
1
Molecular Simulation of Polymer Melts and Blends: Methods,
Phase Behavior, Interfaces, and Surfaces
Peter Virnau, Kurt Binder, Hendrik Heinz, Torsten Kreer, and Marcus M€uller

1.1
Introduction

Understanding thermodynamicproperties, including also thephasebehavior of poly-
mer solutions, polymer melts, and blends, has been a long-standing challenge [1–7].
Initially, the theoretical description was based on the lattice model introduced by
Flory and Huggins [1–7]. In this model, a flexible macromolecule is represented by a
(self-avoiding) random walk on a (typically simple cubic) lattice, such that each bead
of the polymer takes one node of the lattice, and a bond between neighboring beads
of the chainmolecule takes a link of the lattice. For a binary polymer blend (A,B), two
types of chains occur on the lattice (and possibly also �free volume� or vacant sites,
whichwe denote asV ). Themodel (normally) does not take into account any disparity
in size and shape of the (effective) monomeric units of the two partners of a polymer
mixture. Between (nearest neighbor) pairs AA, AB, and BB of effective monomers,
pairwise interaction energies, eAA, eAB and eBB, are assumed. Thus, this model dis-
regards all chemical detail (as would be embodied in the atomistic modeling [8–10],
where different torsional potentials and bond-angle potentials of the two constituents
can describe different chain stiffness).

Despite the simplicity of this lattice model, it is still a formidable problem of
statistical mechanics, and its �numerically exact� treatment already requires large-
scale Monte Carlo simulations [11–13]. Consequently, the standard approach has
been [1–7] to treat this Flory–Huggins lattice model in mean-field approximation,
which leads to the following expression for the excess free energy density of
mixing [4]:
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kBT

¼ wA ln wA

NA
þ wB ln wB

NB
þwV ln wV þ xABwAwB þ 1

2
xAAw

2
A þ 1

2
xBBw

2
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ð1:1Þ

Here wA, wB and wV ¼ 1�wA�wB are the volume fractions of monomers of
type A, B and of vacant sites, respectively. Every lattice site has to be taken by either
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anAmonomer, aBmonomer, or a vacancy, and for simplicity the (fixed) lattice spacing
is taken as ourunit of length.NA andNB are chain lengths of the two types of polymers
(we disregard possible generalizations that take polydispersity into account [5]). Thus,
thefirst three terms on the right-hand side of Eq. (1.1) represent the entropy ofmixing
terms, while the last three terms represent the enthalpic contributions (xAB, xAA and
xBB are the phenomenological counterparts of the pairwise interaction energies eAB,
eAA and eBB, respectively). Note that in the entropic terms the (translational) entropy of
a polymer is reduced by a factor 1=N in comparison to a corresponding monomer
because of chain connectivity. In deriving this simple expression for the entropy, the
fact that polymer chains on the lattice cannot intersect either themselves or other
chains has not been explicitly taken care of: the excluded volume constraint is only
taken into account via the constraint that a lattice site can be taken by at most one
monomer, but only the average occupation probabilities wA, wB and not the local
concentrations cAi , c

B
i of a lattice site i enter: while cAi ¼ 1 or 0 and cBi ¼ 1 or 0,

wA ¼ hcAi iT , wB ¼ hcBi iT . By hQiT we denote a thermal average of an observableQ in
the sense of statistical mechanics at a given temperature, T , that is:

hQiT ¼ ð1=ZÞ
X
C

QðCÞ exp ½�EðCÞ=kBT � ð1:2Þ

Z ¼
X
C

exp ½�EðCÞ=kBT �; F ¼ �kBT lnZ ð1:3Þ

where the sums are extended over all configurations C (�microstates�) of the consid-
ered statistical system, EðCÞ is the corresponding energy function (the �Hamiltonian�
of the system [4, 9, 10]), and Z its partition function.

From these definitions it should be clear that in the exact expression for the
enthalpy one should expect terms of the type:

xAB
1
2q

� � X
jðn:n: of iÞ

�
cAi cBi

�
T þ

�
cBi c

A
j

�� �

where q is the number of nearest neighbors of a site i on the lattice, rather than
xABwAwB. The latter expression results, of course, if this correlation function is
factorized,

�
cBi cAj

�
T � �

cAi
��
cBj
� ¼ wAwB. This neglect of correlations in the occu-

pancy of lattice sites would become accurate in the limit q!1, but turns out to be
rather inaccurate for the simple cubic lattice, whichhas q ¼ 6 only.Moreover, as far as
unmixing of a polymer blend is concerned, only interchain contacts and not
intrachain contacts contribute (strongly attractive intrachain interactions can cause
contraction or even collapse of the random coil configurations).

We shall not discuss Eq. (1.1) further for the general case, but rather focus on
the two most important special cases, namely incompressible blends and incom-
pressible polymer solutions. Taking wV ¼ 0 one can reduce Eq. (1.1) to a simpler
expression [1–4], where wA ¼ w, wB ¼ 1�w:

DF
kBT

¼ w lnw

NA
þ ð1�wÞ ln ð1�wÞ

NB
þ xw ð1�wÞ ð1:4Þ
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where in the mean-field approximation the Flory–Huggins parameter x is related to
the pairwise energies by:

x ¼ q ½eAB�ðeAA þ eBBÞ=2�=kBT ð1:5Þ

As an example for the predictions that follow fromEqs. (1.4) and (1.5), we note that
the stability limit (�spinodal curve�) of the homogenous phase is given by the
vanishing of the second derivative of DF with respect to w:

q2ðDF=kBTÞ=qw2 ¼ 0 ð1:6Þ
which yields the equation:

x ¼ xsðwÞ ¼ f½wNA��1 þ ½ð1�wÞNB��1g=2 ð1:7Þ

Equation (1.7) describes the spinodal curve in the plane of variables ðx;wÞ. The
maximum of the spinodal curve for such a binary incompressible mixture yields
the critical point, that is:

wcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NA=NB

p
þ 1

� ��1
; x�1

crit ¼ 2
�
N�1=2

A þN�1=2
B

	�2 ð1:8Þ

For the simplest case of a symmetric mixture ðNA ¼ NB ¼ NÞ, this reduces to
wcrit ¼ 1

2, and xcrit ¼ 2=N.
The case of an incompressible polymer solution results if we interpret B as

a solvent molecule in Eq. (1.4) by putting NB ¼ 1 [or alternatively put wB ¼ 0
in Eq. (1.1) and reinterpret V as solvent molecule]. However, while for polymer
mixtures in the state of dense melts incompressibility is often a reasonable first
approximation, for polymer solutions in some cases such an assumption is
inadequate, for example, if one uses supercritical carbon dioxide as a solvent for
the polymers [7, 14].

When one tries to account for real polymer systems in terms of models of the type
of Eqs. (1.1)–(1.8) the situation is rather unsatisfactory; however,whenonefits data on
the coexistence curve or on ðq2ðDF=kBTÞ=qw2ÞT , the latter quantity being experi-
mentally accessible via small angle scattering, one finds that one typically needs an
effective x-parameter that does not simply scale proportional to inverse temperature,
as Eq. (1.5) suggests. Moreover, there seems to be a pronounced w-dependence of x,
in particular for w! 1. Near w ¼ wcrit, on the other hand, there are critical fluctua-
tions (which have been intensely studied byMonte Carlo simulations [11–13, 15] and
also in careful experiments of polymer blends [16–18] and polymer solutions [19]).
Sometimes in the literature a dependence of the x parameter on pressure [18] or even
chain length is reported, too. Thus, there is broad consensus that the Flory–Huggins
theory and its closely related extensions [20] are too crude as models to provide
predictive descriptions of real polymer solutions and blends. A more promising
approach is the lattice cluster approach of Freed and coworkers [21–23], where
effective monomers block several sites on the lattice and have complicated shapes to
somehow �mimic� the local chemical structure. However, this approach requires
rather cumbersome numerical calculations, and is still of a mean-field character, as
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far as critical phenomena are concerned. We shall not address this approach further
in this chapter.

A very popular approach to describe polymer chains in the continuum is the
Gaussian threadmodel [24–26], and if one treats interactions amongmonomers in a
mean-field-like fashion this leads to the so-called �self-consistentfield theory� [27–33]
of polymers. This theory is an extension of the Flory Huggins theory to spatially
inhomogeneous systems (like polymer interfaces or microphases-separated copol-
ymer systems), with respect to the description of the phase diagrams of polymer
solutions and blends. However, it still lacks chemical detail and is on a mean-field
level; hence we shall not dwell on it further here.

An alternative approach that combines the Gaussian thread model of polymers
with liquid-state theory is known as the polymer reference interaction site model
(PRISM) approach [34–38]. This approach has themerit that phenomena such as the
de Gennes [3] correlation hole phenomena and its consequences are incorporated
in the theoretical description, and also one can go beyond the Gaussian model for
the description of intramolecular correlations of a polymer chain, adding chemical
detail (at the price of a rather cumbersome numerical solution of the resulting
integral equations) [37, 38]. An extension to describe the structure of colloid–polymer
mixtures has also become feasible [39, 40]. On the other hand, we note that
this approach shares with other approaches based on liquid state theories the
difficulty that the hierarchy of exact equations for correlation functions needs to
be decoupled via the so-called �closure approximation� [34–38]. The appropriate
choice of this closure approximation has been a formidable problem [34–36]. A
further inevitable consequence of such descriptions is the problem that the critical
behavior near the critical points of polymer solutions and polymer blends is always
of mean-field character.

There have been many other attempts to base the description of polymer
solutions, melts, and blends on liquid-state theory (e.g., [41–44]) and we shall not
mention all of them. Perhaps the most widely used and successful approaches are
based onWertheim�s [45, 46] perturbation theory devised to deal with the equation
of state of associating fluids. Theories based on this approach, where attractive
interactions between different monomers or monomers and solvent particles are
treated in first order thermodynamic perturbation theory, often appear under
acronyms like TPT1 or SAFT (statistical associating fluid theory). Comparisons
with computer simulations [7, 47, 48] have shown that TPT1-MSA [49, 50] (here
MSA stands for a closure approximation known [51] as �mean spherical ap-
proximation�) yields rather reasonable results on phase coexistence, but typically
a large overestimation of the two-phase region occurs, and the critical behavior is
described as mean-field like; so the correct Ising-type criticality [11–15] cannot be
described as expected. The latter comment applies to the many variants of SAFT
(e.g., [52–56]) as well. However, as a caveat, apart from this shortcoming and other
systematic errors resulting from the fact that thermodynamic perturbation theory
[57] becomes generally inadequate at low temperatures and errors from the
closure approximations [51] occur, we mention that some variants of such theories
invoke additional uncontrolled approximations that may lead to further
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uncontrolled errors. For example, the now rather popular perturbed chain (PC)-
SAFTapproach [56] relies on an expansion of isotherms as sixth-order polynomials
of the monomer density and this may give rise to completely spurious gas–gas and
liquid–liquid phase equilibria [58, 59] in the equation of state of a homopolymer, in
addition to the standard liquid–gas two-phase region, which is the only physically
meaningful phase separation of typical homopolymers at high temperatures.

A general conclusion that can be drawn from this short survey on the many
attempts to develop analytical theories to describe the phase behavior of polymer
melts, polymer solutions, and polymer blends is that this is a formidable problem,
which is far from a fully satisfactory solution. To gauge the accuracy of any such
approaches in a particular case one needs a comparison with computer simulations
that can be based on exactly the same coarse-grained model on which the analytical
theory is based. In fact, none of the approaches described above can fully take into
account all details of chemical bonding and local chemical structure of such
multicomponent polymer systems and, hence, when the theory based on a simplified
model is directly compared to experiment, agreement between theory and experi-
ment may be fortuitous (cancellation of errors made by use of both an inadequate
model and an inaccurate theory). Similarly, if disagreement between theory and
experiment occurs, one does not know whether this should be attributed to the
inadequacy of the model, the lack of accuracy of the theoretical treatment of the
model, or both. Only the simulation can yield �numerically exact� results (apart from
statistical errors, which can be controlled, at least in principle) on exactly the same
model, which forms the basis of the analytical theory. It is precisely this reason that
has made computer simulation methods so popular in recent decades [58–64].

Consequently, we focus here on computer simulations exclusively. The outline of
the remainder of this chapter is as follows: Section 1.2 presents on overview of
polymermodels (from latticemodels to atomistic descriptions) andwill also describe
the most important aspects of Monte Carlo simulations of these models. As an
example, recent work on simple short alkanes and solutions of alkanes in super-
critical carbon dioxide [47, 48] will be presented, to clarify towhat extent a comparison
of Monte Carlo results on phase behavior and experimental data is sensible, and
which experimental input into the models is indispensable to make them predictive.

In Section 1.3 we continue the discussion of Monte Carlo simulations of polymer
blends and polymer solutions, but with the emphasis on interfaces that result in the
context of phase separation: interfaces between coexisting phases in the bulk (liquid–
liquid interfaces in a blend, liquid–vapor-type interfaces in a solution) and at solid
external walls. It will be shown how all the surface free energies entering Young�s
formula for the contact angle of droplets can be determined, and how one can
estimate the location of wetting transitions. Coarse-grained models are the focus of
this section.

Section 1.4 discusses the basic aspects of molecular dynamics simulation of
polymer melts and blends with both coarse-grained and chemically detailed models.
While the first part of this section emphasizes the basic aspects of the technique,
Section 1.4.2 emphasizes non-equilibrium aspects such as the response to shear
deformation, and the special techniques necessary to simulate such phenomena
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(non-equilibrium molecular dynamics, NEMD). Since shear deformations create
heat, the proper thermostating of the system in the context of a NEMD simulation
needs to be carefully considered, and this will be explained in this section. Of course,
the processing of polymer solutions, melts, and blends in theirmolten state is always
an indispensable step prior to the production of (typically solid) polymeric materials,
and hence addressing such problems by the theoretical modeling is clearly adequate
and necessary.

While most sections in this chapter emphasize coarse-grained models, it must be
stressed that such models can elucidate qualitative trends, but a quantitative
prediction of properties of specific polymeric materials is not achieved. The latter
task is attempted bymolecular dynamics simulations of chemically realistic atomistic
models (Section 1.5). Although the feasibility of this �brute force� approach is limited
due to excessive demands of computer resources to equilibrate melts of macro-
molecules with high molecular weights, and there are also uncertainties about the
force fields, nevertheless various encouraging results have been obtained, and some
examples of themwill be reviewed in this section. The �mapping� between atomistic
and coarse-grained models will be discussed briefly.

Finally, Section 1.6 gives a short summary of the state of the art and outlook on
closely related problems that were not covered in this chapter.

1.2
Molecular Models for Polymers and Monte Carlo Simulations

1.2.1
Modeling Polymers in Molecular Simulations

If generic properties of polymers need to be determined, it is often sufficient to
rely on lattice models. For comparison with experiments of particular melts and
blends, more sophisticated off-lattice models are typically applied. These models
are described by force fields that determine the interactions between atoms or
groups of atoms, and the quality of the modeling is essential for the predictive
quality of the simulations. Force field parameters can be derived from direct
comparison with experimental data, from quantum mechanical calculations, or
both. In the first part of this section, we present generic polymer models that are
commonly used in molecular simulations without focussing on any particular
substance. Emphasis is placed on lattice and simple off-lattice models that will also
be discussed in the next three sections. Section 1.5 is dedicated to chemically
realistic descriptions.

The first model that took into account excluded volume effects was the self-
avoiding-walk (SAW), which was introduced about 60 years ago [65, 66]. Each
monomer occupies a lattice site on a simple cubic lattice. The bond length between
adjacent monomers is fixed by the lattice constant and the bond angles are restricted
by the geometry of the lattice. This model is well-suited to describe generic poly-
mers in dilute, good solvent conditions and exhibits the correct scaling behavior
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(R2
g / N2n, n � 0:588). Variations of this model, like the interacting SAW (iSAW),

allow for interactions between non-adjacent beads and can even undergo a phase
transition to a globular state, reproducing the generic behavior of a single chainunder
bad solvent conditions. A particularly popular extension of the iSAW to two types of
beads is even able to describe generic properties of proteins. In theHP (hydrophobic–
polar) model [67], non-adjacent hydrophobic beads attract each other, whereas
interactions between hydrophobic and polar beads and between two polar beads
are restricted to excluded volume. These simple conditions suffice to form a
hydrophobic core as observed in crystal structures of proteins. Likewise, polymer
blends can be readily implemented in such simple models if we allow for a second
type of chains and specified interactions between monomers of like and unlike
species. Polymers on a simple cubic lattice exhibit two major disadvantages. On the
one hand, both bond length and bond angles are fixed and, on the other hand,
Monte Carlo simulations on the simple cubic lattice are often plaguedwith ergodicity
problems [68]. The bond fluctuation model [69] was introduced to address these
issues while preserving the computational efficiency of lattice models. Again, the
basic idea is simple: instead of occupying a simple lattice site, a monomer now
occupies a whole lattice cell. Neighboring beads are only allowed to move such that
the bonddoes not stretch or compress toomuch. Specifically, bond vectors are chosen
to prevent overlaps of adjacent monomers and intersection of bonds during sim-
ulation. Note that, due to this additionalflexibility, the bondfluctuationmodel already
resembles to some extent a coarse-grained continuum model.

A simple and very popular example of a coarse-grained off-latticemodel is given by
the bead-spring chain of Kremer andGrest [70, 71]. In thismodelmonomers interact
via a Lennard-Jones potential:

VLJðrÞ ¼ 4e
s

r

0
@

1
A12

� s

r

0
@

1
A6

þ const:

2
4

3
5; if r < rc

0 ; else

8>><
>>: ð1:9Þ

To increase computational efficiency the Lennard-Jones potential usually is cut
and shifted at either twice the minimum value, or 2.5s. The constant in Eq. (1.9) is
chosen such that VLJ is continuous at r ¼ rc. The value of e sets the scale of energy
(and temperature T, which is often normalized as T� ¼ kBT=e), and the size s of
effective monomers sets the scale of length. In addition, adjacent beads interact with
the so-called FENE potential:

VFENEðrÞ ¼ �const: � e � ln 1� r
rmax

� �2
" #

ð1:10Þ

Constants in Eq. (1.10) are chosen such that the most favorable distance between
bonded monomers is slightly smaller than the distance between non-bonded mono-
mers to prevent crystallization. Alternatively, a harmonic potential can be used for
bondedmonomers instead of Eqs. (1.9, 1.10). As indicated for latticemodels, polymer
blends can be implemented by adjusting the interaction strength e for monomers of
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type A and B and between A and B. By mapping e and s to experimental energy and
length scales, simulations of thismodel can be comparedwith experiments of specific
polymers. In these scenarios, single Lennard-Jones beads typically represent groups
of carbon atoms [47].

The next steps towards amore chemically detailed description are so-called united
atom models. In this class hydrogen atoms are grouped together with the heavier
atoms to which they are attached. These potentials typically contain both bond
bending and torsional terms. Fully atomistic models, which frequently are used in
simulations of biopolymers [72], consider hydrogen as a separate particle and often
contain electrostatic terms as well. Section 1.5 presents a few selected examples of
atomistic polymer models in comparison with experiments.

At the end of this introductory section we emphasize that the model should be
adequate for the problem in question. Adding additional parameters to describe the
system in a chemically realistic manner increases the computational cost and does
not necessarily lead to better agreement with experiments. This should be consid-
ered, especially because on today�s computers fully atomistic molecular dynamics
simulations are typically limited to box sizes of a few nanometers and 10s or 100s of
nanoseconds of simulated time.

1.2.2
Basics of Monte Carlo Simulations

Classical molecular simulations are dominated by two classes of algorithms: Monte
Carlo and molecular dynamics [62, 63]. Monte Carlo generally aims at generating
independent configurations of a statistical system that contributes to the Boltzmann-
weighted statistical average of an observable. This information can also be obtained
from molecular dynamics simulations in which a starting configuration is evolved
according to Newton�s equations of motion. In addition, molecular dynamics
generates information about the dynamical evolution of a system. In the following,
we give a short overview and present a selection of several techniques important for
studying polymer blends and melts. After a brief introduction to basic Monte Carlo
algorithms we focus on grand-canonical simulations, which are commonly used to
determine phase diagrams of polymer melts and blends. Molecular dynamics
simulations are introduced in Section 1.4.

Monte Carlo simulations are, as indicated by the name, based on the idea of
evolving a system by drawing random numbers. Unfortunately, statistically mean-
ingful configurations are typically confined to a small volume of phase space. To
evolve a system within this volume we apply importance sampling, that is, we only
sample states that actually contribute to statistical averages.

To derive the relevant equations we consider our system to be in a particular state i.
This state is in equilibriumwith its environment if the probability flows in and out of
this state are equal:X

j

PðiÞaivij ¼
X
j

Pð jÞajvji 8j ð1:11Þ
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where PðiÞ is the probability of residing in state i, which is typically given by the
Boltzmann distribution;
vij is the probability of jumping from i to j as given by the algorithm;
ai,j is the probability of selecting or placing a particular particle for the move.

The system is in equilibrium if Eq. (1.11) applies to all states. Equation (1.11) is
always fulfilled if the stricter condition:

PðiÞaivij ¼ Pð jÞajvji 8i; j ð1:12Þ

ismet, which is known as detailed-balance. Several ways to fulfill detailed-balance are
conceivable. TheMetropolis criterion [83] was historically thefirst implementation of
detailed balance, and remains by far the most popular choice today:

wij ¼ min 1;
ajPj

aiPi

� �
: ð1:13Þ

For example, consider a local Monte Carlo scheme for a Lennard-Jones liquid in
the NVT (constant particle number, volume, and temperature) ensemble: We choose
one particle at random, andmove it a fixed distance away from the previous position
in an arbitrary direction. For the reverse move (from j to i) aj ¼ ai the two pre-
factors cancel out. Pi / exp½�bEðiÞ� according to the canonical Boltzmann
distribution. Equation (1.13) indicates that the move is always accepted if the energy
of the system is lowered by the displacement. If the energy increases, the move is
accepted with probability exp ð�bDEÞ, that is, we draw a random number between
0 and 1 and accept the move if the random number is smaller than exp ð�bDEÞ.

Apart from local displacements, a wide variety of Monte Carlo moves can already
be formulated using Eq. (1.13). For instance, an end-monomer can be cut from
a polymer chain and reattached at the other end. In this case the movement of
the chain resembles a slithering snake, from which the name of the algorithm
is derived [73, 74]. In dilute systems, a monomer can be selected at random,
around which one side of the polymer is rotated by an arbitrary angle (or an angle
allowed by the lattice geometry). This so-called pivot algorithm is currently the
most efficient way to simulate single chains in good solvent conditions [75, 76].
For globular states, various end- [77] and internal-rebridging [78, 79] algorithms have
been developed in which the chain is cut and reconnected internally. A version that
cuts and rebridges two chains in a melt also exists [80]. From this list it becomes
immediately clear that Monte Carlo moves do not have to mimic physically feasible
moves of a real polymer chain. This characteristic is oftentimes advantageous as it
allows for a fast and efficient sampling of configuration space. On the downside,
information about the physical evolution of the system is lost.

1.2.3
Determination of Phase Behavior

In the following, we focus on a set of techniques commonly used to determine the
phase behavior of oligomer melts [47, 48] and blends [81] to give an example of how
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MC techniques are applied in practice. The methodology is rather general and in
principle can be applied to any molecular liquid [82] or spin system. It also has
advantages over techniques like Gibbs ensemble Monte Carlo [83] because it can
be combined with finite-size scaling in the vicinity of the critical point. In addition,
the method yields interfacial properties. Our presentation follows Reference [47].
Simulations are typically performed in the grand canonical mVT ensemble with
periodic boundary conditions, that is, we fix the chemical volume and temperature
but allow for particle insertions or deletions. For a simple Lennard-Jones liquid,
Eq. (1.13) becomes:

wij ¼ min 1;
V

nþ 1
exp ð�bDEþ bmÞ

� �
ð1:14Þ

for insertion from n particles to nþ 1 particles in the system, and:

wji ¼ min 1;
n
V
exp ðþ bDE�bmÞ

� �
ð1:15Þ

for deletion attempts from n to n�1;V denotes the volume of the simulation box. The
simulation of polymer melts is slightly more involved because insertions of whole
chains are typically rejected in a melt due to overlaps. To attenuate this problem,
more advanced schemes like configurational bias Monte Carlo [85–88] need to be
implemented. Again, the basic idea is simple: the first particle is inserted at random.
Subsequent particles of the chain are inserted after the surrounding area is scanned
for favorable vacancies. The bias, however, has to be considered when final accep-
tance probabilities are calculated. This algorithm, combined with local updates
schemes introduced above, works very well for oligomers. Melts containing larger
chains remain challenging and the efficiency of the grand canonical insertion
attempt still limits the applicability of the whole approach.

In a typical simulation run, a joint histogram of particle number and energy is
accumulated. The system is at coexistence when an unweighted simulation spends
an equal amount of time in the coexisting phases. If we plot the probability
distribution as a function of particles in the melt, we obtain a double-peaked
distribution at coexistence and the areas below the two peaks are equal [88, 90].
Coexistence densities can be calculated by determining the average particle numbers
in the gas and the liquid peak and dividing the respective numbers by the volume of
the simulation box.

In practice, it is difficult to estimate the coexistence chemical potential ahead of
time.However, if two distributions at m;T and m0;T 0 overlap sufficiently, it is possible
to extrapolate data from m;T to m0;T 0 and avoid a second simulation [91]. The
probability of a certain configuration c at m0;T 0 is given by:

Pm0;T 0 ðcÞ ¼ Z
Z0 Pm;T ðcÞ e�ðb0�bÞEþðm0b0�mbÞn ð1:16Þ

wherePm0;T 0 ðn0Þ is the sum over all configurations ci at n0.P
fcigjn¼n0Pm;T ðciÞ /

P
fcigd ðn�n0Þ can be determined from the original data set.

After a suitable normalization, the grand canonical partition sums Z and Z0
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disappear and we obtain:

Pm0;T 0 ðn0Þ ¼
P

fcigdðn�n0Þ e�ðb0�bÞEi þðm0b0�mbÞnP
fcig e�ðb0�bÞEi þðm0b0�mbÞn ð1:17Þ

From a statistical mechanics viewpoint, molecular systems share several proper-
ties with Ising spin systems if density fluctuations are substituted with spin flips.
Polymer melts and blends without long-range interactions typically belong to the
3d-Ising universality class [92, 93], and critical points can be determined with
techniques that were originally derived for spin systems [94]. To this extent we can
calculate second- or fourth-order cumulants [94]:

U2 ¼ hM2i
hjMji2 ; U4 ¼ hM4i

hM2i2 ð1:18Þ

which become system size independent and cross at the critical point (Figure 1.1).
M denotes the order parameter of the transition. For liquid–vapor phase coexistence
it is given by:

M � r�hri ð1:19Þ

In practice, we perform several simulations close to the critical point for different
simulation box volumes and determine the coexistence chemical potential as
indicated above. These simulations can be extrapolated to different temperatures
close to Tc to obtain UK ðV ;TÞðK ¼ 2; 4Þ. The critical point is the intersection point
of the cumulants. The computation of cumulants is closely related to finite-size
effects [95–97] that haunted computer simulations in the early days but are now
under firm control: In a macroscopic system the correlation length diverges at the

1.7 1.71 1.72 1.73 1.74
temperature [ε/k] 

1.2

1.4

1.6

U
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U4

3d Ising
L= 13.5 σ 
L= 11.3 σ
L= 9 σ 
L= 6.74 σ 

Figure 1.1 Second- and fourth-order
cumulants for a LJ þ FENE pentamer in
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critical point. In a system of finite size, the correlation length can at most be equal to
half of the linear dimension of the simulation box, which has to be considered in the
vicinity of Tc. Definition (1.19) is sufficient formost purposes. Note, however, that an
exact mapping of fluid criticality to Ising criticality has to consider field-mixing
effects [92] and M becomes a linear combination of density and energy. Owing to
higher order effects and corrections to scaling the values of U4 and U2 at the
intersection points of the curves in Figure 1.1 deviate slightly from the asymptotic
values obtained for the 3d Ising model (dotted horizontal lines). Note, however, that
the intersections of bothU2 andU4 occur at about the same temperature, which can
be determined with good accuracy.

Away from the critical point, that is, at low temperatures, both phases are separated
by a free energy barrier that corresponds to a region of low probability. This barrier
cannot be overcome by thermal fluctuations. Several sophisticated schemes have
been devised to address this issue. Multicanonical methods [98] modify the
Hamiltonian in order to sample a range of densities uniformly. To this end, a weight
function w½n� is added to the original Hamiltonian. The simulated distribution
Psim ðnÞ ¼ PðnÞ exp ð�w½n�Þ becomes flat for the choice of wðnÞ � ln PðnÞ. Unfor-
tunately, PðnÞ is a priori unknown, but can be estimated by extrapolating an over-
lapping data set [91]. A sequence of simulations and extrapolations typically starts
close to the critical point where barriers between both peaks are small and no
weighting is required for the first run. The weight function wðnÞ can also be self-
adjusted during simulation [99–102]. Note, that some of these schemes violate
detailed balance and bear the risk of systematic errors. However, they are well-suited
to generate an educated guess for the probability distribution, which can be used in a
weighted simulation with fixed weights. A detailed discussion of methods to
overcome free energy barriers can be found in Reference [103].

In the followingwe focus on a scheme that is based onumbrella sampling [104] and
circumvents most of these problems. In successive umbrella sampling [105] the
relevant range of states is subdivided into small windows that are sampled consec-
utively. This allows us to simulate without a weight function or to generate a weight
function on the fly fromprevious windows bymeans of extrapolation. In the simplest
implementation, we start with an empty box and allow the system to change only
between 0 and 1 particle. A histogramHðnÞmonitors how often each state is visited
(n denotes the number of particles in the simulation box). After a predetermined
number of insertion/deletionMonteCarlomoves, the ratioH(1)/H(0) is determined,
and we move the window to the right (to allow 1 and 2 particles). This procedure is
repeated until all relevant states have been sampled. Then, the (unnormalized)
probability distribution can be estimated recursively:

PðnÞ
Pð0Þ ¼

Hð1Þ
Hð0Þ �

Hð2Þ
Hð1Þ � � �

HðnÞ
Hðn�1Þ ð1:20Þ

or:

ln
PðnÞ
Pð0Þ ¼ ln

Hð1Þ
Hð0Þ þ ln

Hð2Þ
Hð1Þ þ � � � þ ln

HðnÞ
Hðn�1Þ ð1:21Þ
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Logarithms are used to increase numerical accuracy as probabilities can become
very low. The efficiency of the algorithm can be increased by combining the scheme
with the multicanonical concept. In a weighted simulation we replace HðnÞ in
Eq. (1.20) by HðnÞ exp½�wðnÞ�. After P ðnÞ is determined according to Eq. (1.20),
wðnÞ ¼ ln ½PðnÞ� is extrapolated to the next window and used as an educated guess for
wðnþ 1Þ.

Once the probability distribution is determined, information about interfacial
properties can be extracted. Half way in between the gas and the liquid phase we
typically observe configurations in which half of the simulation box is filled with
liquid and half of the box is filled with gas at coexistence density (Figure 1.2 inset). As
the free energy of the coexisting phases is the same, the difference in free energy can
be attributed to the presence of the interface [106]:

c ¼ kBT
2L2

ln
PðnmaxÞ
PðnminÞ ð1:22Þ

The interface area is L2; the factor of 2 arises from periodic boundary conditions.
P(nmax) is the average height of both peaks and P(nmin) theminimum in between. For
these measurements an elongated box is preferred to ensure that the two interfaces
do not interact [107, 108].

Finally, we briefly mention an example that combines a coarse-grained modeling
ansatz with grand canonical simulations. In this particular case, hexadecane is
modeled as a chain of five coarse-grained Lennard-Jones beads [Eq. (1.9)] that are
connected by FENE [Eq. (1.10)] springs [48]. The solvent, carbon dioxide, is repre-
sented by a simple Lennard-Jones bead that contains an additional r�10 term to
account for the (spherically averaged) quadrupolar moment of CO2 [82, 111].
Simulation parameters e, s, and q (for CO2) are derived by equating the critical
temperature, the critical density, and the quadrupolarmoment (in the case of CO2) of
simulation and experiment for the pure components. Mixture parameters eAB and

Figure 1.2 Free energy as a function of the number of LJ þ FENE pentamers (n) in the simulation
box (T ¼ 1:38 e=kB; V ¼ 9� 9� 18s3). Inset: typical configuration for n ¼ 100 pentamers. With
permission from Reference [47].
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sAB are given by the Lorentz–Berthelot combining rule (eAB ¼ j
ffiffiffiffiffiffiffiffiffiffi
eAeB

p
, j ¼ 1,

sA ¼ 0:5ðsA þ sBÞ). Figure 1.3 shows a projection of the phase diagram and the
critical line onto the pressure–temperature plane. Even though the model is very
simple and lacks atomistic details it can describe adequately the phase behavior of the
mixture without additional fitting parameters. If, however, the quadrupolar moment
of CO2 is not taken into account, a modification of the Lorentz–Berthelot rule is
required (j < 1). This emphasizes that atomistic detail is not always required to
describe the phase behavior correctly. However, it is advisable to include physically
relevant quantities like the quadrupolar moment of CO2.

1.3
Wetting and Phase Diagrams in Confined Geometries

1.3.1
Length and Energy Scales of Minimal, Coarse-Grained Models for Polymer–Solid
Contacts

While previous sections have focused on the bulk phase behavior and the properties
of interfaces between coexisting bulk phases, the polymer material is often confined
in a container or a thin polymer film is supported by a substrate. This confinement
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Figure 1.3 Projection of the global mixture
phase diagram of a hexadecane–CO2 mixture
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can give rise to wetting phenomena and these effects may profoundly alter the phase
behavior in confined geometry [112].

In the following, we assume that the confining walls of the container or the sup-
porting substrate (e.g., awafer) are hard andnon-deformable, that is, the properties of
the solid do not change as it is brought into contact with the polymermaterial. If one
measures the density profile of the polymer material at the polymer–solid contact,
one will typically observe a steep rise of the density from zero (in the solid, confining
wall) to the bulk density of the polymer material. The spatial extension of this
polymer–solid interface is only a few ångstr€om, that is, its width is dictated by the size
of the atomistic constituents. On the other hand, in multicomponent polymer
materials (i.e., polymer blends or polymer–solvent mixtures) one component will
enrich at the solid surface, and the width of these enrichment layers may extend far
away from the solid surface.

Two different enrichment phenomena can be distinguished [113]:

1) If the multicomponent material is completely miscible in the bulk, then a
component will typically adsorb at the preferential, solid surface. This phenom-
enon alters the composition profile near the polymer–solid contact on a length
scale that is set by the molecular extension. The enrichment layers are much
larger than the width of the polymer–solid interface but they cannot grow
macroscopically large.

2) If the multicomponent material exhibits two coexisting phases in the bulk, then
one phase will be enriched at the polymer–solid contact and, provided that the
solid is sufficiently preferential, this wetting layer of the preferred phase will
grow macroscopically thick. One says that the preferred phase of the polymer
material wets the solid [114].

In both situations the polymer–solid interface is much thinner than the width of
the enrichment layer or the interphase. Since previous sections have dealt with
phase coexistence in multicomponent polymer materials, we restrict ourselves to
the wetting phenomena (2) and refer the reader to References [115–117] for
simulation studies of adsorption phenomena within the framework of coarse-
grained models.

The properties of the polymer–solid interface are most suitably investigated by
atomistic modeling approaches. Atomistic modeling can address the complex
interactions between polymer and solid materials and study the subtle conforma-
tional changes and structuring effects of the polymer liquid in the ultimate vicinity of
the solid. However, atomistic approaches cannot address the length and time scales
required to build up and equilibrate wetting layers.

Systematic coarse-graining schemes have been applied to one-component poly-
mer melts in contact with solid surfaces. In this framework, one starts with an
atomistic modeling approach and systematically devises effective free energies of
interaction between coarse-grained segments along the polymer. In this way,
information on the atomistic scale may be transferred into coarse-grained models.
An interesting example of this strategy is the investigation of polycarbonate at a
nickel surface where a strong, specific adsorption of the chain ends to the solid
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surfaces has been revealed by atomistic modeling and this specific adsorption has
been incorporated in the coarse-grained model [118]. Without the underlying
atomistic modeling this specific interactions could have been easily overlooked.
This example highlights the (rather special) case of a coupling between atomistic
surface properties and long-range conformational properties. Typically, however,
the surface tension of a polymer melt exhibits only a weak dependence on
molecular weight.

If one uses a coarse-grained approach, one has to identify the relevant properties
that the description on the coarser scale has to capture. In the following, we
specifically consider wetting phenomena in a binary AB polymer blend that exhibits
liquid–liquid phase separation between an A-rich and a B-rich phase. The thermo-
dynamics of the surface enrichment layers is dictated by the free energies of the solid
in contact with the two coexisting phases, cAW and cBW, and their interfacial tension,
cAB. If the solid surface, W, attracts the A-rich phase, then a domain of the A-rich
phase, which is embedded in the B-rich phase, will form a drop at the solid surface.
The AB-interface at the boundary of the domain will make the contact angle,H, with
the solid wall, W. Young�s equation describes the balance of forces at the three-phase
contact line parallel to the solid surface and dictates [119]:

cWB�cWA ¼ cABcosH ð1:23Þ

Note that the surface tensions, cWB and cWA, are large. On the atomistic scale there
are strong forces and, consequently, the energy of a segment with the surface can
exceed the thermal energy scale, kBT , by far. Moreover, the steep rise in density at the
narrow polymer–solid contact gives rise to important changes of the conformational
entropy (Lifshitz entropy [27]). In contrast, the interfacial free energy, cAB, is very
small on the length scale of a coarse-grained segment. For a strongly segregated,
symmetric binary polymer blend, one obtains [28]:

cAB ¼ kBTrb
2

ffiffiffiffiffiffiffiffi
x=6

p
ð1:24Þ

where b denotes the statistical segment length, r the number density of coarse-
grained segments, and x the Flory–Huggins parameter, which describes the repul-
sion between segments of the different polymer species of the blend.

Typically, the Flory–Huggins parameter is very small, that is, of the order 1=N.
Therefore, the left-hand side of Young�s equation, Eq. (1.23), consists of a cancellation
of two large contributions. It is a formidable task to predict via atomisticmodeling the
differenceDc ¼ cWB�cWA or theFlory–Huggins parameter,xwith an accuracy of the
order kBT=N per segment.

The behavior of polymer solutions, which exhibit phase coexistence between a
polymer-rich liquid (L) and a polymer-poor vapor (V), is qualitatively similar. Only the
separation of energy scales between the surface tensions of the polymer and vapor in
contact with the solid and the liquid–vapor interfacial tension is less pronounced
because the liquid–vapor interface also is narrow and the cohesive van der Waals
interactions inside the liquid are strong.
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The idea of aminimal coarse-grainedmodel for polymer–solid contacts consists in
not describing the structural details of the polymer–solid contact on the length scale
of Ångstr€oms because this length scale is not resolved. Instead, the aim is to tailor the
interactions at the surface in order to match the difference in surface tension, Dc, of
the coarse-grained model to the experimental data. In this way, the macroscopic
interfacial thermodynamics is parameterized.

Another important ingredient, which determines the wetting behavior, is the
interaction between the outer, liquid–vapor interface of thewetting layer and the solid
surface. This interaction (per unit area) is denoted as the interface potential [114] and
it dictates, inter alia, the order of the wetting transition and the way, in which the
thickness of the wetting layer grows as one approaches the bulk phase coexistence by
varying the pressure.

Generally, the interface potential consists of a short-ranged and long-ranged
contribution. The short-ranged potential stems from the distortion of the density
profile at the interface. It decays exponentially as the thickness of the wetting layer
increases and its length scale is set by the decay length in the wings of the interfacial
profile, that is, the bulk correlation length, j � Re.

The long-ranged part of the interface potential arises from the integrated
van derWaals interactions inside the polymermaterial and between the solid surface
and the polymer. This long-ranged interaction can be described by an external
potential, which decays like [32]:

V lr
wallðzÞ ¼ |{z}

DA
6pr

ewall

� 1
z3

ð1:25Þ

The strength, ewall, is parameterized by the Hamaker constant, A, which is
proportional to the energy parameter, e, of the Lennard-Jones potential. Typically,
in a coarse-grained model, the Lennard-Jones interactions are cut-off at a finite
distance, cf. Eq. (1.9). Therefore, the strength, DA, is the difference between the
Hamaker constant of the interactions inside the polymer liquid and that between
polymer and solid.

To describe the thermodynamics and structure of wetting layers at a polymer–solid
contact within the framework of aminimal, coarse-grainedmodel, one has to identify
the bulk properties, Flory–Huggins parameter, xN, the mean-squared end-to-end
distance, Re, and the molecular density, r=N. Re characterizes the gross features
of the molecular shape on large length scales, and xN and r=N can be identified,
for example, by matching the critical point of the blend or solution to experimental
data. The structure and thermodynamics of the polymer–solid contact requires
(at least) two additional, coarse-grained parameters – the difference in the surface
tension, Dc, between the two coexisting phases and the strength of the long-ranged
interactions. The former can be identified by the macroscopic contact angle that a
drop of the A-rich phase or polymer-rich phase embedded in a B-richmatrix or vapor
makes with the solid surface. The latter can be estimated from experimental data on
the Hamaker constants.
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1.3.2
Measuring the Surface Free Energy Difference, Dc, by Computer Simulation

Here we discuss how to determine the additional coarse-grained parameters that
characterize the coarse-grained model of the polymer–solid contact using the
example of a one-component polymer material, which exhibits liquid–vapor phase
coexistence. Knowing the bulk phase behavior and the interfacial tension between
the coexisting phases, one could determine the difference, Dc, by measuring the
contact angle of a cap-shaped drop on the solid surface. This procedure mimics the
experimental measurement but, unfortunately, the small droplet sizes accessible in
simulations gives rise to significant finite-size effects:

1) If a drop is formed on the surface, the chemical potential of the system will
be shifted away from the bulk coexistence value (Kelvin equation). Drops of a
given size are only stable for a certain range of system sizes. If the system size is
too large, the system will rather dissolve the excess material homogeneously
in the volume than pay the free energy cost of the liquid–vapor interface [121].
This is the analog of the droplet condensation–evaporation transition in the
bulk [122].

2) The contact angle of a small droplet may significantly be affected by the effects
of the line tension that describes the free energy costs of the three-phase
contact between liquid, vapor, and solid. This effect can be greatly reduced by
considering cylindrical droplets that span the simulation box in one direction
via the periodic boundary condition. In this case, the length of the three-phase
contact line is twice the width of the system independent from the droplet size
or contact angle [123].

3) The contact angle is defined by the asymptotic behavior of the liquid–vapor
interface approaching the surface. At short distances from the surface, the
interaction between the interface and the surface – the interface potential –
distorts the interface away from its asymptotics and, thus, it may be very
difficult to identify the asymptotic behavior from simulation data of small
drops [31].

These difficulties will be avoided if one directly computes the surface free
energy difference. To measure surface free energies, we apply the same grand-
canonical Monte Carlo technique that we used for the bulk thermodynamics
(Section 1.2.3), now in the presence of two surfaces [120, 124]. We fix the chemical
potential to its coexistence value and, using the re-weighting method, we can
make the simulation sample all densities between the vapor phase (V) and the
liquid phase (L) in contact with the surface. Again the logarithm of the probability
distribution, P, yields the free energy as a function of the density. Figure 1.4
displays the results for the Lennard-Jones bead-spring model with N ¼ 10
effective segments at temperature kBT=e ¼ 1:68. The free energy exhibits two
minima, corresponding to configurations where either a vapor (low density) or a
liquid (high density) phase is in contact with the surface. The ratio of the
probability for finding the system in one of these phases yields the difference
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in the surface free energies:

Dc � cVW�cLW ¼ kBT
2L2

ln
PðwLÞ
PðwVÞ


 �
ð1:26Þ

where 2L2 denotes the area of the two surfaces. Note that the bulk does not yield
any contribution to the difference because, at coexistence, the grand-canonical
free energies (i.e., pressure) of the two coexisting phases – liquid and vapor –
are identical.

At intermediate densities the typical conformations consist of a liquid slab at each
wall. If the system size is sufficiently large the distance between the liquid–vapor
interfaces and the wall and their mutual distance become large. In this limit the
interfaces neither interact with the walls nor with each other, and we expect only a
weak dependence of the free energy on the density, that is, a plateau in the probability
distribution, P, at intermediate values of the average density. The liquid will wet the
surface if the difference in surface tensions equals the interfacial tension,Dc ¼ cLV.
In a sufficiently large system, the wetting transition corresponds to the point where
the plateau value of P equals PðwVÞ.

For the system size studied in Figure 1.4, we do not observe a plateau, that is,
once the interfaces have reached a distance from the wall, which is large enough
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for the interface potential between the interface and the surface to decay, they
already begin to interact mutually. This indicates that our simulation cell is too
small to accommodate two non-interacting solid–liquid and liquid–vapor interfaces.
Nevertheless, we can reliably determine cVW�cLW. In these limiting states, the
container is either completely filled with vapor or liquid, and there are no liquid–
vapor interfaces present. The perturbation of the density profile in the liquid extends
only over a few segmental diameters, s, which is much smaller than the extension of
the simulation cell.

To parameterize the coarse-grainedmodel to a specific physical realization, onehas
to tune the interactions, Vwall, between solid and polymer to reproduce the exper-
imental value of the surface free energy difference, Dc. Once Dc has been obtained
via the method described above for a particular strength, ewall, of Vwall, the depen-
dence on the attractive strength of the wall can be obtained via thermodynamic
integration [120, 124]:

VðewallÞ ¼ VðeoÞþ
ðewall
eo

dew0
hEwallðew0 Þi

ew0
ð1:27Þ

whereV is the grand canonical potential and Ewall ¼ L2
Ð
dzwðzÞVwallðzÞ denotes the

interaction energy associated with the monomer–wall interaction potential. Like any
thermodynamic integration, this procedure can be efficiently carried out in the
framework of an expanded ensemble.

1.3.3
Application to Polymer–Solvent Mixtures

To illustrate these techniques, we consider the coarse-grained model for hexadecane
and carbon dioxide, which we have discussed in Section 1.2. The correction of the
Lorentz–Berthelot rule is set to j ¼ 0:9 and the temperature is fixed at kBT=e ¼ 0:92.
(In this case carbon dioxide was modeled as a simple Lennard-Jones bead without
quadrupolar moment.) The short- and long-ranged interactions at the polymer–solid
contact are described by a 9-3-potential of the form:

Vwall ¼ eWSðPÞ
sSðPÞ
Dz

� �9
� sSðPÞ

Dz

� �3

 �

ð1:28Þ

where eWS and eWP, denote the strength of the surface interaction acting on solvent
and polymer, respectively.

Using the technique illustrated in Figure 1.4 for the one-component system, one
can accurately locate the strength of the surface interaction, ewetWP, atwhich thepolymer
film will wet the substrate, as a function of the vapor pressure, P. Figure 1.5 depicts
the results for different values of the attraction, eWS, of the substrate to the solvent,
carbon dioxide. If the substrate does not strongly attract the solvent, increasing
the vapor pressure, P will stabilize the polymer film because of the concomitant
decrease of the liquid–vapor interfacial tension, cLV. If the substrate strongly attracts
the solvent, however, the solvent will forma layer at the substrate andwill displace the
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polymer. The excess of solvent at the surface may lead to dewetting of the polymer
film upon increasing the pressure. This effect has also been corroborated by self-
consistent field calculations [125, 126].

1.4
Molecular Dynamics Method

1.4.1
Basic Molecular Dynamics

Molecular dynamics [127] (MD) is a numerical technique to approximate the static
and dynamic properties of classical many-body systems. MD techniques are com-
monly employed alongside Monte Carlo techniques because dense packing reduces
the acceptance probability of translation and chain rotationmoves to very low values,
particularly when using all-atom models.

The key idea is simple: ifUðfr igÞ is the total potential acting on particle iwithmass
mi and position r iðtÞ at time t, then Newton�s equations of motion (EOM):

mi
q2

qt2
r iðtÞ ¼ �riUð r if gÞ ð1:29Þ

are solved iteratively. Themain justification of theMDmethod is based on the ergodic
hypothesis that time averages are equal to statistical ensemble averages. However,
MD simulations generate cumulative errors that cannot be suppressed entirely, but
are minimized using adequate integration schemes. Various algorithms have been
suggested to solve Eq. (1.29).
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Figure 1.5 Dependence of the wetting transition ewetWP on pressure,P, estimated by grand-canonical
Monte-Carlo simulations of a polymer–solvent mixture. Adapted from Reference [125].
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TheVerlet algorithmuses the Taylor expansions of the position vectors in different
time directions. With Dt the �time-step� of the simulation, adding the expansions
for r iðtþDtÞ and r iðt�DtÞ leads to:

r iðtþDtÞ ¼ 2r iðtÞ�r iðt�DtÞþ aðtÞDt2 þOðDt4Þþ � � � ð1:30Þ

where aiðtÞ ¼ �riUðfr igÞ=mi denotes the acceleration. When terms larger than
OðDt3Þ are neglected one obtains positions that are correct to OðDt4Þ, whereas
velocities are correct to order OðDt2Þ.

A commonly applied modification is the velocity Verlet algorithm. It explicitly
incorporates the particle�s velocity, vi, such that:

r iðtþDtÞ ¼ r iðtÞþ viðtÞDtþ aiDt2

2

viðtþDtÞ ¼ viðtÞþ aiðtÞþ aiðtþDtÞ
2

Dt
ð1:31Þ

This approach produces errors that are of the same order as the Verlet algorithm.
Its advantage lies in symmetric coordinates for �past� and �future� and conservation
of the phase-space volume, that is, the velocity Verlet algorithm is consistent with
Liouville�s theorem. Although energy is not conserved perfectly on short time scales,
there are no energy drifts for large times. The stability of themethod canbe increased,
for example, using �Beeman�s algorithm� [128] or the �leap-frog� [129] method,
which calculate the velocities more accurately.

In predictor–corrector algorithms time derivatives of the position vectors at time t
are used to predict the positions and their derivatives at time tþDt. The predicted
variables then are corrected according to the difference from those at time t, where a
set of �Gear constants� are used. The latter are chosen to balance accuracy and
stability, that is, short- and long-time conservation of energy. Optimized values
depend on the order of the Taylor expansion (�order of the algorithm�).

Predictor–corrector algorithms are only time reversible for Dt! 0 and therefore
violate Liouville�s theorem.However, in the canonical ensemble they can be tuned to
be more accurate than the Verlet integration.

The main computational effort in MD simulations is to evaluate the interatomic
forces. For pair-wise additive and short-range potentials geometrical composition
algorithms have been proposed to optimize the force calculation. Mostly applied
are the �cell linked-lists� or the �Verlet list� algorithm. Examples for efficient
methods to compute forces from long-range potentials are �Ewald summation� [130],
�particle-mesh Ewald� [131], �particle-particle-particle-mesh� [132], and �generalized
Born� [133] algorithms.

The MD method has become a powerful tool to simulate even millions of par-
ticles and arbitrarily complex molecules in confined systems or in the bulk using
periodic boundary conditions. Modifications of the original approach allow for MD
simulations at constant pressure, chemical potential, or temperature. �Ab initio�MD
simulations [134], using first-principles to evaluate interatomic forces for quantum
electronic systems, have led to remarkable accomplishments in simulating the
properties of real materials.
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1.4.2
Non-equilibrium Molecular Dynamics Simulations of Coarse-Grained
Polymer Systems

Computational studies of polymeric liquids under non-equilibrium conditions have
been performed intensively in recent decades [135–152]. This is not only related to
the advancing computational resources that have made such studies possible, but
mainly to the distinct advantages of numerical investigations. While experiments
usually only provide information on macroscopic properties, non-equilibrium
molecular dynamics (NEMD) simulations allow one to explore structural features,
which can be related to the phenomenological coefficients that describe the trans-
port of mass, momentum, and energy. NEMD simulations have reproduced suc-
cessfully many qualitative features of polymer solutions under stationary (steady)
shear, such as �shear thinning� (decreasing viscosity with shear rate), �shear
alignment� or effects on the normal stress [137, 139–142, 144, 145, 147, 149, 150].
Meanwhile, many numerical studies have been performed even for nonstationary
flow fields [140, 145, 146, 150]. However, a reliable characterization of systems out
of equilibrium requires careful numerical approaches, where special attention must
be paid to coarse-graining, boundary conditions, and thermostat issues. In this
sectionwe discuss some of these technical aspects inmesoscopicNEMDsimulations
for coarse-grained polymer systems.

A presentation that covers the entire field of NEMD simulation techniques would
greatly extend the length of this section. Here, we focus mainly on the case of
confined polymer systems, where shear deformation is induced by displacement of
the confining boundaries. The simulation of bulk systems usually invokes other
techniques than discussed here, which are often better suited to reveal homogeneous
fluid dynamics. For instance, homogeneous flow fields can be generated by deter-
ministic (e.g., SLLOD [135, 136, 138, 148, 152]) EOM, which have been shown to
reveal rather accurate transport properties for atomic liquids [138].However, complex
fluids, such as polymer solutions or melts, tend to �align� under strong shear-
deformation due to hydrodynamic instabilities. Homogeneousmethods that enforce
a linear shear profile therefore have to be applied with care. Simulation methods for
atomistic and molecular fluids in homogeneous flow fields have been reviewed in
detail [152].

The rigorous solution of the time-dependent, quantum-mechanical, many-body
problem is numerically unfeasible. The problem thus must be reduced to classical
mechanics and coarse-grainedmodels have to be introduced. In particular forNEMD
simulations, the modeling of solvent effects can be crucial and the complexity of the
problem is highly dependent on whether the external stimuli are strong or weak and
whether they are constant in time or nonstationary.

Whenhydrodynamic effects are not expected to be important, it is often convenient
to simulate without explicit solvent molecules. This approach can still be justified
even when hydrodynamic flow becomes relevant, but solvent-related degrees of
freedom have to be incorporated on a certain coarse-grained level. To reproduce
hydrodynamic effects in the continuum limit, mesoscale hydrodynamic techniques
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have been developed that conserve local mass and momentum. Such methods, for
example, dissipative particle dynamics [143, 147, 149–151, 153–172], stochastic
rotational dynamics [173–181], and the lattice Boltzmann method [182–185], can
reproduce hydrodynamic behavior described by the Navier–Stokes equation on the
relevant (large) length scales. In these approaches, monomers interact via conser-
vative and thermal forces, where the latter are introduced via a thermostat.

Upon using a thermostat, one assumes that heat transport within the system occurs
instantaneously. This is not strictly correct but often it is convenient to simulate at
constant temperature. Fluctuation relations are derived more straightforwardly than
for the micro-canonical ensemble and the thermostat helps to stabilize particle
trajectories, allowing theuseof larger timesteps. InNEMDsimulations, the thermostat
is of great importance, as it is used to remove the viscous heat due to the entropy
production fromexternal stimuli.However, it is a non-trivial challenge inmanyNEMD
simulations of complex fluids to maintain the temperature and simultaneously avoid
an undesired influence of the thermostat on transport properties. For simulations far
beyond static equilibrium, the specific choice of the thermostat and its parameters are
often crucial. One example, where complications may arise easily, is the shear
deformation of confined polymer systems, which is often simulated at shear rates
much larger than typical experimental values (see References [142–144]) in order to
obtain statistically meaningful results.

Owing to its simplicity, the Langevin (LGV) thermostat is one of the most applied
methods to perform simulations in the canonical ensemble. In this approach, the
simulated particles are coupled to an external heat bath at constant temperature. The
dissipative force acting on particle i is proportional to its velocity:

F d
i ¼ �miCvi ð1:32Þ

where C is a friction constant. The random force follows from the fluctuation–
dissipation theorem, which defines the temperature of the simulation. The LGV
thermostat acts on a local scale. Particles that are too fast are damped by the viscous
background, whereas the stochastic heat bath increases the velocity of particles that
are too slow. As this method stabilizes the trajectories of monomers very efficiently,
the LGV thermostat has been applied for many previous studies [137, 139, 141, 142,
144, 145, 150] of polymeric systems, both in static equilibrium and in NEMD
simulations. However, the LGV thermostat does not conserve momentum and
screens hydrodynamic interactions beyond a length [170, 186]:

k ¼
ffiffiffiffiffiffi
g

rC

r
ð1:33Þ

where g and r are viscosity and density, respectively.
Galilean invariance is lost due to the coupling ofmonomers to the heat bath, which

mimics a solvent that rests in the laboratory frame. Therefore, themethod belongs to
the class of �profile-biased� thermostats [138]. This can be demonstrated easily: Let us
consider a film of linear polymers confined by two adsorbing substrates. Shear is
applied by moving the upper substrate with a constant velocity, w, while the lower
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substrate remains at rest. For a large film thickness, L, the density inhomogeneities
close to the substrates are negligible. With gbulk as the bulk viscosity, the Navier–
Stokes equation reads [145]:

gbulkDvðzÞ ¼ CrvðzÞ ð1:34Þ

where zdenotes the gradient direction, vðzÞ is the velocity profile, andr themonomer
mass density.

Solving Eq. (1.34) with stick boundary conditions at the lower substrate, vxð0Þ ¼ 0
(x the shear direction), and assuming vxðLÞ 	 w for the upper, leads to [145, 170]:

vxðzÞ
vxðLÞ ¼

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cr=gbulk

p
z

� 	
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cr=gbulk

p
L

� 	 ð1:35Þ

for the monomer velocity profile. The shear stress, sxz, can be obtained from
integrating over the dissipated force [right-hand side of Eq. (1.34)], and for
L 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbulk=Cr
p

one finds sxz � C1=2. Simulations [145] confirmed this scaling
behavior and revealed velocity profiles as given in Eq. (1.35). This outcome
obviously is determined by the thermostat, as Eq. (1.34) describes the coupling
of monomers to a solvent that remains at rest in the laboratory frame, independent
of shear rate [145, 170].

To circumvent a biasing of flow profiles in shear simulations, the LGV thermostat
is often applied anisotropically [137, 139, 141, 145, 150]. For instance, the thermostat
force may be applied only in gradient and vortex directions, but �deactivated� along
the direction of shear. Recent results [150] indicate that, under certain circumstances,
a good agreement between this implementation and a method that intrinsically
provides Galilean invariance can be achieved (see below). However, the coupling
between the shear and gradient directions in complex fluids demands special
attention whenever this feature becomes relevant for the transport properties of
the confined fluid.

The most straightforward modification of the LGV thermostat is to relate the
thermostat forces to the relative velocity of interacting particle pairs. Such an
approach is based on the dissipative particle dynamics (DPD) method. Originally,
DPD was proposed in conjunction with �soft� interaction potentials, which would
represent clusters of atoms, increasing the stability of particle trajectories and
allowing the use of larger MD time steps than for �hard� potentials. It has been
applied to various problems, for example, phase separation [161, 164, 166], the
flow around complex objects [153], and colloidal [154, 162] and polymeric [143, 147,
149–151, 157, 158, 167, 170] systems.

When DPD is applied as a thermostat, dissipative and random forces are added
to the total conservative force in a pair-wise form. The sum of thermostat forces
acting on a particle pair vanishes such that the microscopic dynamics fulfills
Newton�s third law. This method provides momentum conservation and Galilean
invariance.
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At large densities, the DPD thermostat reveals the coupling between the shear and
gradient directions and hence is well suited for shear simulations of polymer melts.
However, it is important to note that DPD cannot describe hydrodynamic behavior at
arbitrary densities when solvent effects are not otherwise incorporated. This affects
the applicability of the DPD thermostat already in static equilibrium, where it fails to
reproduce Zimm dynamics [189] due to the missing long-range interaction between
monomers transmitted by the solvent. To account for hydrodynamic correlations in
the dilute regime, solvent effects have to be included on whatever coarse-grained
level [143, 147, 157, 165, 167–169, 171], for example, by introducing explicit solvent
monomers.

Modified versions of DPD are frequently proposed and the advantages and short-
comings of such modifications are a current issue of research [150, 172, 187].
DPD can be transformed into �smooth-particle hydrodynamics� [188], where the
Navier–Stokes equation is solved in a Lagrangian form, or by the application of a
splitting algorithm [169] into an Andersen�s-thermostat version [165]. The DPD
method can also be applied in the micro-canonical ensemble [159, 160, 163]. An
extension of DPD has been introduced recently to allow for damping along the
parallel and perpendicular components of the relative particle velocities indepen-
dently [187]. This enables one to tune the transport properties of coarse-grained
liquids to bettermatch atomisticNEMDsimulations, whenever the latter are feasible.
However, the new approach does not conserve local angular momentum and hence
should be used with care.

LGV and DPD thermostat have been compared recently [150] for NEMD simula-
tions of polymer brushes. Apolymer brush formswhen linear polymers are adsorbed
on substrates with one chain end, such that the steric repulsions betweenmonomers
force the chains to stretch away perpendicularly from the substrate. Systems of two
polymer-brush bearing surfaces in contact can sustain large normal loads, simul-
taneously revealing small friction forces under shear deformation due to shear
induced chain inclination. Polymer brushes therefore are very important lubricants
and hence are the subject of many NEMD studies [137, 139–142, 144, 145, 147, 151].

For steady-state shear deformation similar transport properties are found at large
and intermediate monomer densities, but systematic differences between the two
methods arise at small densities. DPD and LGV thermostat also reveal somewhat
different results for nonstationary flows [150].

NEMD simulations of polymer brushes at constant shear motion have also
been performed with explicit solvent molecules, which are typically introduced as
�single monomers.� Both the LGV thermostat [139] and DPD [143, 147] exhibit
significantly enhanced lubrication properties as compared to simulations of �dry�
brushes, revealing the importance of solvent-induced effects on the macroscopic
transport coefficients.

Complex polymer systems, such as polymermelts [149, 150] or star polymers [190]
embedded between two polymer brushes, have been the subject of recent investiga-
tions. Simulations of these systems under nonstationary stimuli are extremely rare.

Alternative approaches to account for hydrodynamic interactions are based on
so-called �hybrid� methods, where the polymers are coupled to a dynamical
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background. The latter can be introduced either by collisions of ideal-gas particles or
by a lattice-based solution of the Boltzmann equation [184], known from the kinetic
theory of gases.

The first technique is known as the stochastic rotational dynamics (SRD) method
or multiparticle collision dynamics, which is a particle-based algorithm suited to
account for hydrodynamic interactions on themesoscale. The coarse-grained solvent
is described as ideal-gas particles that propagate via streaming and collision steps,
which are constructed such that the dynamics conserves mass, momentum, and
energy.

In the streaming step, the solvent particle trajectories are ballistic. Collisions are
introduced by sorting the particles into cubic lattice cells and performing a stochastic
rotation of the relative velocities in each cell. In contrast toDPD, the SRDmethod acts
on all particles within the same collision cell.

In SRD, the environment of a particle depends on the superimposed velocity field.
This breaks Galilean invariance, because the particles that participate in a collision
differ betweenmoving and resting frame. However, when the mean free path length
of particles is large compared to the mesh size of the lattice, colliding particles arrive
from different cells and are therefore uncorrelated. This reflects the conditions of
�molecular chaos,� where Galilean invariance is negligible. It has been shown [175]
that Galilean invariance can be restored by a randomization of the collision envi-
ronment, for example, by random shifts of the cells before each collision step.

To simulate polymer solutions, themonomers have to be coupled to the SRD fluid.
Different strategies to achieve this aim have been proposed [173, 174, 176–179, 181].
Typically, the EOM of the polymers themselves are integrated with the standard MD
method. The monomers are included into the collision step, thereby exchanging
momentum with the SRD fluid. This is carried out under conservation of the total
momentum. Often it is sufficient to treat the monomers as hydrodynamic point
sources and to neglect the excluded volume interaction between solvent and mono-
mers [173]. This method reproduces hydrodynamic behavior on large length scales
and therefore reveals Zimm dynamics for dilute linear polymers in static equilib-
rium [173, 176, 177].

SRD appears to be a very promising (rather new) approach for future NEMD
simulations, as it is a very efficient mesoscale technique. It reflects the characteristic
shear deformation of solute macromolecules, for example, for shear flows of star
polymers [180] or DNA molecules [181].

Hydrodynamic flow also can be incorporated via a discretized version of the
Boltzmann equation. This approach is known as the lattice Boltzmann (LB) method.
The idea is to solve the linearized Boltzmann equation on an underlying lattice to
propagate molecular populations (�fictitious� solvent particles), which define the
density and velocity on each lattice site. Similar to SRD, the monomers are treated
as hydrodynamic point sources in the continuous space. The flow velocity at
the monomer positions follows from a linear interpolation between neighboring
lattice sites.

Coupling a stochastic version of LB with standard MD has allowed the reproduc-
tion of Zimm dynamics for dilute polymers in static equilibrium [183]. It has been
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applied recently to study polymer migration in confined geometries for pressure
drivenflows [191]. LB also can be used in somewhat different �hybrid�methods [182],
where the �point-particle� assumption for the solute is no longer valid, for example, in
colloidal systems [185].

The applicability of thermostat implementations and mesoscale hydrodynamic
techniques depend strongly on the specific system under consideration and general
recommendations in favor of one method cannot be made. However, some guide-
lines shall be given:

. The LGV thermostat can be ruled out, even in its �profile-unbiased� version,
whenever momentum transport is relevant, either in the form of hydrodynamic
interactions or, for instance, due to a coupling between the shear and gradient
directions.However, the LGV thermostat can be a powerful tool, as it stabilizes the
particle trajectories very efficiently and allows the study of systems far from
equilibrium. Excellent examples are investigations of polymer brushes at suffi-
ciently large density, where situations far beyond linear response [137, 139, 141,
142, 144, 145, 150] and nonstationary shear deformation [144, 145, 150] could be
studied.

. The DPD thermostat is the most straightforward and natural way to introduce
Galilean invariance and momentum conservation. Whenever feasible, NEMD
simulations with DPD and explicit solvent molecules would yield reasonable
mesoscale hydrodynamics. Simulations far beyond static equilibrium [143, 147,
149–151] and nonstationary flows [150] have been performed. However, the level
of coarse-graining for the explicit solvent still is a relevant issue.

. The usage of monomers as hydrodynamic point sources coupled to a SRD or LB
fluid invokes problems for some systems in NEMD simulations. For instance,
shear induced instabilities related to compositional fluctuations at polymer–
liquid interfaces cannot be described properly when excluded volume effects
are neglected. For nonstationary flow fields, a problem arises matching the time
scales of polymer systemandbackgroundfluid.When adjusted incorrectly, effects
stemming from the finite solvent inertia may not be covered.

1.5
Atomistic Simulation of Polymer Melts and Blends Using Molecular Dynamics
Techniques

1.5.1
Polymer Melts

Molecular dynamics simulations of polymermelts and blends in full atomistic detail
are computationally demanding and a relatively recent approach to complement
experimental observations and advance polymer theory [192–201]. The numerical
simulation of Newton�s equation of motion with suitable interatomic potentials
(force fields) for polymers and other common constituents [202, 203] contributes to
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understanding of the structural, dynamic, thermal, and mechanical properties of
polymer melts. First attempts employed rotational isomeric state models to generate
an initial structure and energy minimization (a predecessor method to MD to
minimize atomic overlaps), combined with �blowing up� interatomic potentials, to
obtain independent static equilibrium models of polymer melts [192]. The system
size has since increased from the simulation of a single atactic polypropylene chain in
a box of 1.8 nm3 volume with a few independent configurations to complex polymer
systems of 10 nm3 volume over periods of nanoseconds (millions of time steps of
femtoseconds) using desktop computers and over periods of microseconds (billions
of time steps of femtoseconds) using supercomputers. The exponentially increasing
amount of computational resources opens up new avenues to obtain insight into the
dynamics of molten polymers.

In polyisoprene melts, the local polymer dynamics were shown to be independent
of initial configurations [193]. Ratios of correlation times for different C–Hvectors in
the chain backbonematchNMRdata very well, while absolute values weremore than
twice as long. The spatial extent of cooperativemotion accompanying conformational
transitions was found to be about 1–2 repeat units. Diffusion coefficients, friction
coefficients, and zero-shear viscosities in models of linear polyethylene melts were
computed in very good agreement with experiment [194]. Systems of several chains
of length C24 to C156 were first equilibrated using an efficient end-bridging Monte
Carlo algorithm, and then subjected to MD simulation in the NVE and NVT
ensembles up to 12 ns. The resulting series of melt properties as a function of chain
length significantly expanded the understanding of polymermelts, including radii of
gyration and relaxation times. Most importantly, the friction coefficient j was found
to be constant above a chain length of C60, which is consistent with the Rouse model
for an unentangled polymer melt (Figure 1.6).

Figure 1.6 Friction coefficient j versus chain lengthN of polyethylene, as obtained from the Rouse
relation between j and diffusion coefficient D (jD, full symbols) and from the Rouse relation
between j and the longest relaxation time t1 (jt, open symbols). After Reference [194].
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Molecular dynamicsmethodshave been further applied in industrial contexts [195]
to gain qualitative insight into viscoelastic properties of polydisperse polymer melts,
interface tensions between polymer melts, and the Izod impact strength. Nanopar-
ticles of up to 16 nm diameter composed of chains of length C50 to C200 of various
polymers (PE, PEP, aPP, PIB) were simulated by large-scale parallel MD to estimate
glass transition and melting temperatures [196]. According to experiment, the
thermal expansion coefficient and the heat capacity increase at the glass transition
temperature; both increases were also observed in MD simulation at, however, two
distinct temperatures of 50 K below and 50K above the experimental glass transition.
Nevertheless, a qualitative relation between increasing transition temperature and
increasing size of the polymer particles has been found. Results obtained so far have
been insufficient to demonstrate conclusively the ability to simulate glass transitions
reliably and routinely, owing to the long time scales of the transitions and limitations
in accuracy of the atomistic models [197, 198]. Several chains of atactic polystyrene of
composition C400H402 were simulated to investigate the surface structure of thin
films [199]. An end-bridgingMonte Carlo algorithmwas first invoked using a coarse-
grained model for equilibration of the melt, followed by mapping onto the full
atomistic detail, and molecular dynamics simulation. A preferred orientation of the
phenyl rings normal to the surface was found and a surface energy 38mJm�2 was
computed in agreement with experiment. Moreover, dielectric properties of poly
(butadiene) [200], glass transitions of various polymers [198], and force field para-
meters for silamethylene polymers [201] were investigated.

1.5.2
Polymer Blends

The simulation of polymer blends includes mixtures of polymers in the molten and
solid states [204–218]. We can distinguish miscible, partially miscible, and immis-
cible blends as well as mixtures of very specifically interacting biopolymers. For
example, direct contacts between residues in a protein (homeodomain of Antenna-
pedia) and DNA bases, as well as the role of water molecules at the interface, have
been analyzed during a 2 ns trajectory [204]. Dynamical observations by NMR
spectroscopy were consistent with specific interactions derived from the simulation,
and the critical role of the Gln-50 residue (pink) for protein–DNA binding, as
previously known through genetic and biochemical analysis, could be linked to the
interaction with four base pairs and bases in both DNA strands (Figure 1.7). The
simulation of similar specific protein–protein interactions [206] and protein–
polymer interactions [213] is an interesting extension of the simulation of homo-
polymers and block-copolymers.

After an efficient initial Monte Carlo equilibration with chain scission and fusion
moves, the diffusion of binary liquid blends of n-alkanes and polymers was
investigated for chain lengths of C5/C78, C10/C78, and C12/C60 using molecular
dynamics simulation [207].Diffusion coefficients of both components increasedwith
increasing weight fraction of the short chain component, which was attributed to the
increase in free volume contributed by these solvent-like chains. Results were found
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to be in good agreement with free volume theory for low andmedium fractions of the
short alkane, with Rouse theory for all volume fractions, and with measurements of
diffusion constants for the C12/C60 system across the range of volume fractions and
temperatures.

More recently, glass transition temperatures were computed in semi-quantitative
agreement with experiment for a cationic polymethacrylate blended with triethyl
citrate plasticizer as a function of plasticizer weight content using medium size
simulation boxes (3.4 nm3) in the NPT ensemble (Figure 1.8) [212]. Results of
similar quality were also obtained for hydroxyl-terminated poly(butadiene) and
poly(glycidyl azide) with various amounts of plasticizers [218]. The findings illustrate
the current ability and limitation of all-atom simulations to characterize the phase
behavior of polymers and blends as a function of chemistry. The reliability might
be further improved through more accurate force fields, particularly with a focus on
the precisemodeling of polarity [219] and torsion barriers. In addition, stress tensors
at interfaces and in arbitrarily shaped volumes within the system can be computed to
describe the detailed dynamicmechanical behavior, including additive contributions
from bonded, Coulomb, and van der Waals interactions to the total stress [220].
Notably, however, the quantitative prediction of glass transition temperatures meets
the principal problem that the structural relaxation time of the polymer melt slows
down dramatically in the temperature region slightly above the glass transition,
where it reaches typically about 1 s. Molecular dynamics studies can equilibrate
atomistic models of polymer melts often only on the nanosecond timescale, and
hence one observes that the polymer melt falls out of equilibrium already at

Figure 1.7 Snapshot of a protein–DNA
interface (Antennapedia homeodomain–DNA
complex). The protein is represented by a space-
filling model, with all atoms in cyan except for
the side chains of Ile-47 (yellow), Gln-50 (pink),

Asn-51 (gray) and Met-54 (green). The DNA is
shown as a wireframe model. Positions of
interfacial water molecules are given by dark
blue spheres. After Reference [204].

1.5 Atomistic Simulation of Polymer Melts and Blends Using Molecular Dynamics Techniques j31



temperatures clearly above the glass transition temperature. This effect has been
demonstrated by variation of the cooling rate for coarse-grained models [221].
Therefore, one would expect that normally the glass transition temperature found
in simulations is an overestimate (the absolute difference is largest for the so-called
�strong glassformers� andweakest for the so-called �fragile glassformers�). In viewof
this fact, the good agreement between experimental results and simulations some-
times reported in the literature is somewhat surprising. Partially, thismay be due to a
lucky cancellation of errors (the potentials used in the modeling may not always be
very accurate, and if they underestimate the real glass transition temperature this
may partially offset the systematic shift to higher temperatures due to the too short
observation times in the simulation). In any case, more systematic studies will be
needed to clearly resolve these problems.

Several studies also underline the importance of very efficient equilibration
algorithms and long trajectories to understand the miscibility of long polymer
chains in blends and at interfaces. Using relatively short MD trajectories without
a significant equilibration algorithm, computed surface and interface tensions of
various thin film interfaces of polyethylene, polypropylene, poly(ethylpropylene),
and short copolymers of chain length C200 lead to uncertainties in excess of
20mJm�2 [205]. In comparison, computed surface and interface tensions of
shorter surfactants, such as attached to inorganic filler components, lead to un-
certainties of only 2mJm�2 [222]. Similarly, MD simulations of a poly(vinylphenol)/
poly(vinyl methyl ether) blend with long chains ofN ¼ 250 for each polymer without
a significant equilibration algorithm did not result in uniform mixing [209].
Nevertheless, local structural correlations such as the gauche-to-anti ratio and the
formation of hydrogen bonds can be understood, as further demonstrated for poly
(vinylphenol)/poly(ethylene terephthalate) [210] and polystyrene/polyisoprene
blends [211]. As discussed in the introduction, the standard elementary descrip-
tion of miscibility in polymer blends uses the concept of the �Flory–Huggins

Figure 1.8 Dependence of the glass transition temperatureTg of a cationic polymethacrylate on the
weight proportion of plasticizer wTEC. A comparison of experimental values fromDSC (dashed line)
and computed values from all-atom simulation (full line) is shown. After Reference [212].

32j 1 Molecular Simulation of PolymerMelts and Blends:Methods, Phase Behavior, Interfaces, and Surfaces



x-parameter� and for large molecular weights (degree of polymerization of the order
of 1000 or more) partial miscibility occurs only if x is rather small, of the order of
1 part in a thousand. Such small values need an almost perfect compensation
between effective interactions of like and unlike monomeric units (taking also the
steric arrangements of these units in the blend into account). Although it would be
very desirable to be able to predict these x-parameters accurately from simulation,
one cannot yet expect that the models are accurate enough for this purpose in the
general case. In addition, polymer blends are characterized by spatial correlations on
rather large scales and slow relaxation of concentrationfluctuations, and therefore, so
far, many studies have relied on coarse-grainedmodels exclusively [9]. Going beyond
such coarse-grained descriptions clearly is desirable, of course, and the mapping
between coarse-grained and atomistic models, discussed in the next subsection, is a
promising direction towards this goal.

Further results of all-atom molecular dynamics simulations have also been
reported for PEO/PMMA blends [214], POSS/PE blends [215], blends of hydroxyl-
terminated polybutadiene with explosive plasticizers [217], as well as a novel force
field for PDMS and mixtures with alkanes [216]. The simulation of multiphase
polymer systems has also been reviewed [208].

1.5.3
Reversible Mapping between Atomistic, Coarse Grained, and Field Models

Understanding the complex phase properties of polymer blends benefits from
simulation methods at different length scales, and efforts to achieve compatibility
and convertibility between these length scales have beenmade [223–227]. A common
approach involves the iterative match of radial distribution functions from atomistic
simulations of an oligomer to those calculated in a coarse-grained simulation for the
same oligomer (Figure 1.9) [223]. Similarly, coarse-grained models representing
an oligomer of few repeat units in one bead can be mapped to yet coarser models
representing many repeat units in one bead to simulate high polymers. In addition,
to match structural information such as radial distribution functions, a match of
free energies such as surface tensions and solubility parameters is required. The
difference in length and time scales also necessitates suitable scale factors to interpret
distance and time consistently at both scales. The neglect of numerous degrees of
freedom from the atomistic to the coarse-grained scale makes it difficult to compare

Figure 1.9 Conversion between atomistic and coarse-grained models. A 4 : 1 coarse-graining
scheme is shown. After Reference[226].
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time scales more accurately than within an order of magnitude [224]. First estimates
for an appropriate scale factor and dynamicmapping approaches can be derived from
a comparison of computed diffusion constants at both scales and the conversion of
Lennard-Jones (reduced) time in the coarse-grained simulation into real time.

The efficiency of a reversible mapping approach also depends on a well-defined
(or even automatic) parametrization method such as the simplex method or iterative
Boltzmann inversion [223]. A useful route to relaxed high polymer structures can
be (i) an atomistic simulation, (ii) the derivation of a coarse-grained model, (iii) a
coarse-grained simulation using suitable algorithms, (iv) reverse mapping to the
atomistic level, and (v) local relaxation of the atomistic structure (Figure 1.9). For
example, iterative Boltzmann inversion has been applied to study the phase sepa-
ration in a polystyrene/polyisoprene blend and leads to qualitative agreement with
experiment [225].

Further methods to study mesoscopic structures include time dependent
Ginzburg–Landau theory, dynamic density functional theory, lattice-gas automata,
and the lattice Boltzmann equation [226]. Some of these simulationmethods, such as
the dynamic mean field theory (Mesodyn) and dissipative particle dynamics (DPD),
utilize coarse-grainedmolecularmodels to study themorphology of inhomogeneous
materials using Flory–Huggins x parameters between components and can be
reversibly linked to atomistic simulation. For example, Flory–Huggins x parameters
between two components, characteristic ratios (C1) of the Gaussian chains, and
self-diffusion coefficients (D) have been estimated through atomistic simulation
and fed into coarse-grained models in the mesoscopic simulation [226]. Trends in
thermodynamically preferredmorphology, phase separation, mechanical properties,
and the behavior under shear were obtained in good agreement with experiment
for various polymer blends, including polyethylene/polypropylene, poly(ethylene
terephthalate)/poly(ethylene naphthalate), poly(vinyl chloride)/polyethylene, poly
(methyl methacrylate)/polycarbonate, and polycarbonate/acrylonitrile/butadiene/
styrene [226], as well as composites [227]. The mesoscale morphologies and
structures can be converted into atomistic models for continued analysis at a
chemically specific level.

1.5.4
Comparison to Experiment and Future Challenges

The previous sections indicate the ability of chemically detailed simulations to
explain experimental data and the potential for predictions in unknown systems.
All-atomic simulation often bridges the gap between indirect structural informa-
tion obtained from spectroscopic, thermal, and mechanical measurements and
molecular level details. The local dynamics of polymer chains [193] agrees with C-H
NMR relaxation data on a relative scale [2]; however, absolute correlation times in
the simulation appear to be �2:5 times the real value. This mismatch could be
associated with overestimated torsion barriers in atomistic models, such as an
eclipsed barrier of 5–6 kcalmol�1 for n-butane (from ab initio calculations) in
comparison to the experimental value of 4.0 kcalmol�1 [228]; such differences can
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be corrected in future force fields. Nevertheless, diffusion coefficients, friction
coefficients, and zero-shear viscosities have been computed in very good agreement
with experiment [194], and model predictions both at the atomistic and coarse-
grained level can be considered reliable over significant temperature and pressure
ranges for non-polar polymers such as polyethylene, polypropylene, or polyisobu-
tylene. The availability of high-performance computing resources [195, 196, 199]
further aids in obtaining equilibrium structures and in the application of new
equilibration algorithms for large systems.

In polar polymers, the exact balance of charges and the description of specific
interactions such as hydrogen bonds are critical [219]. Often, X-ray diffraction data,
NMR data, and binding constants are valuable experimental input to identify specific
van der Waals, p-stacking, and polar interactions on the basis of molecular simu-
lation [204]. Therefore, atomic-level simulations have great potential in the design of
complex interfaces or �mixtures� of biological and bioinspired polymers in combi-
nation with experiment. Properties such as gas diffusion constants, elastic constants,
and possibly glass transition temperatures as well as solubility parameters could
be simulated in approximate agreement with experiment, as recently shown for
chitosan [229]. Self-diffusion coefficients for short-chain polymer blends have been
obtained in quantitative agreement with experiment [207], and current limitations on
chain length (102–103main chain atoms) will be pushed back as computational power
becomesmore readily available. In the same way, it is likely that surface and interface
properties in polymer blends will be computed quantitatively in the near future. In
addition to the previously mentioned techniques, electron paramagnetic resonance
spectroscopy (EPR) also constitutes a helpful tool in combination with all-atom
simulations to monitor the dynamics in spin-probe labeled polymers at a length scale
of1–10nm,which isof interest inchaindynamics [230].Ultimately, thephasebehavior
and mechanical properties of long-chain polymer blends can be most effectively
simulated through multiscale approaches, for example, coarse-grained models and
field-based descriptions, which can be parameterized on the basis of atomisticmodels
and converted from the atomistic into the simplified scale as well as vice versa.

1.6
Concluding Remarks

The subject of molecular simulation and thermodynamics of polymers is an active
area of research and encouraging results have been obtained. The interplay between
the refinement of computer simulation methods and the rapid growth of computer
resources (the speed of the hardware is doubling roughly about every two years) has
led to a rapid growth of successful applications of simulation methods.

While for the first 30 years after the introduction (in 1941) of the Flory–Huggins
theory of polymer blends (and polymer solutions) experimentalists had to exclusively
rely on this approach and its refinements for the interpretation of their data, in the
two decades from about 1970 to about 1990 basic steps were taken to go beyond this
phenomenological description, both via the formulation ofmore detailed and refined
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theories [e.g., the self-consistent field theory (SCFT) of polymeric systems, the
statistical associating fluid theory (SAFT) for the description of the equation of state,
and the polymer reference interaction site model (PRISM), etc.] and via computer
simulation methods. Owing to lack of computer resources, the first successful
applications focused on Monte Carlo simulations of lattice models (such as self-
avoiding walks on the simple cubic lattice, or the bond fluctuation model), providing
crucial tests of the Flory–Huggins theory of polymer mixtures, elucidating their
limitations, and of the random phase approximation applied to polymer blends and
block copolymers, and so on. Alternative coarse-grained off-latticemodels such as the
Kremer–Grest bead-spring model were also introduced, offering the important
advantage that via molecular dynamics simulations dynamical aspects of polymer
blends, melts, and solutions also became accessible (interdiffusion and spinodal
decomposition in blends and solutions; selfdiffusion in melts and the entanglement
problem; glass transition in polymeric systems).

Of course, while work along such lines can elucidate basic theoretical questions,
provide general insight into the problems, and give guidance to experiments, the
important task of predicting properties of polymericmaterials from �first principles�
(i.e., only the knowledge of chemical structure is used as the input) cannot be
addressed using such coarse-grained models alone. It must also be stressed that a
theoretically fully satisfactory treatment would require us to solve the many-body
Schr€odinger equation for all the electrons plus nuclei in the system and use the
resulting energy eigenvalues and associated eigenfunctions in a quantum statistical
mechanics framework; unfortunately, such an approach is still far from feasible.
Consequently, all simulations of �chemically realistic� models rely on approximate
descriptions, which again need to be validated by comparison to experiment. In fact,
for polymeric materials, in most cases effects due to electrons are not explicitly
considered, and one uses effective potentials (�force fields�) as input in molecular
dynamics simulations (which amount to the solution of Newton�s equations of
motion, i.e., classicalmechanics rather than quantummechanics).While some parts
of such potentials (e.g., torsional potentials) can be derived from presumably very
reliable quantumchemistry approaches, the non-bonded dispersion forces cannot be
deduced reliably from any �first principles�-theories. Thus, both coarse-grained and
atomistic models describe the latter often by the phenomenological Lennard-Jones
potential, with parameters chosen such that the model correctly reproduces selected
experimental data in a simulation. Of course, great care is necessary so that in such
applications the �technical� limitations of simulations (polymeric systems often
involve large length scales and hence one needs to watch out for finite size effects;
polymeric systems often involve huge relaxation times, and hence the question of
whether equilibrium has been reached needs to be addressed) are adequately
considered. As a general rule, we stress that sound simulation work needs a careful
�education� of the simulator in the techniques that he or she is using, and in their
theoretical background; the present chapter could only give the flavor of this
background, and has hopefully �whetted the appetite� of the reader to study this
background more thoroughly. Any would-be practitioner of such techniques must
realize that it would be completely wrong and misleading to think that simulation
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methods are already a standard tool that everybody can use without prior knowledge,
just as experimentalists can use standard instruments (microscopes, light or X-ray
scattering apparatus, etc.). The idea that computer simulation belongs to this category
of �standard tools� is clearly a vision but not yet reality.

Owing to the problem that one needs to connect quantum-mechanical input (sub-
ångstr€om length scale, sub-picosecond time scale) to the scales of coarse-grained
models (many nanometers and many nanoseconds) and the latter to the mesoscopic
scales of interest for many problems (many micrometers or even millimeters and
time scales up to seconds are the length- and time-scales of interest for the processing
of real polymeric materials), it is clear that a straightforward brute-force approach
(if ever feasible at all) is not the most economical approach to the problem. Hence
the idea of a hierarchical �multiscale modeling� approach is clearly attractive and the
first promising steps in this direction can be found in the literature. In the present
chapter we have, hence, illustrated this very interesting development. However, we
also emphasize that at present this is still a very active area of research, anduniversally
applicablemethods (including also an understanding of the accuracy of the approach
under various circumstances) have yet to emerge.

Symbols

<>T thermal average
A Hamaker constant or Helmholtz free energy
ai acceleration (molecular dynamics)
aij probability of selecting or placing a particular particle for the

move (Monte Carlo)
b statistical segment length
ci
A,B local concentrations (Flory–Huggins model)

C1 characteristic ratio
D self-diffusion coefficient
Fi force acting on particle i
H(n) number of occurrence in state n (successive umbrella sampling)
F Helmholtz free energy
kB Boltzmann constant
L linear box size
mi mass of particle i
M order parameter
n number of particles
NA,B chain length of polymer type A or B (Flory–Huggins model)
p pressure
P(i) probability of residing in state in state i (Monte Carlo)
Psim simulated probability (multicanonical sampling)
q number of nearest neighbors (Flory–Huggins model)
Rg radius of gyration
ri position of particle
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T temperature
Tc critical temperature
U potential
U2 second-order cumulant
U4 fourth-order cumulant
V volume
VFENE FENE potential
vi velocity of particle i
VLJ (r) Lennard-Jones potential
w(n) weight function (multicanonical sampling)
Z partition sum

Greek Symbols

b ¼ 1=kBT
c interfacial tension
C friction constant
eAA; eAB and eBB interaction energies (Flory–Huggins model)
e; s interaction parameters in Lennard-Jones model
g viscosity
H contact angle
m chemical potential
j friction coefficient or empirical modification parameter in

Lorentz–Berthelot rule or correlation length
r density
sxz shear stress
jA;jB and jV volume fractions (Flory–Huggins model)
xAB; xAA and xBB Flory–Huggins parameters
vij probability of jumping from state i to j (Monte Carlo simulation)
V grand canonical potential
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