBr<sub>2</sub>(2-MeIm)<sub>4</sub> 38
  - 2.3 Mechanical Performance and Fracture Toughness of Self-healing Epoxy 43
  - 2.3.1 Tensile Performance of Self-healing Epoxy 43
  - 2.3.2 Fracture Toughness of Self-healing Epoxy 43
  - 2.3.3 Fracture Toughness of Repaired Epoxy 45
  - 2.4 Evaluation of the Self-healing Woven Glass Fabric/Epoxy Laminates 49
  - 2.4.1 Tensile Performance of the Laminates 49
  - 2.4.2 Interlaminar Fracture Toughness Properties of the Laminates 51
  - 2.4.3 Self-healing of Impact Damage in the Laminates 57
  - 2.5 Conclusions 68

## **3 Self-Healing Ionomers** 73

- Stephen J. Kalista, Jr.
- 3.1 Introduction 73
- 3.2 Ionomer Background 74
- 3.2.1 Morphology 75
- 3.2.2 Ionomers Studied for Self-healing 78
- 3.3 Self-healing of Ionomers 79
- 3.3.1 Healing versus Self-healing 80
- 3.3.2 Damage Modes 81
- 3.3.3 Ballistic Self-healing Mechanism 83
- 3.3.4 Is Self-healing an Ionic Phenomenon? (Part I) 84
- 3.3.5 Is Self-healing an Ionic Phenomenon? (Part II) 86
- 3.3.6 Self-healing Stimulus 88
- 3.4 Other Ionomer Studies 89
- 3.5 Self-healing Ionomer Composites 95
- 3.6 Conclusions 97
- 4 Self-healing Anticorrosion Coatings 101
  - Mikhail Zheludkevich
- 4.1 Introduction 101
- 4.2 Reflow-based and Self-sealing Coatings 103
- 4.2.1 Self-healing Bulk Composites 103
- 4.2.2 Coatings with Self-healing Ability based on the Reflow Effect 105
- 4.2.3 Self-sealing Protective Coatings 108
- 4.3 Self-healing Coating-based Active Corrosion Protection 109
- 4.3.1 Conductive Polymer Coatings 110
- 4.3.2 Active Anticorrosion Conversion Coatings 113
- 4.3.3 Protective Coatings with Inhibitor-doped Matrix 119
- 4.3.4 Self-healing Anticorrosion Coatings based on Nano-/Microcontainers of Corrosion Inhibitors 122
- 4.3.4.1 Coatings with Micro-/Nanocarriers of Corrosion Inhibitors 123

Contents VII

| 1317    | Continue with Micro-Nanocontainers of Corrosion Inhibitars 128 |
|---------|----------------------------------------------------------------|
| 4.3.4.2 | Conclusive Remarks and Outlook 133                             |
| 4.4     | Conclusive Remarks and Outlook 155                             |
| 5       | Self-healing Processes in Concrete 141                         |
| -       | Erk Schlangen and Christopher Ioseph                           |
| 5.1     | Introduction 141                                               |
| 5.2     | State of the Art 144                                           |
| 5.2.1   | Definition of Terms 144                                        |
| 5.2.1.1 | Intelligent Materials 144                                      |
| 5.2.1.2 | Smart Materials 145                                            |
| 5.2.1.3 | Smart Structures 145                                           |
| 5.2.1.4 | Sensory Structures 146                                         |
| 5.2.2   | Autogenic Healing of Concrete 146                              |
| 5.2.3   | Autonomic Healing of Concrete 147                              |
| 5.2.3.1 | Healing Agents 148                                             |
| 5.2.3.2 | Encapsulation Techniques 149                                   |
| 5.3     | Self-healing Research at Delft 152                             |
| 5.3.1   | Introduction 152                                               |
| 5.3.2   | Description of Test Setup for Healing of Early Age Cracks 152  |
| 5.3.3   | Description of Tested Variables 154                            |
| 5.3.4   | Experimental Findings 155                                      |
| 5.3.4.1 | Influence of Compressive Stress 155                            |
| 5.3.4.2 | Influence of Cement Type 156                                   |
| 5.3.4.3 | Influence of Age When the First Crack is Produced 158          |
| 5.3.4.4 | Influence of Crack Width 159                                   |
| 5.3.4.5 | Influence of Relative Humidity 159                             |
| 5.3.5   | Simulation of Crack Healing 159                                |
| 5.3.6   | Discussion on Early Age Crack Healing 163                      |
| 5.3.7   | Measuring Permeability 164                                     |
| 5.3.8   | Self-healing of Cracked Concrete: A Bacterial Approach 165     |
| 5.4     | Self-healing Research at Cardiff 168                           |
| 5.4.1   | Introduction 168                                               |
| 5.4.2   | Experimental Work 169                                          |
| 5.4.2.1 | Preliminary Investigations 169                                 |
| 5.4.2.2 | Experimental Procedure 172                                     |
| 5.4.3   | Results and Discussion 173                                     |
| 5.4.4   | Modeling the Self-healing Process 175                          |
| 5.4.5   | Conclusions and Future Work 177                                |
| 5.5     | A View to the Future 178                                       |
| 5.6     | Acknowledgments 179                                            |
| 6       | Self-healing of Surface Cracks in Structural Ceramics 183      |
|         | Wataru Nakao, Koji Takahashi and Kotoji Ando                   |
| 6.1     | Introduction 183                                               |

6.2 Fracture Manner of Ceramics 183

- VIII Contents
  - 6.3 History 185
  - 6.4 Mechanism 187
  - 6.5 Composition and Structure 190
  - 6.5.1 Composition 190
  - 6.5.2 SiC Figuration 192
  - 6.5.3 Matrix 193
  - 6.6 Valid Conditions 194
  - 6.6.1 Atmosphere 194
  - 6.6.2 Temperature 195
  - 6.6.3 Stress 198
  - 6.7 Crack-healing Effect 200
  - 6.7.1 Crack-healing Effects on Fracture Probability 200
  - 6.7.2 Fatigue Strength 202
  - 6.7.3 Crack-healing Effects on Machining Efficiency 204
  - 6.8 New Structural Integrity Method 207
  - 6.8.1 Outline 207
  - 6.8.2 Theory 207
  - 6.8.3 Temperature Dependence of the Minimum Fracture Stress Guaranteed 209
  - 6.9 Advanced Self-crack Healing Ceramics 212
  - 6.9.1 Multicomposite 212
  - 6.9.2 SiC Nanoparticle Composites 213
  - 7 Self-healing of Metallic Materials: Self-healing of Creep Cavity and Fatigue Cavity/crack 219
    - Norio Shinya
  - 7.1 Introduction 219
  - 7.2 Self-healing of Creep Cavity in Heat Resisting Steels 220
  - 7.2.1 Creep Fracture Mechanism and Creep Cavity 221
  - 7.2.2 Sintering of Creep Cavity at Service Temperature 223
  - 7.2.3 Self-healing Mechanism of Creep Cavity 225
  - 7.2.3.1 Creep Cavity Growth Mechanism 225
  - 7.2.3.2 Self-healing Layer on Creep Cavity Surface 226
  - 7.2.4 Self-healing of Creep Cavity by B Segregation 227
  - 7.2.4.1 Segregation of Trace Elements 227
  - 7.2.4.2 Self-healing of Creep Cavity by B Segregation onto Creep Cavity Surface 229
  - 7.2.4.3 Effect of B Segregation on Creep Rupture Properties 234
  - 7.2.5 Self-healing of Creep Cavity by BN Precipitation on to Creep Cavity Surface 234
  - 7.2.5.1 Precipitation of BN on Outer Free Surface by Heating in Vacuum 234
  - 7.2.5.2 Self-healing of Creep Cavity by BN Precipitation 234
  - 7.2.5.3 Effect of BN Precipitation on Creep Rupture Properties 238
  - 7.3Self-healing of Fatigue Damage241
  - 7.3.1 Fatigue Damage Leading to Fracture 241

| Contents | IX |
|----------|----|
|          |    |

- 7.3.2 Delivery of Solute Atom to Damage Site 242
- 7.3.2.1 Pipe Diffusion 242
- 7.3.2.2 Solute-vacancy Complexes 243
- 7.3.3 Self-healing Mechanism for Fatigue Cavity/Crack 243
- 7.3.3.1 Closure of Fatigue Cavity/Crack by Deposition of Precipitate 244
- 7.3.3.2 Closure of Fatigue Cavity/Crack by Volume Expansion with Precipitation 244
- 7.3.3.3 Replenishment of Strengthening Phase by Dynamic Precipitation on Dislocation 244
- 7.3.4 Effect of Self-healing on Fatigue Properties of Al Alloy 246
- 7.4 Summary and Remarks 247

## 8 Principles of Self-healing in Metals and Alloys: An Introduction 251 Michele V. Manuel

- 8.1 Introduction 251
- 8.2 Liquid-based Healing Mechanism 252
- 8.2.1 Modeling of a Liquid-assisted Self-healing Metal 256
- 8.3 Healing in the Solid State: Precipitation-assisted Self-healing Metals 257
- 8.3.1 Basic Phenomena: Age (Precipitation) Hardening 257
- 8.3.2 Self-healing in Aluminum Alloys 258
- 8.3.3 Self-healing in Steels 261
- 8.3.4 Modeling of Solid-state Healing 262
- 8.4 Conclusions 263

9 Modeling Self-healing of Fiber-reinforced Polymer-matrix Composites with Distributed Damage 267

Ever J. Barbero, Kevin J. Ford, Joan A. Mayugo

- 9.1 Introduction 267
- 9.2 Damage Model 268
- 9.2.1 Damage Variable 268
- 9.2.2 Free-energy Potential 269
- 9.2.3 Damage Evolution Equations 270
- 9.3 Healing Model 272
- 9.4 Damage and Plasticity Identification 274
- 9.5 Healing Identification 277
- 9.6 Damage and Healing Hardening 279
- 9.7 Verification 280

Index 285

