Contents

Preface XI

List of Contributors XIII

1	Concepts in Selective Oxidation of Small Alkane Molecules 1	
	Robert Schlögl	
1.1	Introduction 1	
1.2	The Research Field 4	
1.3	Substrate Activation 7	
1.4	Active Oxygen Species 15	
1.5	Catalyst Material Science 22	
1.6	Conclusion 34	
	References 35	
2	Active Ensemble Structures for Selective Oxidation Catalyses	
-	at Surfaces 43	
	Mizuki Tada and Yasuhiro Iwasawa	
2.1	Introduction 43	
2.2	Chiral Self-Dimerization of Vanadium Schiff-Base Complexes on	
	SiO ₂ and Their Catalytic Performances for Asymmetric Oxidative	
	Coupling of 2-Naphthol 44	
2.2.1	Asymmetric Heterogeneous Catalysis Using Supported Metal	
	Complexes 44	
2.2.2	Chiral V-Dimer Structure on a SiO ₂ Surface 45	
2.2.3	Asymmetric Catalysis for Oxidative Coupling of 2-Naphthol to BINOL	49
2.3	Low-Temperature Preferential Oxidation of CO in Excess H ₂ on	
	Cu-Clusters Dispersed on CeO_2 51	
2.3.1	Preferential Oxidation (PROX) of CO in Excess H ₂ on Novel	
	Metal Catalysts 51	
2.3.2	Characterization and Performance of a Novel Cu Cluster/CeO ₂	
	Catalyst 52	

v

VI Contents

2.4	Direct Phenol Synthesis from Benzene and Molecular Oxygen
.	on a Novel N-Interstitial Re ₁₀ -Cluster/HZSM-5 Catalyst 57
2.4.1	Phenol Production from Benzene with N ₂ O, $H_2 + O_2$, and $O_2 = 57$
2.4.1.1	Benzene to Phenol with N_2O 58
2.4.1.2	Benzene to Phenol with $H_2 + O_2 = 60$
2.4.1.3	Benzene to Phenol with O_2 62
2.4.2	Novel Re/HZSM-5 Catalyst for Direct Benzene-to-Phenol Synthesis with O ₂ 64
2.4.3	Active Re Clusters Entrapped in ZSM-5 Pores 66
2.4.4	Structural Dynamics of the Active Re ₁₀ Cluster 68
2.5	Conclusion 71
	References 71
3	Unique Catalytic Performance of Supported Gold Nanoparticles in Oxidation 77
	Yunbo Yu, Jiahui Huang, Tamao Ishida, and Masatake Haruta
3.1	Introduction 77
3.2	Low-Temperature CO Oxidation 79
3.2.1	Low-Temperature CO Oxidation in Air 79
3.2.1.1	Junction Perimeter Between Au Particles and the Support 79
3.2.1.2	Selection of Suitable Supports 81
3.2.1.3	Sensitivity to the Size of the Gold Particles 82
3.2.2	Low-Temperature CO Oxidation in H ₂ 84
3.2.3	Mechanism for CO Oxidation Over Supported Gold Nanoparticles 87
3.2.3.1	Mechanisms Involving Junction Perimeter Between Gold and the Metal-Oxide Supports 87
3.2.3.2	Mechanisms Involving Specific Size or Thickness of Gold Clusters or Thin Layers 90
3.2.3.3	Mechanisms Involving Cationic Gold 92
3.3	Complete Oxidation of Volatile Organic Compounds 92
3.4	Gas-Phase Selective Oxidation of Organic Compounds 97
3.4.1	Gas-Phase Selective Oxidation of Aliphatic Alkanes 97
3.4.2	Gas-Phase Selective Oxidation of Alcohols 98
3.4.3	Gas-Phase Propylene Epoxidation 100
3.4.3.1	Introduction 100
3.4.3.2	Gas-Phase Propylene Epoxidation with Hydrogen–Oxygen Mixtures
	on Au/TiO ₂ 101
3.4.3.3	Gas-Phase Propylene Epoxidation with Hydrogen–Oxygen Mixtures on Au/Ti-SiO ₂ 103
3.5	Liquid-Phase Selective Oxidation of Organic Compounds 106
3.5.1	Oxidation of Mono-Alcohols 107
3.5.2	Oxidation of Diols 112
3.5.3	Oxidation of Glycerol 113
3.5.4	Aerobic Oxidation of Glucose 115
2 5 5	

3.5.5 Oxidation of Alkanes and Alkenes 116

- 3.6 Conclusions 116 References 118 4 Metal-Substituted Zeolites as Heterogeneous Oxidation Catalysts 125 Takashi Tatsumi 4.1 Introduction – Two Ways to Introduce Hetero-Metals into Zeolites 125 4.2 Titanium-Containing Zeolites 126 4.2.1 TS-1 126 4.2.2 Ti-Beta 136 4.2.3 Ti-MWW 137 4.2.4 Other Titanium-Containing Zeolites 145 4.2.5 Solvent Effects and Reaction Intermediate 145 4.3 Other Metal-Containing Zeolites 150 Conclusion 151 4.4 References 151 5 Design of Well-Defined Active Sites on Crystalline Materials for Liquid-Phase Oxidations 157 Kivotomi Kaneda and Takato Mitsudome 5.1 Introduction 157 5.2 Oxidation of Alcohols 157 5.2.1 Ru Catalyst 158 5.2.2 Pd Catalyst 163 5.2.3 Au Catalyst 164 5.2.4 Au-Pd Catalyst 166 5.3 Epoxidation of Olefins 166 5.3.1 Epoxidation with Hydrogen Peroxide 167 Titanium-Based Catalysts 5.3.1.1 167 5.3.1.2 Tungsten-Based Catalysts 167 5.3.1.3 Base Catalyst 169 5.3.2 Epoxidation with Molecular Oxygen 172 5.4 Cis-Dihydroxylation 173 5.5 Baeyer–Villiger Oxidation 175 C-H Activation Using Molecular Oxygen 177 5.6 5.7 Conclusions 178 References 178 6 Liquid-Phase Oxidations with Hydrogen Peroxide and Molecular Oxygen Catalyzed by Polyoxometalate-Based Compounds 185 Noritaka Mizuno, Keigo Kamata, Sayaka Uchida, and Kazuya Yamaguchi 6.1 Introduction 185 6.2 Molecular Design of Polyoxometalates for H₂O₂- and O₂-Based Oxidations 186
- 6.2.1 Isopoly- and Heteropolyoxometalates 188

- VIII Contents
 - 6.2.2 Peroxometalates 189
 - 6.2.3 Lacunary Polyoxometalates 190
 - Transition-Metal-Substituted Polyoxometalates 6.2.4 192
 - 6.3 Heterogenization of Polyoxometalates 193
 - Solidification of Polyoxometalates with Appropriate Cations 200 6.3.1
 - 6.3.1.1 Metal and Alkylammonium Cations 200
 - 6.3.1.2 Polycations 201
 - Cationic Organometallic Complexes 203 6.3.1.3
 - Immobilization of Polyoxometalate-Based Compounds 205 6.3.2
 - 6.3.2.1 Wet Impregnation 205
 - 6.3.2.2 Solvent-Anchoring and Covalent Linkage 207

6.3.2.3 Anion Exchange 208

6.4 Conclusion 210

- References 211
- 7 Nitrous Oxide as an Oxygen Donor in Oxidation Chemistry and Catalysis 217
 - Gennady I. Panov, Konstantin A. Dubkov, and Alexander S. Kharitonov
- Introduction 217 7.1
- 7.2 Molecular Structure and Physical Properties of Nitrous Oxide 218
- 7.3 Catalytic Oxidation by Nitrous Oxide in the Gas Phase 220
- Oxidation of Lower Alkanes Over Oxide Catalysts 220 7.3.1
- 7.3.2 Oxidation Over Zeolites 222
- 7.3.2.1 Oxidation by Dioxygen 222
- 7.3.2.2 Oxidation of Benzene to Phenol by N₂O 223
- 7.3.2.3 Nature of Zeolite Activity, α-Sites 224
- 7.3.2.4 N₂O specificity, α-Oxygen and its Stoichiometric Reactions 227
- 7.3.2.5 Hydroxylation of Alkanes and Benzene Derivatives 229
- 7.3.2.6 Other Types of Oxidation Reactions 230
- 7.4 Catalytic Oxidation by N₂O in the Liquid Phase 230
- 7.5 Non-Catalytic Oxidations by N₂O 231
- 7.5.1 Liquid-Phase Oxidation of Alkenes 231
- 7.5.1.1 Linear Alkenes 232
- 7.5.1.2 Cyclic Alkenes 234
- Cyclodienes 237 7.5.1.3
- Bicyclic Alkenes 238 7.5.1.4
- Heterocyclic Alkenes 238 7.5.1.5
- Carboxidation of Polymers 240 7.5.2
- 7.5.2.1 Carboxidation of Polyethylene 240
- 7.5.2.2 Carboxidation of Polybutadiene Rubber 241
- 7.6 Economic Aspects of N₂O as Oxidant 244
- Recovery of N₂O From Off-Gases 244 7.6.1
- Deliberate Preparation of N₂O 245 7.6.2
- 7.7 Conclusion 246
 - References 247

- 8 Direct Synthesis of Hydrogen Peroxide: Recent Advances 253
 - Gabriele Centi, Siglinda Perathoner, and Salvatore Abate
- 8.1 Introduction 253
- 8.1.1 Industrial Production 253
- 8.1.2 Outlook for H_2O_2 Production 254
- 8.1.3 Uses of Hydrogen Peroxide 255
- 8.2 Direct Synthesis of H₂O₂ from an Industrial Perspective 257
- 8.2.1 Status of Development and Perspectives of Industrial Production 257
- 8.2.2 Recent Patents on the Direct Synthesis of H_2O_2 262
- 8.3 Fundamental Studies 270
- 8.3.1 Intrinsically Safe Operations and Microreactors 271
- 8.3.2 Nature of the Catalyst and Reaction Network 275
- 8.3.3 Role of the Solvent and of Promoters 281
- 8.4 Conclusion 282
 - References 283

9 Recent Achievements and Challenges for a Greener Chemical Industry 289

- Fabrizio Cavani and Nicola Ballarini
- 9.1 Introduction: Old and New Challenges for Oxidation Catalysis in Industry 289
- 9.2 Recent Successful Examples of Alkanes Oxidation 290
- 9.2.1 Oxidation of Ethane to Acetic Acid 290
- 9.2.2 Ammoxidation of Propane to Acrylonitrile 294
- 9.3 New Oxidation Technologies: Oxidative Desulfurization (ODS) of Gas Oil 301
- 9.4 Process Intensification in Catalytic Oxidation 304
- 9.5 An Alternative Approach: Anaerobic Oxidation with Metal Oxides in a Cycle Process (from an Oxidation Catalyst to a Reusable Stoichiometric Oxidant) 306
- 9.5.1 Anaerobic Oxidation of Propene to Acrolein in a CFBR Reactor 309
- 9.5.2 Anaerobic Synthesis of 2-Methyl-1,4-Naphthoquinone (Menadione) 310
- 9.5.3 Anaerobic Oxidative Dehydrogenation of Propane to Propene 311
- 9.5.4 Production of Hydrogen from Methane with Oxide Materials and Inherent Segregation of Carbon Dioxide 313
- 9.6 Current and Developing Processes for the Transformation of Bioplatform Molecules into Chemicals by Catalytic Oxidation 316
- 9.6.1 Glycerol: A Versatile Building Block 320
- 9.7 Conclusion 321 References 323

Index 333