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  1.1 
 Magnetism of Materials 

  1.1.1 
 Historical Background 

 Magnets play a crucial role in a modern life; as we know, a vast number of devices 
are employed in the electromagnetic industry. In ancient times human beings 
experienced magnetic phenomena by utilizing natural iron minerals, especially 
magnetite. It was not until modern times that magnetic phenomena were appreci-
ated from the standpoint of electromagnetics, to which many physicists such as 
Oersted and Faraday made a great contribution. In particular, Amp è re explained 
magnetic materials in 1822, based on a small circular electric current. This was 
the fi rst explanation of a molecular magnet. Furthermore, Amp è re ’ s circuital law 
introduced the concept of a magnetic moment or magnetic dipoles, similar to 
electric dipoles. Macroscopic electromagnetic phenomena are depicted in Figure 
 1.1 , in which a bar magnet and a circuital current in a wire are physically equiva-
lent. Microscopic similarity is shown in Figure  1.2 , in which a magnetic moment 
or dipole and a microscopic electron rotational motion are comparable but not 
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    Figure 1.1     Magnetic fi elds due to a bar magnet and a circuital current.  
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    Figure 1.2     Magnetic fi elds due to a magnetic moment and a small circular current.  

    Figure 1.3     Faraday and Gouy balances for magnetic measurements. Force ( F x  ) is measured.  

discriminated at all. The true understanding of the origin of magnetism, however, 
has come with quantum mechanics, newly born in the twentieth century.     

 Before the birth of quantum mechanics vast amounts of data concerning the 
magnetic properties of materials were accumulated, and a thoroughly logical clas-
sifi cation was achieved by observing the response of every material to a magnetic 
fi eld. These experiments were undertaken using magnetic balances invented by 
Gouy and Faraday. The principle of magnetic measurement is depicted in Figure 
 1.3 , in which the balance measures the force exerted on the materials in a magnetic 
fi eld. In general, all materials are classifi ed into two categories, diamagnetic and 
paramagnetic substances, depending on the directions of the force. The former 
tend to exclude the magnetic fi eld from their interior, thus being expelled effect 
in the experiments of Figure  1.3 . On the other hand, some materials are attracted 



by the magnetic fi eld. This difference between diamagnetic and paramagnetic 
substances is caused by the absence or presence of the magnetic moments that 
some materials possess in atoms, ions, or molecules. Curie made a notable con-
tribution to experiments, and was honored with Curie ’ s law (1895). Our under-
standing of magnetism was further extended by Weiss, leading to antiferromagnetism 
and ferromagnetism, which imply different magnetic interactions of magnetic 
moments with antiparallel and parallel confi gurations. These characteristics are 
involved in the Curie – Weiss law. The details will be described one after another 
in the following sections.    

  1.1.2 
 Magnetic Moment and its Energy in a Magnetic Field 

 The magnetic fi eld generated by an electrical circuit is given as

   H ⋅ =∫ dl I�     (1.1)  

That is, the total current,  I,  is equal to the line integral of the magnetic fi eld,   H,   
around a closed path containing the current. This expression is called  “ Amp è re ’ s 
circuital law ” . The magnetic fi eld generated by a current loop is equivalent to a 
magnetic moment placed in the center of the current. The magnetic moment is 
the moment of the couple exerted on either a bar magnet or a current loop when 
it is in an applied magnetic fi eld  [1] . If a current loop has an area of  A  and carries 
a current  I,  then its magnetic moment is defi ned as

   m = IA     (1.2)  

The cgs unit of the magnetic moment is the  “ emu ” , and, in SI units, magnetic 
moment is measured in Am 2 . The latter unit is equivalent to JT  − 1 . The magnetic 
fi eld lines around the magnetic moment are shown above in Figure  1.2 . In materi-
als the origins of the magnetic moment and its magnetic fi eld are the electrons in 
atoms and molecules comprising the materials. The response of materials to an 
external magnetic fi eld is relevant to magnetic energy, as follows:

   E = − ⋅m H     (1.3)  

This expression for energy is in cgs units, and in SI units the magnetic perme-
ability of free space,  μ  0 , is added.

   E = − ⋅0μ m H     (1.4)  

This expression in SI units is also represented using the magnetic induction, 
  B,   as defi ned in the next section. Therefore, the following expression is convenient 
in SI units:
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   E = − ⋅m B     (1.5)  

The SI unit of magnetic induction is T (tesla).  

  1.1.3 
 Defi nitions of Magnetization and Magnetic Susceptibility 

 Each magnetic moment of a molecular magnet, including atoms or ions, is 
accounted for as a whole by vector summation. This physical parameter needs a 
counting base, such as unit volume, unit weight, or, more generally, unit quantity 
of substance. The last one is the mol (mole), which is widely used in chemistry. 
This is used in the defi nition of magnetization,   M  , of materials. The units of 
magnetization, therefore, are emu   cm  − 3 , emu   g  − 1 , and emu   mol  − 1 , or in SI units, 
A   m  − 1 , A   m 2    kg  − 1 , and Am 2    mol  − 1 , in which Am 2  may be replaced by JT  − 1 . 

   M   is a property of the material, depending on the individual magnetic moments 
of its constituent magnetic origins. Considering the vector sum of each magnetic 
moment, the magnetization refl ects the magnetic interaction modes at a micro-
scopic molecular level, resulting in remarkable experimental behaviors with 
respect to external parameters such as temperature and magnetic fi eld. Magnetic 
induction,   B  , is a response of the material when it is placed in a magnetic fi eld, 
  H  . The general relationship between   B   and   H   may be complicated, but it is 
regarded as a consequence of the magnetic fi eld,   H  , and the magnetization of the 
material,   M  :

   B H M= + 4π     (1.6)  

This is an expression in cgs units. In SI units the relationship between   B, H,   
and   M   is given using the permeability of free space,  μ  0 , as

   B H M= +0μ ( )     (1.7)  

The unit of magnetic induction, in cgs and SI units, is G (gauss) and T (tesla), 
respectively, and the conversion between them is 1   G   =   10  − 4    T. 

 Since the magnetic properties of the materials should be measured as a direct 
magnetization response to the applied magnetic fi eld, the ratio of   M   to   H   is 
important:

   χ = M H/     (1.8)  

This quantity,  χ , is called  “ magnetic susceptibility ” . The magnetization of ordi-
nary materials exhibits a linear function with   H  . Strictly speaking, however, mag-
netization also involves higher terms of   H  , and is manifested in the   M   vs.   H   plot 
(a magnetization curve). Ordinary weak magnetic substances follow   M   =    χ H  . The 
unit of susceptibility is emu   cm  − 3    Oe  − 1  in cgs units, and because of the equality of 
1   G   =   1   Oe, the unit emu   cm  − 3    G  − 1  is also allowed. In some literature, especially in 



chemistry,  χ  is given in units of emu   mol  − 1 . It should be noted that, in SI units, 
susceptibility is dimensionless. 

 The relation between   M   and   H   is the susceptibility: the ratio of   B   to   H   is called 
 “ magnetic permeability ” 

   μ = B H/     (1.9)  

Two equations relating   B   with   H   and   M   ( 1.6 and 1.7 ) and the defi nitions of  χ  
and  μ  lead to the following relations:

   μ πχ= +1 4 ( )in cgs units     (1.10)  

   μ μ χ/ in SI units0 = +1 ( )     (1.11)  

Here, Equation  1.11  indicates the dimensionless relation, and the magnetic 
permeability of free space,  μ  0 , appears again. The permeability of a material mea-
sures how permeable the material is to the magnetic fi eld. In the next section the 
physical explanation will be given after the introduction of magnetic fl ux.  

  1.1.4 
 Diamagnetism and Paramagnetism 

 Every material shows either positive or negative magnetic susceptibility, that is, 
 χ     >    0 or  χ     <    0. In magnetophysics or magnetochemistry this nature is referred to 
as  “ paramagnetism ”  (displayed by a  “ paramagnetic material ” ) in the case of  χ     >    0 
and as  “ diamagnetism ”  (displayed by a  “ diamagnetic material ” ) in the case of 
 χ     <    0. In the   M – H   curve this behavior is discriminated as a positive or negative 
slope, as shown in Figure  1.4 . Usually, a diamagnetic response toward an external 
magnetic fi eld is so minor that its slope is very small compared to the paramag-
netic case. The difference between paramagnetism and diamagnetism is solely 

    Figure 1.4     Schematic fi eld dependencies of magnetization of 
(a) ferromagnetic, (b) paramagnetic, and (c) diamagnetic 
materials.  
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attributed to whether or not the material possesses magnetic moments in atomic, 
ionic, and molecular states.   

 Paramagnetic materials sometimes experience magnetic phase transitions at 
low temperatures. This means cooperative orderings of magnetic moments occur 
through exchange and dipolar interactions between them. There exist several 
ordering patterns which specify the vector arrangement of magnetic moments. 
Ferromagnetic and antiferromagnetic types are typical with parallel and antiparal-
lel orientations, respectively. These magnetisms are called  “ ferromagnetism ”  and 
 “ antiferromagnetism ” . Phenomena concerning the cooperative ordering of mag-
netic moments are very attractive targets for investigation not only experimentally 
but also theoretically. 

 In view of the relationship between  χ  and  μ , positive or the negative magnetic 
susceptibility corresponds to an increase or decrease in permeability, respectively, 
in comparison with the applied magnetic fi eld. In order to gain more insight, the 
concept of  “ magnetic fl ux ”  or  “ fl ux density ”  is discussed here. Magnetic induction, 
  B  , is the same idea as the density of fl ux,  Φ / A , inside the medium, by analogy 
with   H     =    Φ / A  in free space. Here,  A  is the cross - section. This indicates the differ-
ence between the external and internal fl ux, implying the degree of permeability 
of the magnetic fi eld within a medium. This is illustrated in Figure  1.5 , in which 
the lines indicate the magnetic fl ux. Perfect diamagnetism, see Figure  1.5c , is 
specifi ed by   B     =   0 and is manifested inside superconductors (the  “ Meissner 
effect ” ). From the standpoint of magnetic fl ux, materials are characterized as 
 “ diamagnetic ”  and either  “ paramagnetic ”  or  “ antiferromagnetic ”  when magnetic 
fl ux inside is less than outside, and the reverse, respectively. In the case of ferro-
magnetic materials magnetic fl ux inside is very much greater than that outside. 
Ferromagnetic materials tend to concentrate magnetic fl ux within the medium 
and are characterized by a net overall magnetic moment, which is referred to as 
 “ spontaneous magnetization ” .    

  1.1.5 
 Classifi cation of Magnetic Materials 

 The basic concept of the magnetic materials is summarized diagrammatically with 
the help of magnetic moments represented by arrows. No magnetic moment exists 

    Figure 1.5     Magnetic fl ux in (a) paramagnetic, 
(b) diamagnetic, and (c) superconductive materials.  



in diamagnetic materials and the magnetic fi eld applied induces a magnetic fl ux 
opposite to it. In substances possessing any magnetic moments, each magnetic 
moment is randomly orientated by thermal agitations, as shown in Figure  1.6a . A 
decrease of temperature, however, causes magnetic interactions between each 
magnetic moment to predominate over the thermal energy in the surroundings, 
thus some ordering of magnetic moments is brought about below the phase transi-
tion temperatures. Two typical ordering modes are depicted in Figure  1.6b  
(a ferromagnetic case) and in Figure  1.6c  (an antiferromagnetic case). Materials 
possessing any magnetic moments respond positively to the magnetic fi eld applied, 
resulting in both increases of  χ  and  μ .   

 Here, a comment on the ordering in antiferromagnetism is appropriate. The 
antiparallel confi guration of the magnetic moments has some orientational variet-
ies. One variation concerns a different magnitude in the magnetic moments of 
each antiferromagnetically interacting pair. This case is termed  “ ferrimagnetism ”  
(as applied to  “ ferrimagnetic materials ” ) and is shown in Figure  1.6d . Such a fer-
rimagnetic material possesses a net magnetic moment even when the antiparallel 
array of each moment occurs. Because of this net magnetic moment, although the 
magnitude itself is far less compared with the ferromagnetic case, the magnetic 
susceptibility becomes far greater than for a paramagnetic material. The other 
typical antiparallel arrangement occurs in the case of deviation of co - linearity of 
magnetic moments (see, Figure  1.6e ), which is called  “ canting antiferromagnet-
ism ” . If the canting direction is not countervailed as a whole, then the net mag-
netic moment survives. Both ferrimagnetism and canting antiferromagnetism 
are sometimes termed  “ weak ferromagnetism ”  on the basis of their spontaneous 
magnetizations, though these are very small compared to genuine ferromagnetic 
materials.  

  1.1.6 
 Important Variables, Units, and Relations 

 In consideration of the difference of the unit systems, cgs and SI, the important 
variables and relations in magnetic study which we have introduced so far are 
summarized here  [1] .

    Figure 1.6     Disordered and ordered states of magnetic 
moments: (a) paramagnetic; (b) ferromagnetic; 
(c) antiferromagnetic; (d) ferrimagnetic; and (e) canting 
antiferromagnetic states.  
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      Variables    cgs    SI    Conversion  

  Energy     E     erg    J (joule)    1   erg   =   10  − 7    J  
  Magnetic fi eld      H      Oe (oersted)    Am  − 1     1   Oe   =   79.58   Am  − 1   
  Magnetic 

induction  
    B      G (gauss)    T (tesla)    1   G   =   10  − 4    T  

  Magnetic fl ux     Φ     Mx (maxwell)    Wb (weber)    1   Mx   =   10  − 8    Wb  
  Magnetization      M      emu   cm  − 3     Wb   m 2     1   emu   cm  − 3    =   12.57   Wb   m  − 2   

      Relations    cgs units    Relations    SI units  

  Magnetic energy     E    =    −   m  ·  H      erg     E    =    −  μ  0   m   ·   H     =    −   m  ·  B      J  
  Magnetic 

susceptibility  
   χ    =     M  /  H      emu   cm  − 3    Oe  − 1      χ    =     M  /  H      dimensionless  

  Magnetic 
permeability  

   μ    =     B  /  H     
=   1   +   4 χ   

  G   Oe   −1      μ    =     B  /  H     =    μ  0 (1   +    χ )    T   A  − 1    m   =   H   m  − 1   

    SI units represented by SI fundamental constituents, kg, m, s, and A.    

   SI symbol      SI unit      Fundamental constituent   

  N    newton    kg   m   s  − 2   
  J    joule    kg   m 2    s  − 2   
  T    tesla    kg   s  − 2    A  − 1   
  Wb    weber    kg   m 2    s  − 2    A  − 1   
  H    henry    kg   m 2    s  − 2    A  − 2   

  1.2 
 Origins of Magnetism 

  1.2.1 
 Origins of Diamagnetism 

 Diamagnetic materials innately possess no magnetic moments in the atoms, ions, 
or molecules which are their constituents, with the exception that magnetic 
moments interact with each other most strongly as an  “ antiparallel pair ”  so that 
at ambient temperatures they behave in a diamagnetic ways. Keeping this excep-
tion in mind, therefore, a rare origin of diamagnetism is strong twin coupling of 
magnetic moments in an antiferromagnetic manner. It may be pointed out that, 
in this case, paramagnetism turns up at an elevated temperature region. Apart 



from this exception, what is the general origin of diamagnetism? This may be 
understood on the basis of Lentz law, which states that, when a magnetic fi eld is 
applied to a circuit, the current is induced so as to reduce the increased magnetic 
fl ux caused by the magnetic fi eld. This means that the circuit is accompanied by 
a magnetic moment opposite to the applied magnetic fi eld. This is equivalent to 
the diamagnetism caused by the Larmor precession of electrons. As a simple 
example we consider a spherical electron distribution around a nucleus and an 
electron on the sphere at a distance,  r  (Figure  1.7a ).   

 The electric induction attributed to the applied magnetic fi eld along the  z  - axis 
occurs in a plane normal to the magnetic fi eld. The radius,  a , of this circuit is 
related as  a  2    =    x  2    +    y  2 , where the coordinate of the electron is ( x ,  y ,  z ). The induced 
magnetic moment on this loop is expressed in emu using the electron mass,  m  e , 
as

   δm = − +( )e m c x y H2 2 24/ < >e
2     (1.12)  

Here, the symbol    <   >  indicates an average in Figure  1.7a . Spherical symmetry 
assumes  <  x  2  >    =    <  y  2  >    =    <  z  2  >    =    <  r  2  > /3, giving

   δm = −( )e m c r H2 26/ < >e
2     (1.13)  

This is summed up for all electrons in the atom, and a molar magnetic suscep-
tibility,  χ  M , is given in emu, using the Avogadro constant,  N  A , as follows:

   χ = − ∑M A e k
2/ < >( )N e m c r2 26     (1.14)  

This formulae is endorsed by quantum mechanics and the temperature - inde-
pendency of this value may be understood from the evaluation of   < >k

2r  using the 
wave functions. The energy difference between the wave functions with different 

    Figure 1.7     (a) Electron rotation in the radius,  a ; 
(b) cyclotron motion caused by the magnetic fi eld.  
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radial parts is approximates 10   eV. The thermal energy k T  at room temperature 
amounts to approximately 1/40   eV. Thus, diamagnetism exhibits no dependence 
on temperature. Atomic diamagnetism usually is of the order of  ∼ 10  − 6    emu, and 
increases in absolute magnitude for larger atoms with a bigger atomic number 
because they have a wider radial distribution function. 

 Diamagnetism for the free electron model is commented on here. It is well 
known that free electrons are moved by the applied magnetic fi eld, showing a 
helical motion along the direction of the fi eld. This is called a  “ cyclotron motion ” , 
which is a counterclockwise circular locus with respect to the magnetic fi eld (see, 
Figure  1.7b ). The frequency of the cyclotron is twice the Larmor frequency and it 
produces magnetic moments again in opposition to the magnetic fi eld. This mag-
netic moment is given in emu

   δ ωm = −( )ea c2 2/ C     (1.15)  

where  ω  C  is the cyclotron frequency and given by  ω  C    =    e H  / mc.  This is a diamag-
netic contribution. However, when these diamagnetic contributions caused by the 
cyclotron motion are averaged classically for the electron assembly, then macro-
scopic diamagnetism vanishes. This is the theorem of Miss van Leeuwen. Landau 
brought this problem to a settlement considering quantization of the helical 
motions. To cut the matter short, diamagnetic susceptibility is given in emu   cm  − 3  
as

   χ μ= −( )n E/ F B
22     (1.16)  

Here,  n  is a density of free electrons and  E  F  the Fermi energy. The new symbol, 
 μ  B , is called the  “ Bohr magneton ” , which is defi ned as a unit of magnetic moment. 
The detail will be described in the following section, referring to the discussion of 
the origin of paramagnetism. 

 To summarize this section, diamagnetism is a counteraction of electrons against 
the magnetic fi eld so as to reduce the increment of magnetic fl ux caused by the 
applied fi eld. This is a universal action of electrons. In the presence of magnetic 
moments originating from electrons such as paramagnetic materials, the opposite 
action    –    that is, a cooperative increase of the magnetic fl ux    –    takes place very readily, 
as if a magnetic bar is aligned along the direction of magnetic fi eld. Note that these 
reactions, diamagnetic and paramagnetic, are combined additively. Now we are 
ready to comprehend the origins of paramagnetism.  

  1.2.2 
 Origins of Paramagnetism 

 Here we seek the origins of magnetic moments that give rise to paramagnetism. 
Briefl y, magnetic moments are attributable to the angular momenta of the elec-
trons in the atom. The image of the angular momentum of an electron corre-
sponds to Amp è re ’ s circulating circuit, leading to the magnetic moment at the 



atomic level, even in the absence of a magnetic fi eld. As we see from the wave 
functions of the electrons in the hydrogen atom based on the Schr ö dinger equa-
tion and the introduction of the electron spin, there exist two types of angular 
momenta. One is orbital angular momentum and the other is spin angular 
momentum. Spin angular momentum is an intrinsic part of an electron itself, 
regardless of location inside or outside the atom. Finally, the orbital and the spin 
angular momenta are combined, giving the total angular momentum, which pro-
duces the magnetic moments. 

 The quantum theory of a hydrogen atom is derived from the Schr ö dinger equa-
tion, as follows.
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The fi rst term is the kinetic energy, and the potential energy term,  − (1/4 π  ε  0 )( e  2 / r ), 
is the Coulomb interaction between the electron and the nucleus (proton). As a 
result of the spherical symmetry of the Coulomb potential, the wave function,  Ψ , 
is separated into the product of the functions of each variable in the spherical 
coordinates.

   Ψ Θ Φnlm r Rnl r lm ml l l( , ) ( ) ( ) ( )θ ϕ θ ϕ, =     (1.18)  

The  Rnl ( r ) is called the radial part of the wave function and comprises the asso-
ciated Laguerre functions. This function contains two types of quantum num-
bers,  n , the principal quantum number and  l , the azimutal quantum number. 
The angular parts of the spherical coordinates are combined into  Ylm l  ( θ ,  ϕ )   =  
  Θ  lm l  ( θ ) Φ  m l  ( ϕ ), which are known as  “ spherical harmonics ” . The angular parts are 
labeled by two quantum numbers,  l  and  m l  . The latter is named the  “ magnetic 
quantum number ” , and plays an important role when the magnetic fi eld is applied. 
The characteristics of the orbital motion of the electron around the nucleus may 
be described by wave functions with a particular set of quantum numbers, 
 n, l, m l  . These quantum numbers vary under some limitations over integer 
numbers as

   
n
l n
m ll

=
= −

= ± ± ± ±

1 2 3
0 1 2 3 1

0 1 2 3

, , , . . .
, , , , . . . , ( )

, , , , . . . ,
    (1.19)  

The quantum number,  l , is replaced by the conventional terminology, s, p, d,   .  .  .   , 
corresponding to  l    =   0, 1, 2,   .  .  .   , respectively. These are a natural consequence of 
physical meanings of the wave function so that the probability of fi nding an elec-
tron in radial and angular motions described by  Ψ  nlm l  ( r ,  θ ,  ϕ ) is given by | Ψ  nlm l  ( r , 
 θ ,  ϕ )| 2 . Thus, the wave function must be a fi nite, continuous, and one - valued func-
tion, and furthermore it is normalized to 1. 
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 The essential point in this situation is that the angular motion which is specifi ed 
by  Ylm l  ( θ ,  ϕ ) is concerned with the orbital angular momentum as long as  l  is not 
equal to zero. The magnitude of the orbital angular momentum of an individual 
electron with the quantum numbers  l  and  m l   is calculated by operating the relevant 
operators   L   2  and   Lz   for the angular momentum   L  ,

   L L= + =l l ml( ) ,1 � �z     (1.20)  

From the nature of quantum numbers ( 1.19 ), we see that   L      ≠    0 unless  l    =   0. 
Consequently, the s electrons occupying the s orbitals ( l    =   0) have zero orbital 
angular momentum, and therefore, no contribution to the magnetic moments. In 
order to attain an orbital angular momentum pictorially, the case of d - orbitals 
( l    =   2) is illustrated in Figure  1.8a , where the fi ve components,  m l     =   2, 1, 0,  − 1,  − 2 
are differentiated with respect to the direction of the magnetic fi eld. The magni-
tude of the orbital angular momentum of the d - orbital is   6� and a little larger 
than the projected value of the moment to the magnetic fi eld direction. This means 
that the orbital angular momentum vector can never align along the direction of 
the magnetic fi eld but makes a precession and forms a cone around the magnetic 
fi eld direction. This is a quantization image for the angular momentum by the 
applied magnetic fi eld.   

 Next we consider the spin angular momentum. For the spin motion of the elec-
tron around its own axis, the spin quantum numbers have to be introduced, analo-
gous to the quantum numbers,  l  and  m l  , for the orbital angular momentum.

   s m= = ±1 2 1 2/ /s,     (1.21)  

The spin angular momentum,   S  , and its components are given similarly from 
the general character of angular momentum

   S S= + = = = ±( )s(s ) / , z /s1 3 2 1 2� � � �( ) m     (1.22)  

    Figure 1.8     Vector model of the quantization of the orbial and 
spin angular momenta: (a)  l    =   2, (b)  s    =   1/2.  



The vector model of the spin angular momentum is also schematically shown 
in Figure  1.8b . The application of the magnetic fi eld produces two kinds of mag-
netic moments making precession in a cone. The projection value of the magnetic 
moments is given by the components of the spin quantum number,  m  s , similar 
to the magnetic quantum number,  m l  , of the orbital angular momentum. The spin 
quantum number is never derived from the Schr ö dinger Equation  1.17 . Taking 
the relativistic effects into account, Dirac modifi ed the Schr ö dinger equation, 
giving rise to the freedom of spin in the electron. Instead of solving the relativistic 
Dirac equation, we review several experimental matters which led to evidence for 
the intrinsic presence of electron spin. It was in 1922 that Stern and Gerlach 
reported to Bohr the atomic beam experiment through the magnetic fi eld gradient, 
implying that an Ag beam split into two lines when a magnetic fi eld was applied. 
According to quantum mechanics Ag has no orbital angular momentum. Never-
theless, an Ag atom is classifi ed into two types, one attracted and the other repelled 
by the magnetic fi eld. This means that even the s electron (5s electron) behaves 
magnetically and any magnetic moment must be caused by any kind of motion. 
Thus, two kinds of spin motions, in a clockwise and an anticlockwise manner, 
were postulated and the angular moment of self - rotations can produce magnetic 
moments in directions parallel and antiparallel to the magnetic fi eld. The other 
evidence of the electron spin concerns why the atomic spectrum of Na splits into 
two D - lines even in the absence of the magnetic fi eld. This phenomenon cannot 
be explained without  “ spin ”  of the electron. 

 Now we have two kinds of angular momenta in the atom as an origin of the 
magnetic moment. The orbital and the spin angular momenta are combined vec-
torialy and we defi ne the total angular momentum, using new quantum numbers, 
 j  and  m   j  . In one electron system ( l  and  s    =   1/2), the total quantum numbers are 
simple, like  j   =   l    +   1/2 and j   =    l     −    1/2, and  m  j  is given for each  j  value as

   m j j j jj = − − + −, , , , ,1 1     (1.23)  

From these quantum numbers, the total angular momentum,   J  , and its compo-
nents,   J  z, is give by

   J J= + =j j mZ( ) ,1 � �j     (1.24)  

In this case the state multiplicity is 2 j    +   1 and the degeneracy is lifted by the 
application of the magnetic fi eld, which can explain any Zeeman effect in the 
materials. The excited state of 3p orbital ( l    =   1) occupied by one electron ( s    =   1/2) 
for Na is characterized by the quantum numbers,  j    =   3/2 and 1/2, giving rise to 
D - line splitting even without the magnetic fi eld.  

  1.2.3 
 Magnetic Moments 

 We have learned that the electrons have two kinds of angular momenta and behave 
like charged particles forming a loop, giving rise to magnetic moments. Amp è re ’ s 

 1.2 Origins of Magnetism  13



 14  1 Fundamentals of Magnetism

law makes it possible to formulate the relationship between angular momentum 
and the magnetic moment. Considering the relation of ( 1.2 ), |  m |   =   I A , a simple 
treatment of a circular orbit concludes the magnetic moment relating to the 
angular momentum,  m l  .

   
mz l lm m l l l l

e m

= − = − − + −
=

μ
μ

Β ( , , , , , )1 1

2B e/�
    (1.25)  

This means that the magnetic moment can be measured in the unit of  μ  B , which 
is called the  “ Bohr magneton ” . Note that the magnetic moment vector is opposite 
to the direction of the angular momentum because of the negative charge of the 
electron and that this magnetic moment is a projection value to the quantization 
axis (magnetic fi eld direction). The relationship between the magnetic moment 
and the angular momentum operator is written as

   m = −μBL     (1.26)  

and the magnitude of the magnetic moment becomes   μB l l( )+ 1 . 
 The magnitude of the Bohr magneton is very important in magnetic science 

and its value is given in SI units as

   μB
1JT= × − −9 274 10 24.     (1.27)  

In cgs units it is given as

   μB e
1/ ergG= = × − −e m c� 2 0 927 10 20.     (1.28)  

For the spin angular momentum the deduction of the relationship is not simple 
because we cannot modify the relation classically but instead resort to the theory 
of quantum electrodynamics. However, the relation itself seems simple, almost 
analogous to the orbital angular momentum

   m m= − = − = −g g m me B z e B s sμ μS, , ( / , / )1 2 1 2     (1.29)  

in which the newly introduced proportional constant  g  e , which is called the  g  - factor 
of the electron, is given to be  g  e    =   2.002319 after the relativistic correction. Other-
wise  g  e    =   2 is frequently used. Considering the spin quantum numbers are  s    =   1/2 
and  m  s    =    ± 1/2, the magnetic moment of the electron is counted as one Bohr 
magneton. 

 In summary, the combined magnetic moments are given as a result of the two 
contributions from each angular momentum, as follows:

   m = − +μB e( )L Sg     (1.30)  

In this section it is instructive also to describe the nuclear magnetic moment 
in comparison with the above - mentioned electron case. The nuclear magnetic 



moment originating from the nuclear spin quantum number,  I , is given by a 
similar relation to ( 1.29 ) for the electron spin as follows:

   m mn n n nz n n I I= = = − − + −g g m m I I I Iμ μI, , ( , , , , , )1 1     (1.31)  

Here,  I  is a nuclear spin operator and  g  n  is a proportionality constant called the 
 “ nuclear  g  - value ” . Each nucleus possesses its original  I  and  g  n  - value. The nuclear 
Bohr magneton,  μ  n , is a unit of the nuclear magnet and is defi ned in SI units, 
analogous to the Bohr magneton ( 1.25 ), by

   μn p
1/ JT= = × − −e m� 2 5 05824 10 27. .     (1.32)  

Here  m  p  represents a mass of proton. Therefore, the ratio of | μ  B / μ  n |, which is 
equal to  m  p / m  e , is in the order of 10 3 , indicating the dominant contribution of the 
electron to the magnetic moments of materials and the far stronger magnetic 
interactions between the electron magnetic moments. For  1 H (proton)  I    =   1/2 and 
 g  n    =   5.585, yielding  m  n    =   2.7927  μ  n .  14 N with  I    =   1 possesses  m  n    =   0.4036    μ  n . Finally, 
it may be understood that the relations ( 1.31 ) have a positive sign, differing 
from the electron case with a negative sign, owing to the positive charge of the 
nucleus.  

  1.2.4 
 Specifi c Rules for Many Electrons 

 In general atoms or ions there exist many electrons (except the hydrogen - like 
atoms) so we have to take into account additional rules concerning electron con-
fi gurations; these are called the  “ Aufbau principle ” . It is easy to understand that 
electrons occupy wave functions with lower energy fi rst. The second rule tells us 
that double occupation with the same quantum numbers  (n, l, m l , m  s  )  is prohib-
ited; this is the well - known  “ Pauli exclusion principle ” . Because the orbital wave 
function is designated by  (n, l, m l ),  a maximum of two electrons can occupy each 
orbital wave function and their spin quantum numbers  m  s    =    ± 1/2 should be dif-
ferent. This means that an electron is likely to make a pair with the opposite spin. 
In the occupation process we need an additional law for the degenerate orbitals 
such as  l     ≠    0. This is  “ Hund ’ s rule ” . First, the electrons maximize their total spin, 
which is realized when each electron occupies an individual orbital separately with 
parallel spins. After the one - electron occupations are completed within the degen-
erate orbitals, antiparallel spins start to reside. Second, for a given spin arrange-
ment the electron confi guration for the lowest energy results in the largest total 
orbital angular momentum. 

 For a many - electron atom we have to consider the orbit – orbit, spin – orbit, and 
spin – spin interactions between the angular momenta of the individual electron 
specifi ed by the quantum numbers,  l  and  s.  The orbital angular momentum 
induces a magnetic moment at the nucleus, and hence exerts a magnetic fi eld at 
the electron, which interacts with an electron magnetic moment originated from 
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its spin. This magnetic interaction mechanism is called the spin – orbit coupling, 
which is the most important interaction in magnetism and magnetic resonance 
because it actually couples between the orbital wave functions and electron spins. 
The magnitude of the spin – orbit coupling is determined by presuming the orbit-
ing motion of the nucleus around the electron specifi ed by the electron wave 
function. Therefore, spin – orbit interaction is proportional to the nuclear charge 
and thus nuclear number,  Z , as is expressed by the Hamiltonian between the 
orbital and spin operators,  l  i  and  s  i  for an i electron

   � = ⋅ =ζ ζ μl si i B
2 < / >, 2 1 3Z r     (1.33)  

where  < 1/ r  3  >  means an orbital average. For many - electron cases this coupling has 
to be summed up. In this process, when the spin – orbit coupling is weak for the 
light atoms, the couplings between the individual orbital angular momenta and 
the individual spin angular momenta become predominant. Consequently, the 
summation of ( 1.33 ) is transformed into the next Hamiltonian as a result of 
 L    =    Σ  l  i  and  S    =    Σ  s  i .

   � = ⋅λL S     (1.34)  

This is an important Hamiltonian called the spin – orbit coupling. In summing 
up the individual orbital and spin angular momenta, special rules are concluded 
for the characteristic confi gurations of electrons in a certain shell. For a fully fi lled 
shell,  L  and  S,  therefore the spin – orbit coupling vanishes. Besides, a half - fi lled 
shell gives  L    =   0 and  S    =   (2 l    +   1)/2; again, no spin – orbit interaction. We classify 
the remaining confi gurations by  “ less than half  ”  and  “ more than half  ” . The coef-
fi cient  λ  of the shell - electron number,  n , is given as  λ    =    ζ / n  for the former case 
and as  λ    =    −  ζ /(4 l    +   2    −     n ) for the latter case, and a positive or negative  λ  is deduced 
for the  “ less than half  ”  or  “ more than half  ”  confi gurations, respectively. For 
example, therefore, a  “ less than half  ”  atom is likely to couple the total orbital and 
total spin momenta with an antiparallel confi guration 

 Next we proceed to Russell – Saunders coupling. As we see from the above dis-
cussion, a weak spin – orbit coupling is assumed in this derivation. The allowed 
values of the added angular momenta are explained for simplicity in the two - elec-
tron case, the orbital quantum numbers,  l  1  and  l  2  and the spin quantum numbers, 
 s  1  and  s  2 . The allowed total orbital and spin quantum numbers are as follows:

   L l l l l l l S s s s s= + + − − = + −1 2 1 2 1 2 1 2 1 21, , , , , ,     (1.35)  

Actually  s  1    =    s  2    =   1/2, then we obtain  S    =   1 and  S    =   0. This method is repeated 
for more than three electrons. The components of the combined angular momenta 
are specifi ed using  m L   and  m S  , analogous to the  m l   and  m  s , as follows:

   m L L L m S S SL s= − − = − −, , , , , , , , ,1 1     (1.36)  



The values 2 L    +   1 or 2 S    +   1 are the number of the components which belong 
to  L  or  S  quantum numbers, respectively. These are called the  “ orbital multiplicity ”  
and the  “ spin multiplicity ”  indicating the number of the degenerate states in free 
atoms. The corresponding angular momenta are given using these quantum 
numbers as

   
L L

S S

= + =

= + =

L L m

S S m

L

S

( ) ,

,

1

1

� �

� �

z

z( )
    (1.37)  

The total angular momentum is then determined by the same vector summation 
of the total orbital and spin angular momenta.

   J L S L S L S m J J JJ= + + − − = − −, , , , , , , , ,1 1     (1.38)  

The multiplicity is 2 J    +   1, and the magnitudes of the total angular momentum 
are

   J J= + =J J mJ( ) z1 � �,     (1.39)  

Now the description of the atomic state can be characterized using the three 
angular momenta,   L  ,   S  , and   J  , and their quantum numbers,  L, S , and  J . In general, 
the atomic or its ionic states are specifi ed by the atomic  “ term ” , like  2 P 3/2  or  2 P 1/2  for 
3p - excited Na. The central capital alphabets, S, P, D, F, , , mean  L    =   0, 1, 2, 3, , , 
respectively, and the superscript indicates the multiplicity of 2 S    +   1 and the sub-
script  J  quantum numbers. Incidentally, the Na ground state is represented by 
 2 S 1/2  and its excited states by a lower  2 P 1/2  and a higher  2 P 3/2 . This is the origin of 
the two D - lines. 

 In closing this section, we remark on the case in which the Russell – Saunders 
coupling fails. For the heavier atoms the spin – orbit coupling becomes so strong 
that, in atoms such as the actinides like U, the spin and orbital angular momenta 
of the individual electrons couple fi rst, and then the combined quantum number, 
 j  i    =    l  i    +    s  i , becomes a good quantum number. The resultant angular momentum, 
  j   i , interacts with another, giving the total angular momentum,

   j l s J ji i i i= + = ∑,     (1.40)   

 This is the  j – j  coupling and the quantum numbers,  L  and  S , are meaningless. 
Nevertheless, the Russell – Saunders coupling can be applied effectively even for 
the rare earth elements (lanthanoids). Usually, therefore, there is no need to take 
account of the  j – j  coupling.  

  1.2.5 
 Magnetic Moments in General Cases 

 As we summarized above, in Section  1.2.3 , the combined magnetic moment is 
given by  1.30 . This relation is derived for one electron having  l  and  s  quantum 
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numbers. For many electrons this is also the case in which the meanings,  L  and 
 S , are modifi ed as the operators referring to the combined orbital and spin angular 
momentum,  L    =    Σ  l  i  and  S    =    Σ  s  i . In the case of the effective Russell – Saunders 
coupling, the total quantum number,  J , as a result of the combined contribution 
between the total orbital and spin angular momenta, becomes a good quantum 
number. This means that the two physically signifi cant parameters, the magnetic 
moment,   m  , and the total angular momentum,   J  , are not collinear. This situation 
is depicted in Figure  1.9 , assuming  g  e    =   2. The projected magnitude of the mag-
netic moment,   m  , along the   J   axis is given as a following relation of the total 
angular momentum operator,  J .

   mJ J B

J

= −

= +
+ + + − +

+

g

g
J J S S L L

J J

μ J

1
1 1 1

2 1

( ) ( ) ( )

( )

    (1.41)  

Here,  g  J  is called the Land è   g  - factor. The magnitude of the total magnetic 
moment and its component are given as follows

   m mJ J B J J B J= + =g J J g mzμ μ( ),1     (1.42)  

where  m J     =    J ,  J    −     1, , ,  −  J . The special important cases are  S    =   0 or  L    =   0, that is, 
either contribution of the orbital or the spin angular momentum to the magnetic 
moment. Then the above equation implies  g  J    =   1 for  S    =   0 and  g  J    =   2 for  L    =   0. 
The latter case is  “ spin only ”  contribution to the magnetic moment,

   m mS e B Sz e B S= + =g S S g mμ μ( ),1     (1.43)  

where  m S     =    S ,  S     −    1, , ,  −  S .    

  1.2.6 
 Zeeman Effect 

 The Zeeman effect was observed in the spectroscopy of the emitted light from the 
atoms under the infl uence of the magnetic fi eld. Compared to the atomic spectra 
without the magnetic fi eld, the additional splittings of the spectra were detected, 

    Figure 1.9     (a) Angular momenta,  L, S , and  J , and 
(b) magnetic moments,  m  and  m  j , related with  L, S , and  J .  



which are ascribed to the interaction of the atomic magnetic moments with the 
magnetic fi eld. The energy of this interaction is given, in cgs units, by

   E = − ⋅m H     (1.44)  

In SI units this relation is modifi ed by  μ  0  as  E    =    −  μ  0      m · H  , thus,

   E = − ⋅m B     (1.45)  

Replacing   m   with the angular momentum operator,  J , the Hamiltonian becomes

   � �= ⋅ = ⋅g gJ B J Bμ μJ JH, B     (1.46)  

This is called the  “ Zeeman Hamiltonian ”  (the Zeeman term) or the  “ Zeeman 
energy ” . From these energy representations, it is clear that the Zeeman energy 
depends not only on the quantum number,  J , but also on the quantum numbers, 
 L  and  S , because  g J   includes  L ,  S , and  J . In  “ spin only ”  case, it is given by

   � �= ⋅ = ⋅g ge B e Bμ μS SH, B     (1.47)  

Considering the components of  J , the Zeeman splitting can be explained. For 
example, the D - lines of Na are observed as  2 P 3/2     ⇔     2 S 1/2  and  2 P 1/2     ⇔     2 S 1/2 . Under 
the application of the external magnetic fi eld the line number increases depending 
on each component of the sublevels. Historically, the Zeeman effects were dis-
criminated as the normal and anomalous Zeeman effects. The reason of this situ-
ation is attributable to incomplete understanding in the periods of no idea of the 
electron spin. The  “ anomalous ”  term is no more anomalous after the introduc-
tion of the assured existence of the electron spin and hence of the spin – orbit 
coupling.  

  1.2.7 
 Orbital Quenching 

 The expectation value of the orbital angular momentum,   L  , for a certain orbital, 
 Ψ , is obtained from the integral,  <   L   >    =     �   ∫  Ψ  *  L  Ψ  d  τ . Here  L  is the operator of the 
orbital angular momentum. The quenching of the orbital angular momentum 
means  < L >    =   0, that is, the expectation value of any component of the orbital 
angular momentum vanishes. Under what circumstances is the angular momen-
tum quenched? Let us see how it comes for  L  z , which is represented as  L   z     =  
 (1/ i )( x  ∂ / ∂  y     −     y  ∂ / ∂  x )   =   (1/ i )( ∂ / ∂  ϕ ). The important point is that  L   z   is a pure imaginary 
operator (this is also the case for the other components). In addition, the operator, 
 L   z  , is a  “ Hermitian operator ” , so the diagonal element must be real. As long as 
the wave function,  Ψ , is real, the matrix element must be zero from the require-
ment of  “ Hermiticity ” . This is called the  “ orbital quenching ” . The real wave func-
tion can be brought about when the electronic orbital motion interacts strongly 
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with the crystalline electric fi elds. This has something to do with the lifting of the 
degenerate orbital energies. Non - degenerate atomic or molecular orbitals must be 
real. This theorem is easily comprehensible if one considers that, for an assumed 
complex wave function, the complex conjugate of the wave function also satisfi es 
the original Sch ö dinger equation with a same eigenvalue. We conclude that the 
crystal fi eld produced by a symmetric environment can, at least partially, quench 
the orbital angular momentum of the atom. In this situation,  �    =    λ  L · S  should be 
treated as a perturbation for the discussion of the spin system. In the complete 
quenching cases, the quantum number,  J , and its operator,  J , can be replaced by 
the quantum number,  S , and its operator,  S , respectively, in concert with the 
replacement of  g  J  with  g  e  and, therefore, the magnetic moment includes only spin 
origin,   m     =    −  g  e  μ  B  S . The partial or incomplete quenching implies remaining orbital 
angular momentum to some extent, resulting in some contribution of the orbital 
angular momentum to the magnetic moments. In the perturbation of  λ  L · S,  the 
 g  - factor deviates from  g  e , the magnetic moment being   m   =     − g  μ  B  S . In this context 
observation of the  g  - value in the  electron spin resonance  ( ESR ), spectroscopy is of 
considerable signifi cance. 

 As an example of orbital quenching, the magnetic data are summarized for the 
transition metal ions in comparison with the data of the rare - earth ions (Table 
 1.1 ). The experimental magnetic moment,   m  , is listed in the unit of  μ  B  and the 
theoretically estimated values correspond to the quenching and non - quenching 
cases based on the formulae,   ge S S( )+ 1  and   gJ J J( )+ 1 . The data of the transition 
ions are in good agreement with the value,   ge S S( )+ 1 , rather than the data from 
the total angular momentum,  J . This means almost complete quenching of the 
orbital angular momentum, and accordingly the magnetic origin is exclusively 
attributed to spin, so that this is a so - called  “ spin only ”  case or magnetism. In 
some examples, such as Fe 2+ , Co 2+ , or Ni 2+ , a little deviation is noticeable. These 
belong to the incomplete or partial quenching case and sometimes the orbital wave 

 Table 1.1     Magnetic moments of 3d n  and 4f  n  ions. 

   n     Ions     m / m  B      S      J   

   1    Ti 3+ , V 4+     1.8    1.73    1.55  
   2    V 3+     2.8    2.83    1.63  
   3    V 2+ , Cr 3+     3.8    3.87    0.77  
   4    Cr 2+ , Mn 3+     4.9    4.90    0  
   5    Mn 2+ , Fe 3+     5.9    5.92    5.92  
   6    Fe 2+     5.4    4.90    6.70  
   7    Co 2+     4.8    3.87    6.63  
   8    Ni 2+     3.2    2.83    5.59  
   9    Cu 2+     1.9    1.73    3.55  
  10    Zn 2+     0    0    0  

     S = +2 1S S( ) ,   J = +gJ J J( )1    



functions are nearly degenerate. Consequently, remarkable  g  - factors apart from 
the free electron, g e , and its anisotopy are observed for these materials. For the 4f n  
ions from Ce 3+  and Yb 3+ , on the other hand, the agreement between the experiment 
and the theory is considered good except Eu 3+ . The rare - earth ions containing f -
 electrons as an origin of magnetism are good examples for the Russell – Saunders 
coupling. The exceptional discrepancy in the data of Eu 3+  is explained that the 
quantum numbers are  L    =   3,  S    =   3, and  J    =   0 ∼ 6 in the Russell – Saunders category, 
and 3.4    μ  B  is due to the excited states above the ground  7 F 0  ( J    =   0) populated at 
room temperature.     

  1.3 
 Temperature Dependence of Magnetic Susceptibility 

  1.3.1 
 The Langevin Function of Magnetization and the Curie Law 

 We discuss an ensemble of non - interacting magnetic moments with the same 
origin in the applied fi eld,   H  , at the temperature,  T.  The probability of occupying 
an energy state,  E    =    −   m · H  , is given by Boltzmann statistics, that is, exp( −  E / kT )   =  
 exp( mH cos θ / kT ), where  θ  is an angle of the magnetic moment,   m  , to the applied 
fi eld,   H  , and  m  and  H  indicate the magnitude of each vector. One has to know 
the number of the magnetic moments lying between the angles,  θ  and  θ    +    d  θ , 
with respect to the magnetic fi eld. Its probability,  P ( θ ), is related to the fractional 
area,  dA , of the surface of the sphere covering the angles between  θ  and  θ    +    d  θ  at 
a constant radius,  r . In view of  dA    =   2 π  r  2 sin θ  d  θ , the overall probability, including 
the above - mentioned Boltzmann factor, is given by

   P
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The magnetization,   M  , parallel to the applied fi eld is a total vector sum of each 
component,   m  cos  θ , and therefore, the magnetization of the whole system amounts 
to

   M m= ∫
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Here,  N  is the number of the magnetic moment,   m  , in the whole system. This 
equation can be represented by the following formulae after the integrals are 
carried out mathematically.

   M m m= − =N mH kT kT mH N L[coth( / ) / ] ( )α     (1.50)  

The function  L ( α )   =   coth( α )    −    1/ α  as a function of  α    =    mH / kT , is called the 
 “ Lengiven function ” , which is shown in Figure  1.10 . We check the features of the 
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Lengiven function in the specifi c areas of  α     >>    1 and  α     <<    1. For  α     >>    1 this is 
the case either in a very large magnetic fi eld,  H , or at very low temperature,  T , 
near zero kelvin. Then  L ( α )    →    1, and   M   approaches  N m  . The largest value, 
  M    =   N m  , is equivalent to the complete alignment of the magnetic moments along 
the magnetic fi eld,   H  . What about  α     <<    1, which may be achieved by the opposite 
parameters setting to the  α     >>    1? In this case the Lengiven function can be 
expanded as a Taylor series. Keeping only the prominent term, we have

   M m= N H kT2 /( )3     (1.51)  

This relation indicates that the magnetization is proportional to the applied fi eld 
and inversely proportional to the temperature. Thus, the magnetic susceptibility 
 χ    =     M  /  H   is obtained as

   χ = =C T C N kT/ /2, m 3     (1.52)  

This relation was experimentally obtained by Curie, and is called the  “ Curie law ” , 
where the constant,  C , is a Curie constant. In conclusion, the magnetic susceptibil-
ity of paramagnetic materials without particular magnetic interactions obeys this 
law, and the characteristics of this behavior are ascertained by a simple formula; 
that is, an inverse proportionality to the temperature.    

  1.3.2 
 The Brillouin Function of Magnetization and the Curie Law 

 As we have discussed, each magnetic moment is expressed by   m     =    −  g  J  μ  B   J , and its 
Zeeman energy is  E    =    g  J  μ  B   J ·  H     =    g  J  μ  B   m  J  H , where  m  J  takes  J, J     −    1, , ,  −  J . Thus, 
we calculate  < m J  > instead of  < cos θ  >  by replacing the integral in the average with 
 Σ  of  m  J . Eventually we obtain the Brillouin function,  B  J ( α ).

    Figure 1.10     The Lengevin function L( α ), expressed in  M/Nm  vers.  α    =    mH/kT .  
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The function  B  J ( α )   =   {(2 J    +   1)/2 J }coth{(2 J    +   1)/2 J } α     −    (1/2 J )coth α /2 J  is called 
the  “ Brillouin function ”  as a function of  α    =    g  J  μ  B   JH / kT , which is equal to the 
Lengiven function in the limit of  J     →     ∞ . The Brillouin functions for some typical 
quantum numbers are depicted in comparison with the experimental data (Figure 
 1.11 )  [2] , where the transition ions, Fe 3+  and Cr 3+ , are the case of the orbital quench-
ing (see Table  1.1 ) so that  J  should be replaced by  S  in the Brillouin function, and 
the data for Gd 3+  is also the case of  L    =   0, therefore  J    =    S    =   7/2,  g  J    =   2. We examine 
the specifi c areas of  α     >>    1 and  α     <<    1. These conditions are expected in a similar 
manner regarding the parameters,  H  and  T . In the conditions of  α     >>    1, we get 
 B  J ( α )    →    1. Consequently, the magnetization approaches   M     =    Ng  J  μ  B  J , the saturated 
values in Figure  1.11 . For  α     <<    1 the Brillouin function can be also expanded in 
a Taylor series. Keeping the fi rst meaningful term, the magnetic susceptibility is 
represented by the Curie law, similar in form to the Lengevin case:

   χ μ= = +C T C Ng J J k/ /J
2

B
2, ( )1 3     (1.54)  

Comparing the two derived forms of the Curie law from the Langiven and the 
Brillouin functions, one sees that the Curie constant sheds light on the quantum 
mechanical meaning of the microscopic magnetic moment, that is,

    Figure 1.11     Brillouin function for  J    =   3/2 (I),  J    =   5/2 (II), 
and  J    =   7/2 (III) and magnetic data of Cr 3+  ( S    =   3/2), 
Fe 3+  ( S    =   5/2), and Gd 3+  ( S    =   7/2).  
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   m2
J
2

B
2= +g J Jμ ( )1     (1.55)  

This is the previous conclusion from the operator representation of   m   J  ( 1.41 ) 
and its magnitude ( 1.42 ). In this context the effective Bohr magneton,  m  eff , is 
defi ned as

   m g J Jeff J B= +μ ( )1     (1.56)  

Again, in the case of orbital quenching,  m  eff  is equal to   ge Bμ S S( )+ 1 . Finally, it 
may be added that the magnetic susceptibility,  χ , in SI units should be multiplied 
by  μ  0  in the Curie law, and, thus, the Curie constant becomes   μ μ0 +Ng J J kJ

2
B
2 /3( )1 .    

  1.3.3 
 The Curie – Weiss Law 

 In reality the observed magnetic susceptibilities do not obey the Curie law. This 
is because, in the above derivation of the Curie law, we have assumed isolated 
magnetic moments and thus no magnetic interactions are included. Many mag-
netic materials possess various magnetic interactions, more or less, between the 
individual magnetic moments, leading to the Curie – Weiss law

   χ θ= −C T/( )     (1.57)  

where the correction term,  θ , has the unit of temperature, and is called the  “ Weiss 
constant ” , which is empirically evaluated from a plot of 1/ χ  vs T. These techniques 
are shown schematically in Figure  1.12  in comparison with the Curie law. The 
intercepts of the data with the abscissa take place away from the origin, whereas 
the straight line crosses at the origin for the Curie law. Here we derive the 
Curie – Weiss law on the assumption of the existence of magnetic interactions. 
Although Weiss did not explain the details of the interactions between the mag-

    Figure 1.12     Curie – Weiss laws with (a)  θ     >    0 and (c)  θ     <    0 compared with (b) Curie law.  



netic moments, the fundamental concept is  “ a molecular fi eld ”  arising from the 
magnetization and acting on the magnetic moments in addition to the external 
magnetic fi eld. The molecular fi eld is directly proportional to the magnetization, 
  M  , and the effective magnetic fi eld,   H   eff , is expressed as combined with the applied 
magnetic fi eld,   H  .

   H H Meff = + Γ     (1.58)  

Where a term,  Γ   M  , is a molecular fi eld and  Γ  is called the  “ molecular fi eld 
coeffi cient ” . In the Curie law relation   M  /  H    =   C / T , and   H   eff  of (1.58) is inserted 
into this magnetic fi eld,   H  , then we have the following relation:

   M H= −C T C/( )Γ     (1.59)  

In the expression of  χ    =     M  /  H  , the Curie – Weiss law is obtained with the Weiss 
constant,  θ    =    C  Γ . The Curie – Weiss law predicts anomalous behaviors at the tem-
perature,  T  C    =    θ . The divergence of the magnetic susceptibility corresponds to the 
phase transition to the spontaneously magnetic ordered phase. The phase transi-
tion temperature is called the  “ Curie temperature ”  ( T  C ). Below this temperature, 
the material exhibits ferromagnetism with a spontaneous magnetization. A posi-
tive value of  θ  indicates that a molecular fi eld is acting in the same direction as 
an applied fi eld, so the magnetic moments are likely to align in parallel with each 
other, in the same direction as the magnetic fi eld.   

 On the other hand, we sometimes observe a negative value of  θ , in which the 
arrangement of the magnetic moment seems opposite, like antiferromagnetism. 
We see N è el ’ s interpretation on the antiferromagnetic formalism. In the simplest 
alignment of magnetic moments, one can presume two sublattices, each of which 
comprises the same magnetic moments in the same orientation. These structur-
ally identical sublattices are labeled A and B, and have magnetic interactions with 
each other, A – A, A – B, and B – B. Ignoring the A – A and B – B interactions, the mag-
netic moments in the A sublattice see the molecular fi eld generated by the mag-
netic moments in the sublattice B, and vice versa. In comparison with the 
ferromagnetic case, the molecular fi eld is apparently opposite in direction; thus, 
we assume

   H H M H H Meff
A

B eff
B

A= − = −Γ Γ,     (1.60)  

Here,   M   A  and   M   B  are the magnetizations of the sublattices A and B, respectively. 
Following the same procedure in the ferromagnetic case, we have the sublattice 
magnetizations,   M   A  and   M   B .

   M H M M H MA B B A/ , /= − = −C T C T’( ) ’( )Γ Γ     (1.61)  

The total magnetization,   M  , is given by   M   =   M   A    +     M   B , resulting in
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   M H= ′ + ′2C T C/( )Γ     (1.62)  

In the expression of  χ    =     M  /  H  , the Curie – Weiss law is obtained with the negative 
Weiss constant,  θ    =    −  C  ′  Γ . The Curie – Weiss law predicts anomalous behavior at 
the temperature,  T  N    =    −  θ . Although the divergence of the magnetic susceptibility, 
like a ferromagnetic case, is not concomitant, the phase transition from a para-
magnetic to an antiferromagnetic state takes place. In the antiferromagnetic 
ordered state each sublattice is spontaneously magnetized just like the spontane-
ous magnetization of the ferromagnets. This phase transition temperature is called 
the  “ N è el temperature ”  ( T  N ). 

 In conclusion, the Curie – Weiss law is compatible with the existence of ferro-
magnets and antiferromagnets. The characteristics of the magnetic ordered states 
have to be described more, and the mechanisms of the interactions of the magnetic 
moments must be scrutinized for further comprehension of the magnetism from 
a quantum mechanical point of view. This is a physical research subject on mag-
netic cooperative phenomena.  

  1.3.4 
 Magnetic Ordered State 

 We focus our attention to how the magnetic ordered states come out. According 
to the Curie – Weiss law, magnetic susceptibility at temperatures crossing the phase 
transition,  T  C , is discontinuous and it diverges at  T   =   T  C , then what happens in 
between the paramagnetic and ferromagnetic phase transition? Let ’ s consider 
again the Brillouin function as a function of  α    =    g  J  μ  B   JH / kT . In the Weiss molecu-
lar fi eld, the external magnetic fi eld,  H , is replaced by  H  eff , including Γ  M ( T ). In the 
absence of the external magnetic fi eld,  H , the following two relations are worked 
out:

   M T M B M T M kT Ng J( ) ( ) ( ), ( ) ( ) ( )/ / /J J
2

B
20 0= =α μ αΓ     (1.63)  

Here,  M (0)   =    Ng  J  μ  B   J  is the maximum magnetization at  T    =   0. The Brillouin 
function varies as a function of  α , as is shown above in Figure  1.11 , whereas the 
latter is a linear function of  α . The signifi cant physical solutions are those where 
the two curves intersect. The unquestioned solution that occurs at the origin is 
devoid of meaning. Lowering the temperature the slope of the linear function 
gradually decreases, so that we have another intersection in addition to the origin, 
revealing the presence of the spontaneous magnetization. Figure  1.13  illustrates 
this mathematical meaning in three temperature regions,  T    >    T  C ,  T   =   T  C , and 
 T    <    T  C . It is essential that, at  T  C , the linear function is a tangent line to the Brillouin 
function, and that, below  T  C , spontaneous magnetization starts to grow. The spon-
taneous magnetization,  M ( T )/ M (0) is plotted in Figure  1.14  as a function of  T / T  C  
for  J    =   1/2,  J    =   1, and  J    =    ∞ .     

 It is added as a summary that, in the approximation of the Weiss molecular 
fi eld, the Curie temperature,  T  C , is expressed with   m g J Jeff J B= +μ ( )1  as



   T Nm kC eff
2 /3= Γ     (1.64)  

This relation reveals that the larger the quantum number,  J , and molecular fi eld 
coeffi cient,  Γ , the higher  T  C  is expected to be implying the large magnetic moments 
and the strong interactions between them are effective to obtain ferromagnetic 
materials at high temperatures. 

 Here we describe the distinguishable response of ferromagnetic materials: it is 
a magnetization curve under a magnetic fi eld cycle in which, after the magnetic 
fi eld is applied to reach a certain high value, the fi eld is reduced to zero, and then 
it is reversed in direction, making a loop. The magnetization,   M  , is traced out 
versus   H  , as shown in Figure  1.15 , and is called a  “ hysteresis curve ” . The initial 
increase of the magnetization starts at the origin (the unmagnetized state), O, and 
it reaches a maximum value (the  “ saturation magnetization ” ),  M s   =    Ng  J  μ  B   J . In 
the reducing process of the fi eld the magnetization does not conform to the origi-

    Figure 1.13     Graphical illustration of Brillouin function and 
spontaneous magnetization. At T    >    T c  the dotted line crosses 
only at the origin ( α    =   0) and at T    <    T c  the dashed line hits at 
 α     ≠    0. At T   =   T c  a solid line becomes a tangent.  

    Figure 1.14     Spontaneous magnetization for  J    =   1/2,  J    =   1, and  J    =    ∞ .  
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nal increasing curve, but remains at a certain value at  H    =   0. This is called the 
 “ residual magnetization ”  that corresponds to a genuine spontaneous magnetiza-
tion. The reversed magnetic fi eld gradually decreases the residual magnetization 
and fi nally makes the magnetization vanish at the fi eld,  H   =   H  C , which is named 
the  “ coercivity ”  or  “ coercive force ” . The hysteresis loop is completed after a cyclic 
application of the magnetic fi eld. The important parameters in the evaluation of 
the ferromagnetic materials consist of these three values,  M  S ,  M  r , and  H  C , and 
every combination of these parameters is useful for practical applications depend-
ing on the various targets. In particular, large  M  r  means a strong magnet, and the 
coercivity,  H  C , discriminates the materials as either soft or hard magnets. A soft 
magnet is likely to be magnetized easily and is also easily demagnetized.   

 The initial unmagnetized state in ferromagnetic materials may need some elu-
cidation. The magnetic domain model explains that, although each domain has 
spontaneous magnetization, the domains are arranged in such a manner as to 
cancel out the net magnetization. Once the magnetic fi eld is applied, the domains 
move to the direction of the magnetic fi eld. The magnetic domains are small 
regions, but may be observed by several methods. Fine magnetic particles are 
attracted onto the surface and image up to the domain boundary where the direc-
tion of the magnetic moments changes. Another method utilizes the magneto -
 optic effect using polarized light. 

 In the case of the antiferromagnetic ordered state, the two sublattices possess 
their own magnetizations, which are oriented in the opposite direction and at half 
the magnitude compared to the ferromagnetic case. However, each magnetization 
obeys the ferromagnetic spontaneous magnetization curve (see above, Figure  1.14 ) 
at half magnitude. Consequently, the net magnetization is almost zero, giving the 
same order of magnetic susceptibility as the paramagnetic state. The most impor-
tant difference observed in this ordered state is the anisotropic susceptibilities,  χ    ||    

    Figure 1.15     Hysteresis curve. Magnetization initially starts at 
the origin (O) and reaches its saturation magnetization ( M  s ). 
During the process of reducing magnetic fi elds, magnetization 
remains at  H    =   0 ( M  r ) and, for an opposite magnetic fi eld,  H  c , 
magnetization vanishes.  



and  χ   ⊥  , the parallel axis being defi ned along the magnetization direction, which 
is called an  “ easy axis ” . Therefore, the external magnetic fi eld can be applied along 
the easy axis or perpendicular to it and the magnetic susceptibilities,  χ    ||    and  χ   ⊥  , 
are illustrated schematically in Figure  1.16 , in which  χ    ||    decreases linearly toward 
zero on lowering the temperature, whereas  χ   ⊥   stays constant. A powdered sample 
usually exhibits their averaged value,

   χ χ χ= ( + )⊥�� 2 /3     (1.65)  

as plotted by the dashed line.   
 The most important magnetic behaviors of the antiferromagnets are the mag-

netic phase change with increasing magnetic fi eld, especially a fi eld applied along 
the easy axis; that is, the direction of the magnetic moments. The magnetic energy 
in the parallel arrangement (see Figure  1.16a ) exceeds the assumed energy in the 
perpendicular arrangement (see Figure  1.16b ) at a certain magnitude of the mag-
netic fi eld, and the parallel orientation abruptly changes into the perpendicular 
one, conserving the antiparallel orientation. This magnetic phase change induced 
by the magnetic fi eld is called the  “ fl opping ”  of the magnetic moments or spins. 
Thus, the state is called the  “ spin - fl opped ”  state, and the magnetic fi eld which 
induces the transition is named the  “ critical fi eld ”,   H  cr , or  “ spin - fl op fi eld ” ,  H  sf . 
This magnetic phase transition depends on the anisotropic energy of the magnetic 
moment orientation. Theoretical consideration concludes the relation of  H  cr  with 
 χ    ||    and  χ   ⊥  

   H Kcr /( )= −⊥2 χ χ��     (1.66)  

where  K  indicates the anisotoropy constant, which causes the magnetic moments 
to align toward the easy axis in the absence of the magnetic fi eld. Similarly, the 

    Figure 1.16     Magnetic susceptibility of an antiferromagnet. 
The dashed line indicates a powder susceptibility at the 
antiferromagnetic region,  T    <    T  N .  
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antiferromagnetic arrangement of the magnetic moments is eventually unstable 
under high magnetic fi elds, and exhibits, to some extent, a tendency to approach 
the ferromagnetic state. Therefore, magnetization behavior in antiferromagnetic 
materials provide interesting magnetic properties with respect to the applied mag-
netic fi eld. These phenomena are also important targets of magnetic investiga-
tions, and newly classifi ed magnetism called metamagnetism is gathering much 
attention. The spin - fl opped state can be referred to as antiferromagnetic resonance 
(AFMR), which will be dealt with later (see Section  3.6.3 ).  

  1.3.5 
 Magnetic Interactions 

  1.3.5.1   Exchange Interaction 
 Now we have prepared ourselves to have a deeper insight into various magnetic 
interactions between the magnetic moments. Let us consider two - electron systems, 
such as an He atom or a hydrogen molecule. As a result of spin multiplicity there 
exist singlet and triplet states and, therefore, four wave functions,  1  Ψ  0 ,  3  Ψ  1 ,  3  Ψ  0 , 
and  3  Ψ   − 1 
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where  φ  a  and  φ  b  are orbital functions and  α  and  β  the spin function indicating 
 m  S    =   1/2 and  − 1/2, respectively. The total wave functions, including the orbital 
and spin functions, are represented by  “ Slater ’ s determinants ” . We focus our 
attention on the energy difference of the singlet and triplet states, evaluating the 
repulsion energy between the two electrons given by  �    ′    =   (1/4 π  ε  0 )( e  2 / r ), where  r  
is the distance between the two electrons. The kinetic and other potential energies 
of the two electrons with the nucleus constitute the Hamiltonian,  �  0 . The expecta-
tion values of  �  0  are the same for the two electrons, and we examine the expecta-
tion values of  �  for the above - mentioned wave functions. Then we obtain the 
energies for  1  Ψ  0  ( E  S ) and for  3  Ψ  1 ,  3  Ψ  0  and  3  Ψ   − 1  ( E  T ) as follows.
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    (1.68)  

The integrals,  C  and  J , are called the  “ Coulomb ”  and  “ exchange ”  integrals, 
respectively. The energy separation between the triplet and singlet states is 2 J , as 



shown in Figure  1.17a . This quantum mechanical result is important because, 
when  J  is positive, the triplet states are more stable than the singlet state, meaning 
the ferromagnetic parallel spin is favorable. Considering that this energy - splitting 
originates from a difference in the spin multiplicity, we may put up the effective 
spin Hamiltonian as a phenomenological equivalence:

   �ex = − ⋅2 JS S1 2     (1.69)  

The eigenvalues of this Hamiltonian may be obtained by the operation of  S 1  · S 2   
as (3/2) J  for the singlet state and ( − 1/2) J  for the triplet state, the separation being 
2 J  (Figure  1.17b ). Hex is called the  “ Heisenberg Hamiltonian ”  or a magnetic 
interaction of the Heisenberg type, expressing the exchange interaction between 
the electron spins. It is noted that the spin interaction of Heisenberg type is iso-
tropic, as indicated by  S 1  · S 2  .   

 In ferromagnetic or antiferromagnetic materials the following general expres-
sion is usual as an exchange interaction:

   �ex = − ⋅
< >∑2 Jij i jij

S S     (1.70)   

 As one can see from the  r  - dependence of the exchange integral,  J , the magnitude 
of  J ij   decreases quite rapidly depending on the distance  r ij   between the electrons, 
 i  and  j , and the nearest neighboring pairs are to be taken into account. Now 
the meaning of the Weiss molecular fi eld,   H   mol    =    Γ   M  , is comprehensible to be 
 H  mol    =    − 2 zJ < Sz > /g  e  μ  B , in which  z  is the number of the nearest neighboring spins 
and  <  Sz  >  the average value of  S z.  

  1.3.5.2   Dipolar Interaction 
 One more important magnetic interactions is called a  “ magnetic dipolar interac-
tion ” , given by the two magnetic dipoles or moments,   m   1  and   m   2 , as

   U
r r

( , , )1 2
1 2

3

1 2m m r
m m m r m r

=
⋅

−
⋅ ⋅3

5

( )( )
    (1.71)  

    Figure 1.17     Energy shift due to Coloumb and exchange 
integrals and attributed to spin Hamiltonian,  − 2 J S 1   ·  S 2 .  

 1.3 Temperature Dependence of Magnetic Susceptibility  31



 32  1 Fundamentals of Magnetism

Here   r   is a connecting vector between the two magnetic moments. This formula 
is a classical analog, but we replace   m   1  and   m   2  with explicit forms of the spin 
operators,  S  1  and  S  2 , leading to

   �( , , )
( )( )

 1 2 e
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B
2 1 2
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1 2
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3

    (1.72)  

Seeking the spin Hamiltonian of the magnetic dipolar interaction, the terms 
relevant to the orbital wave functions are integrated for an average, and then the 
above Hamiltonian is expressed in a tensor form as
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    (1.73)  

Next we defi ne the operator  S    =    S  1    +    S  2 , this expression is made up to
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This is fi nally expressed by the following spin Hamiltonian.

   �SS = ⋅ ⋅S D S     (1.75)  

Here  D  is a 3    ×    3 matrix and is called  D  - tensor, satisfying Tr[ D ]   =   0. In the SI 
system, all relevant equations in the derivation must be multiplied by  μ  0 /4 π . This 
is a quantum mechanical expression of the magnetic dipolar interaction.

It is usually convenient to discuss the  D  - tensor as a diagonalized form, and thus 
we have

   �SS
2 2 2= + + + + =Dx x Dy y Dz z Dx Dy DzS S S , 0     (1.76)  

Here  Dx ,  Dy , and  Dz  are the principal values, and owing to Tr[ D ]   =   0, we defi ne 
two independent parameters,  D  and  E , as

   D Dz E Dx Dy= = −3

2

1

2
, ( )     (1.77)  



The transformation of ( 1.77 ) results in

   �SS
2 2 2S(S= − + + −D z E x y{ )} ( )S S S

1

3
1     (1.78)  

The introduced parameters,  D  and  E , are named the  “ zero - fi eld splitting con-
stants ”  after the fact that this interaction can split the spin states even in the 
absence of the external magnetic fi eld. Eventually both parameters are given by 
the orbital integrations below:
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When we apply these relations to the delocalized system, the spin densities,  ρ  i  
and  ρ  j , are used:
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    (1.80)  

Then knowledge of the spin density and the distance vector   r   between the 
two electrons makes it possible to evaluate the zero - fi eld splitting constants,  D  
and  E . 

 Three important remarks are presented here: (1) this spin Hamiltonian is effec-
tive for S    �    1; (2) this interaction produces a so - called  “ anisotropic energy ” , which 
governs the preferential orientation of the spins or magnetic moments; (3) this is 
a point - dipole approximation. Comment (1) means this interaction vanishes in the 
case of S   =   1/2. Concerning the second comment, the magnetic dipolar interaction 
works out uniaxially in symmetry for  E    =   0 and an orthorhombicity in symmetry 
becomes essential for  E     ≠    0. The fi nal comment (3) is often utilized for an approxi-
mate evaluation of the distance,  r , between the spins. Neglecting the spread of the 
electron wave functions, the representations of  D  and  E  are deduced as  E    =   0 and 
 D , as follows:

   D g r= 23

2
2 3/μΒ     (1.81)  

If the useful relation is expressed using D/ g  μ  B  in mT and  r  in nm, then we 
have

   D g g r/ /B
3μ = 1 391.     (1.82)  

When  g    =   2.0023 and  r    =   1   nm, then this formula yields  D    =   2.785   mT.   
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  1.3.6 
 Spin Hamiltonian 

 In the previous section we have discussed the magnetic interactions on the basis 
of electron spins and retained a deep insight into the magnetic interactions. The 
concept of a spin Hamiltonian was partially introduced and seems useful in pursu-
ing investigations which are essentially associated with the electron spins, espe-
cially magnetism and electron spin resonance. Let us summarize here the 
fundamental Hamiltonians which determine the electronic states and their ener-
gies from the quantum mechanical point of view.

   � � � � � � �= + + + + +kin pot cr LS Ze spin     (1.83)  

The fi rst two terms concern the kinetic and the potential energies important for 
determining electronic orbital wave functions, and the third one is an energy 
derived from the crystal or ligand fi eld that causes a shift of the electronic energy. 
The following two terms,  �  LS  and  �  Ze , have been introduced as the spin – orbit 
coupling and the Zeeman energy, respectively. The fi nal term includes every 
interaction regarding the electron spins. The exchange interaction,  �  ex , and the 
magnetic dipolar interaction,  �  SS , are its members, and in later chapters about 
magnetic resonance nuclear spin will be incorporated. In view of the orbital 
quenching we try to fi nd an effective Hamiltonian by dealing with the two terms, 
 �  LS  and  �  Ze , as a perturbation  [3] 

   ′ = ⋅ + + ⋅� λ μL S L SB e( )g H     (1.84)  

The orbital wave functions are expressed as |0 > , , , |n > , and their energies as 
 E  0 , , ,  E  n , are determined from  �  0    =    �  kin    +    �  pot    +    �  cr . The second - order perturba-
tion results in

   � = ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅2μ λ λ μΒ Λ Λ ΛS 1 S S( )e Bg 2 2H H H     (1.85)  

Here  Λ  is a tensor which is composed of the matrix elements given by

   Λμυ
μ υ μ υ=

−
, =

≠∑ < >< >0 0

0
0

L Ln n

E E
x y z

n
n

, , ,     (1.86)  

Concerning the Zeeman term,  1  is a unit matrix and the  g  - tensor representation 
is convenient:

   g 1= −ge 2λΛ     (1.87)  



Then the Zeeman Hamiltonian and the above result are written as follows:
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Several points about these terms arise. Hereafter we call the  g  - tensor a  g  - value, 
which is anisotropic, and is given by

   g gij ij ij= −eδ 2Λ     (1.89)  

Here  δ   ij   is a Kronecker  δ . It is manifest that the anisotropy of  g  - value results 
from spin – orbit coupling, more precisely from the orbital contribution. The devia-
tion of the  g  - value from the free electron and its anisotropy are undoubtedly 
evident in the ESR observations. It is interesting that the second term,  −  λ  2  S ·  Λ  · S , 
has a similar form to the magnetic dipolar interaction,  �  SS    =    S · D · S . Considering 
the diagonalized  Λ   ij  , the formalism becomes the same so that this effect is included 
representatively in  �  SS    =    S · D · S  ( 1.75 ). Therefore, the zero - fi eld splitting parame-
ters,  D  and  E , are deduced, as given in ( 1.78 ). The second term,  −  λ  2  S ·  Λ  · S , is con-
sidered to be the result of a two - electron interaction of higher order as is seen 
from the fact that the validity of this relation is S    �    1 and the term vanishes when 
S   =   1/2. In addition, the nature of the anisotropy is also the same, and therefore 
a specifi c terminology is conferred as  “ one - ion anisotropy ”  or  “ one - ion anisotropy 
constant ” . The last term ( 1.85 ) is independent of electron spins and indicates the 
higher order of orbital magnetic moments induced by the magnetic fi eld. This is 
an origin of the van Vleck paramagnetism, which is independent of temperature. 
Summarizing all spin Hamiltonians we have

   � = ⋅ ⋅ + ⋅ ⋅ − ⋅
< >∑μB ij i jS g S D S S SH 2 J

ij
    (1.90)    

  1.3.7 
 Van Vleck Formula for Susceptibility 

 Here we deal with a general method for calculating magnetic susceptibility. When 
a substance is placed in an external fi eld, its magnetization is given by its energy 
variation with respect to the fi eld,  M    =    −  ∂  E / ∂  H . This magnetization is obtained 
by summing the microscopic magnetizations,  m n  , weighted by the Boltzmann 
factors. Because an analogous relation for  m n   also holds as

   mn n= −∂ ∂Ε Η/     (1.91)  

it leads to the fi nal formula

   M
N E H E kT

E kT

n nn

nn

=
−∂ ∂ −

−
∑

∑
( )exp( )

exp( )

/ /

/
    (1.92)  

where  E n   ( n    =   1,2,3,   .  .  . ) is a quantum mechanical energy in the presence of the 
magnetic fi eld, which will be fundamentally evaluated once the Hamiltonian of 
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the system is assumed. In this context the spin Hamiltonian discussed above for 
the magnetic interactions plays an important role. Thus, we require knowledge of 
 E n   as a function of  H . Van Vleck proposed some legitimate approximations, 
assuming the energy is an expansion in a series of the applied fi eld  [4, 5] :

   E E E H E Hn n n n= + + +( ) ( ) ( )0 1 2 2 �     (1.93)  

Where   En
( )0  is the energy in zero fi eld, the term linear to  H  is called the fi rst - order 

Zeeman term, and   En
( )2  the second - order Zeeman, that is

   E n E n m E En n n mm

( )
Ze

(2)
Ze

( ) ( )

n
<n >, < >1 2 0 0= = −

≠∑� � /( )     (1.94)  

where  �  Ze  is as described in the previous section. The other nomenclatures are 
standard in perturbation theory. From ( 1.91 ) and ( 1.93 ) we have

   m E E Hn n n= − − −( ) ( )1 22 �     (1.95)  

The second approximation is the expansion of the exponential under  H / kT     <<    1. 
This is fulfi lled under the conditions of  H  not being too large and  T  not too low. 
The fi nal form will be

   M
N E E H E H kT E kT

E H

n n n nn

n

=
− − − −

−
∑ ( )( )exp( )

(

( )( ) ( ) ( )

( )

/ /

/

1 2 1 0

1

2 1

1 kkT E kTnn
)exp( )( )−∑ 0 /

    (1.96)  

The absence of the magnetization at zero magnetic fi eld,  M    =   0, requires

   E E kTn nn

( ) /1 0 0exp( )( )− =∑     (1.97)  

Substituting this relation into ( 1.96 ) and retaining only terms linear in  H , fi nally 
we obtain the susceptibility given by

   x
N E kT E E kT

E kT

n n nn

nn

=
− −

−
∑

∑
( )exp( )

exp( )

( ) ( )

( )

1 2 2 0

0

2/ /

/

( )

    (1.98)  

This is the  “ van Vleck formula ” . When the states are degenerate, the summation 
is repeated  n  times, where  n  is a degeneracy. Let us explain how to utilize this 
formula and derive the analytical formulae of the magnetic susceptibility for 
several examples.  

  1.3.8 
 Some Examples of the van Vleck Formula 

  1.3.8.1   The Curie Law 
 Consider the spin degeneracy,  S , with an orbital singlet,  L    =   0, the energy levels 
corresponding to the energy expansion in the derivation of the van Vleck formula 
are



   E E g m En n n
( ) ( )

B S
( )0 1 20 0= = =, ,μ     (1.99)  

Then the result of  χ  ( 1.98 ) coincides with the Curie law of   χ μ= +Ng S S kT2 1B
2 /3( ) .  

  1.3.8.2   Zero - Filed Splitting Case 
 In this case the following Hamiltonian is exemplifi ed.

   � = ⋅ ⋅ + ⋅ ⋅μBS g S D SH     (1.100)  

Here we assume the  g  -  and  D  - tensors have the same principal axis and the 
rhombic parameter, E, is zero. The energies compared to the zero - fi eld energy, 
 E  0    =   0, will be given for the axial (parallel) direction of  H  as

   E g H D E g H D1 2= + = − +// B // Bμ μ,     (1.101)  

Then the van Vleck formula for the parallel magnetic susceptibility is given by

   χ
μ

��
��=

−
+ −

2Ng

kT

D kT

D kT

2
B
2 exp( / )

1 2exp( / )
    (1.102)  

When the magnetic fi eld is perpendicular to the axial direction, the energies for 
the much larger  D  compared to the Zeeman energy become

   E D E g H E g H D D1 2
2 2

3
2 2= = − = +⊥ ⊥, μ μB

2
B
2/D, /     (1.103)  

As one can see from the relation,   En
(1) = 0, for  n    =   1, 2, and 3. The fi nal result is

   χ μ
⊥

⊥= − −
−

2Ng

D

D kT

D kT

2
B
2 1 exp( / )

1+2exp( / )
    (1.104)  

The temperature dependences of ( 1.102 ) and ( 1.104 ) and their inverse suscepti-
bilities are drawn for certain parameters (Figure  1.18 ).    

  1.3.8.3   Spin Cluster Case    –    The Dimer Model 
 This model is expressed in the following Hamiltonian.

   � = − ⋅ +2 J g HS S S S1 2 B 1z 2z( + )μ     (1.105)  

The fi rst term indicates the exchange - coupled two spins,  S  1    =    S  2    =   1/2, and the 
second term the Zeeman Hamiltonian in the applied magnetic fi eld (this direction 
is specifi ed by the  z  - axis). Consequently the spin system forms the singlet ( S    =   0) 
and triplet ( S    =   1) sublevels, the latter includes the energy terms dependent on the 
magnetic fi eld. When the sign of  J  is negative, the energy diagram for the ground 
singlet and excited triplet energy is realized, as is often observed in actual cases 
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such as molecular magnetic materials or metal ion pairs. Thus, this model is well 
known as the  “ dimer ”  model or the  “ singlet – triplet ”  (ST) model. The energy of 
the four states is given as

   
E J

E J g H E E J g H
1

2 3 4

=
= − + = − = − −

(3/2)

(1/2) (1/2)J, (1/2)B Bμ μ,
    (1.106)  

The state,  E  1 , is the singlet and  E  2 ,  E  3 , and  E  4  belong to the triplet. Applying the 
van Vleck formula, we obtain the magnetic susceptibility for the dimer model or 
ST model.

   χ μ= −
+ −

2

3

2

2

2Ng

kT

J kT

J kT
B
2 exp( )

1 3exp( / )
    (1.107)  

    Figure 1.18      χ   ||  ( 1.102 ) and  χ   ⊥ 
  ( 1.104 ) in the case of D    >    0. 

The dotted lines show that each inverse 1/ χ      ||  and 1/ χ   ⊥   
follows a Curie – Weiss law above a certain temperature.  

    Figure 1.19     Dimer models in the case of  J     <    0 for S   =   1/2 (ST model), S   =   3/2, and S   =   5/2.  



Several temperature variations for  S    =   1/2,  S    =   3/2, and  S    =   5/2 pairs are shown 
in Figure  1.19 , which are actually observed for the paired samples consisting of 
Cu 2+ , Cr 3+ , and Mn 2+  ions.    

  1.3.8.4   Multiple - spin Cluster Case  –  The Triangle or Others 
 A group of interacting magnetic moments form a magnetic cluster and exhibit a 
prominent temperature - dependent magnetic susceptibility. For instance, triangle 
and linear trimer, square and linear tetramer, or star - burst spin networks are 
typical magnetic clusters. Even for these complicated spin systems the van Vleck 
formula works out effi ciently, as long as appropriate Hamiltonians for the systems 
are deduced or presumed. Here we examine two cases consisting of three spins. 
The spin – exchange coupling structure is shown in Figure  1.20 .   

 The spin – exchange interaction in an isosceles triangular three - spin system is 
expressed by the spin Hamiltonian:

   � = − ⋅ + ⋅ + ⋅2 J( )1 2 2 3 3 1S S S S S Sγ     (1.108)  

In the case of  γ    =   1, it reduces to a regular triangle, whereas the linear trimer 
case corresponds to  γ    =   0. With the help of the Kambe formula  [6]  the magnetic 
susceptibility for  γ    =   1 leads to

   χ
μ

=
+ −
+ −

Ng

kT

J kT

J kT

2

4

3

3
B
2 5 exp( / )

1 exp( / )
    (1.109)  

In the regular triangle ( γ    =   1) with  J     <    0, it provides a strange situation, that is, 
one spin remains as a spin - frustrated state and this position is not designated in 
the ground state, thus presenting a spin frustration problem, which is an interest-
ing target of research not only in theory but also in experiment. Space limitations 
mean we cannot discuss spin - clusters further here and the reader is referred to 
more magnetism - oriented books  [4, 5] .  

  1.3.8.5   Temperature - Independent Paramagnetism 
 Here we consider the ground state with   E0

(0) = 0 as an energy origin. In addition, 
it has no angular momentum and is therefore diamagnetic. Using   E0

(1) = 0 and   
χ = −2NE0

(2) from the van Vleck formula, magnetic susceptibility is concluded to 
be given by

    Figure 1.20     Triangle three - spin cluster and linear three - spin cluster.  
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   χ = − −
≠∑2N <0 m> /(E E )Ze

2
0
(0)

m
(0)

m 0
�     (1.110)  

This relation indicates that the diamagnetic ground state may be coupled with 
the excited states by the second - order perturbation of the Zeeman Hamiltonian, 
eventually yielding paramagnetic susceptibility. All denominators in the equation 
are negative and no Boltzmann statistics are included so that the derived sus-
ceptibility features temperature - independent paramagnetism. This temperature -
 independent susceptibility,  χ  TIP , is almost of the same order of magnitude of 
diamagnetism, although the sign is opposite, and it is actually observed in many 
materials. Materials containing the transition metal ions, in particular, exhibit a 
relatively large contribution, for instance 1 ∼ 2    ×    10  − 4    emu   mol  − 1  for Ni 2+  or Co 3+ , 
having a singlet ground state,  1 A 1g . The large contribution of  χ  TIP  is accounted for 
by the low - lying excited states coming from the factor,   1/( )0

(0)
m
(0)E E− . It may be 

necessary to remark that temperature - independent paramagnetism is potentially 
generated from coupling between the ground state and the excited states, regard-
less of the ground state being diamagnetic or paramagnetic. In this context, for 
every paramagnetic material,  χ  TIP  is superimposed on the usual paramagnetism.   

  1.3.9 
 Low - Dimensional Interaction Network 

 When we consider magnetic interactions in the crystal, the magnetic networks of 
the interacting magnetic moments are generally three - dimensional. The exchange 
interaction shows dominant dependences on the distance between the two mag-
netic origins as well as on the electron distribution of the wave function in which 
the electron spins reside. Thus, the exchange interaction parameter,  J , possesses 
the most remarkable value in a certain crystal direction. With this fact in 
mind, the magnetic interaction network in general is likely to become low - dimen-
sional. These magnetic properties are categorized as low - dimensional problems, 
which attract much interest not only experimentally but also theoretically. In this 
sense one - dimensional magnetism, called  “ magnetic linear chains ” , is most 
important. But sometimes we encounter layered magnetic systems as a two -
 dimensional model. 

    Figure 1.21     Magnetic interaction networks: (a) a regular linear 
chain; (b) an alternating linear chain; (c) dimer.  



 The expression  “ linear chain ”  refers to a magnetic chain within which each 
magnetic origin interacts with its two nearest neighbors only. The Hamiltonian 
of such a system will be given by using the exchange interaction of Heisenberg 
type,  − 2 J  S  1  ·  S  2 

   � = − ⋅ + ⋅− +=∑2
1

J i i i ii

N
( )2 1 2 2 2 1

/2
S S S Sα     (1.111)  

Depending on the sign of  J , ferromagnetic and antiferromagnetic chains are 
possible as far as  α     >    0. As is easily recognized, a variety of magnetic linear chains 
are available (Figure  1.21 ). The simplest case is  α    =   0, the system being reduced 
to the dimer model, which of course is not characteristic of the magnetic chain. 
For  α    =   1 the system conforms to an  S    =   1/2 uniform chain or  “ regular chain ” . 
The magnetic susceptibility for antiferromagnetic chains was fi rst calculated by 
Bonner and Fisher  [7] . Data for  α    =   1 (Figure  1.22 ) indicate unique behavior due 
to no energy gap above the ground state. The magnetic susceptibility reaches a 
maximum value,  χ  max , at the temperature,  T  max , given by

   χ μmax
2

B
2

max/( g / ) 0.07346, / 1.282N J kT J= =     (1.112)  

Below  T  max  the susceptibility decreases gradually but it seems to remain constant 
towards the temperature of zero kelvin. According to Bonner and Fisher ’ s calcula-
tion the asymptotic susceptibility is expressed by the following relation:

    Figure 1.22     Magnetic susceptibilities for 
 α    =   1, 0.2, 0.4, 0.6, 0.8, and 1.0 in the 
one - dimensional magnetic chain. The 
calcula tions were made for a 10 - spin chain 
in the Hamiltonian ( 1.111 ). The Bonner and 
Fisher case is N    →     ∞  (the dashed line for 
 α    =   1.0). The dimer (S – T) model is given by 

 α    =   0. The alternating chains correspond to 
 α    =   0.2 ∼ 0.8. The insert shows the Weiss 
constant divided by the temperature of the 
susceptibility maximum (circles) and the 
product of maximum susceptibility times 
the corresponding temperature, 
p   =    χ  max  kT  max / N g 2  μ B 2  (squares), versus  α .  
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   χ μT
2

B
2/( g / ) 0.05066= =0 N J     (1.113)  

The uniform ferromagnetic chain with  S    =   1/2 is expressed by  [8] 

   χ μ= +( g /4 ){1 / }2
B
2N kT J kT a( )     (1.114)  

with an exponent,  a , depending on the temperature. For a high temperature limit 
like  kT/J     >    1,  a    =   1 and for  T     →    0  a  approaches 4/5. A numerical expression is 
also proposed using  K    =    J /2 kT  as

   

χ μ= + + +
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( g /4 ){(1 5.79599 16.902653 29.376885

29.8329

2
B
2 2 3N kT K K K

559 14.036918 )/(1 2.79799 7.0086780

8.6538644 4.5
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3

K K K K

K

+ + +
+ + 7743114 )}4 2/3K     (1.115)  

On the other hand, the intermediate cases of 0    <     α     <    1 for  J     <    0 are classifi ed 
as an alternating chain with strong and weak antiferromagnetic interactions, when 
it is known that the system has an energy gap. The calculations for these chains 
 [9]  are also depicted in Figure  1.22  above, together with the result of a regular 
linear chain. Due to the energy gap the magnetic susceptibilities tend to zero on 
lowering the temperature. Thus, we specify the linear chain models as the  “ regular ”  
Heisenberg linear chain for  α    =   1 and as the  “ alternating ”  Heisenberg chain for 
0    <     α     <    1.     

 Some peculiar cases are described. One is the case of  α     <    0, in which the alter-
nating chain has both antiferromagnetic and ferromagnetic interactions. The mag-
netic susceptibility is numerically evaluated under some conditions. The other case 
is for  α     →     −  ∞ , and then we have a regular chain with  S    =   1. This system is theo-
retically predicted to have a unique ground state with a gapped excitation spec-
trum. This gap is called the Haldane gap, and the magnetization curve at zero 
kelvin draws much attention from theoreticians and experimentalists as well. 

 Furthermore, the present magnetic chains interact with each other, forming a 
two - dimensional network with antiferromagnetic or ferromagnetic weak interac-
tions. Among them, of course for special cases, a so - called uniform two - dimen-
sional network is possible. These interchain interactions or two - dimensionality 
problems provide very interesting reseach subjects regarding the magnetic behav-
ior of materials in comparison to the three - dimensional magnetic materials. 

 The following Hamiltonian is also noted:

   � = − + ( + )+ + +=∑2 1 1 11
J i i i i i ii

N
{ S S S S S Sα γz z x x y y }     (1.116)  

This Hamiltonian includes an anisotropic exchange effect except in the case of 
 α    =   1 and  γ    =   1 of the Heisenberg exchange model. The most usual cases are of 
 α    =   1 and  γ    =   0 or  α    =   0 and  γ    =   1. These models are referred to as the  “ Ising ”  
model and the  “ X – Y ”  model, respectively. The magnetic properties, including 



thermal behaviours, may be analytically solved for the Ising model  [10] , and thus 
qualitative understandings on magnetism become possible. However, the Ising or 
X – Y model is applicable only for large anisotropic materials, such as Ni 2+  and Co 2+ , 
and, therefore, it is rare to analyse magnetic data from the standpoint of the Ising 
or X – Y model.   

  1.4 
 Experimental Magnetic Data Acquisition 

  1.4.1 
 Methods 

 Several methods (magnetometers) are utilized for the measurement of magnetic 
susceptibility. Historically, methods such as Gouy and Faraday methods, are clas-
sifi ed as a  “ force method ” . The force exerted on a sample for the Faraday method 
is given in the coordinates of Figure  1.1 , shown earlier:

   F M H x v H H xx z z z z= ∂ ∂ = ∂ ∂/ /χ     (1.117)  

The determination of  H z   ∂  H z  / ∂  x  is carried out by using known standard samples. 
The force direction coincides with gravity, so that a modifi ed Faraday method, 
using a  “ torsion balance ” , was invented, in which the fi eld gradient is generated 
along the horizontal direction (see the  y  - axis in Figure  1.1 ). The horizontal torsion 
is canceled using an inductive coil set on the balance, where the feedback current 
is a measure of the force. The limit of the measurement amounts to 10  − 10    emu   g  − 1 . 
Dynamic methods are also applicable; one is a  vibrating sample magnetometer  
( VSM ) and another is a magnetic induction method which involves applying an 
oscillating magnetic fi eld. The detection systems consist of a detection coil by 
which the generated electromotive force,  V (t), or the mutual induction coeffi cient 
of the secondary coil (a Hartshorn bridge circuit is utilized) are measured, respec-
tively. The latter method is important for determining the complex susceptibility, 
 χ ( ω ), which is given by

   χ ω χ ω χ ω( ) = ′( ) − ′′( )i     (1.118)  

AC susceptibilities, in general, emphasize the magnetic loss or relaxation phe-
nomena, and far more important is that  χ  ″ ( ω ) is related to magnetic resonance 
phenomena, as an absorption of energy. The third method is based on the super-
conducting quantum interference effect. This magnetometer is called a  SQUID  
( superconducting quantum interference device ), which utilizes a superconducting 
ring with a weak - point junction, counting a quantized magnetic fl ux as a generated 
current (the Josephson effect). The SQUID magnetometer is commercially avail-
able and is the most prevalent method, and besides, data acquisitions in cgs units 
is very easy.  
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  1.4.2 
 Evaluations of Magnetic Susceptibility and Magnetic Moment 

 The observed magnetic susceptibility comprises three main contributions

   χ χ χ χobs para TIP dia= + +     (1.119)  

The fi rst two terms are paramagnetic and the last one is diamagnetic, and the 
last two terms exhibit no temperature dependence. In order to evaluate the tem-
perature - dependent  χ  para  and compare it with theoretical calculations, we have to 
subtract the other two contributions from  χ  obs . The fi rst thing to do is correction 
of diamagnetism. The term  χ  dia  may be evaluated by using appropriate substances 
which have a similar composition and molecular structure. However, this is not 
necessarily universal. Pascal allotted semiempirically diamagnetic susceptibilities 
of the composition atoms or atomic groups from the total diamagnetic observation 
(recent recommended values were summarized earlier in Table  1.2   [4, 5] ). This 
validity is based on the additive law for each diamagnetic contribution. The next 
procedure is how to remove  χ  TIP . For organic free radicals it may be negligible 

 Table 1.2a     Diamagnetic susceptibilities of atoms and ions (10  − 6    emu   mol  − 1 ). 

  H     − 2.93    F     − 6.3    Li +      − 1.0    F  −       − 9.1  
  C     − 6.00    Cl     − 20.1    Na +      − 6.8    Cl  −       − 23.4  
  N     − 5.57    Br     − 30.6    K +      − 14.9    Br  −       − 34.6  
  N (in ring)     − 4.61    I     − 44.6    Rb +      − 22.5    I  −       − 50.9  
  N (amide)     − 1.54    S     − 15.0    Cs +      − 35.0    CN  −       − 13.0  
  N (diamide)     − 2.11    Se     − 23    NH 4+      − 13.3    CNS  −       − 31.0  
  O (alcohol, ether)     − 4.61    P     − 10    Mg 2+      − 5.0      ClO4

−     − 32.0  

  O (carbonyl)     − 1.73    As     − 21    Ca 2+      − 10.4    OH  −       − 12.0  
  O (carboxyl)     − 7.93    Si     − 13    Zn 2+      − 15.0    O  2−       − 7.0  
          B     − 7    Hg 2+      − 40.0      SO4

2−      − 40.1  

 Table 1.2b     Diamagnetic susceptibilities of ligands and constitutive correction. 

  H 2 O     − 13    C = C    +5.5    CHCl 2     +6.43  
  NH 3      − 18    C ≡ C    +0.8    CBr    +4.1  
  CO     − 10    C = C – C = C    +10.6    Benzene     − 1.4  
  CH 3 COO  −       − 30    C = C – C    +4.5    Cyclohexane    +3.0  
  Oxalate     − 25    N = N    +1.85    Piperidine    +3.0  
  Pyridine     − 49    C ≡ N    +0.8    Imidazole    +8.0  
  Bipyridine     − 105    C = N    +8.15    C (tertiary)     − 1.29  
  Pyrazine     − 50    C = N – N = C    +10.2    C (quaternary)     − 1.54  
  Ethylenediamine     − 46    N = O    +1.7    C (one aromatic ring)     − 0.24  
  Acetylanetonato     − 52    CCl    +3.1    C (two aromatic rings)     − 3.10  
   o  - Phenanthroline     − 128    CCl 2     +1.44    C (three aromatic rings)     − 4.0  
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because the orbital excited states lie far above the ground state. When we can 
assume or approximate the temperature dependence in the higher temperature 
region, a tactful method is applicable for deducing temperature - independent 
terms. Considering thermal agitation, the only constant contribution remains at 
 T     →     ∞ . This asymptotic value corresponds to the remaining constant terms 
( χ  TIP    +    χ  dia ).     

 The plot of the effective magnetic moment,  m  eff , versus  T  from the obtained 
temperature - dependent  χ  para  is useful in knowing whether the magnetic interac-
tion is ferromagnetic or antiferromagnetic and also what the magnetic moment 
or  J  (or  S ) value is. Considering the Curie law ( 1.54 ),  m  eff  can be evaluated 
from the asymptotic constant value at higher temperatures in the  χ  para  T – T  plot 
(Figure  1.23 ). In lower temperature regions this plot deviates upward or downward, 
suggesting the ferromagnetic or antiferromanetic interactions of the magnetic 
moments, respectively.     

    Figure 1.23      χ  para   T – T  plot. At low temperatures it deviates 
from ( a ) a constant line upward for ferromagnetic interaction 
and ( b ) downward for antiferromagnetic interaction. The 
constant value at higher temperature regions gives the 
effective magnetic moment,  m  eff , and, accordingly, the spin 
quantum number of the sample.  
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