
Chemical reactions are initiated by accidental collision of molecules, which have
the potential (e.g. sufficient energy) to react with one another to be converted
into products:

A� B �� P�Q

In living matter it cannot be left to chance whether a reaction happens or not. At
exactly the time required the respective compounds must be selected and con-
verted to products with high precision, while at unfavorable times spontaneous re-
actions must be prevented. An important prerequisite for this selectivity of reac-
tions is the highly specific recognition of the required compound. Therefore,
any physiological reaction occurring in the organism is preceded by a specific rec-
ognition or binding step between the respective molecule and a distinct receptor.
The exploration of binding processes is important for understanding biological
processes. The receptors can be enzymes, but also non-enzymatic proteins like
membrane transport systems, receptors for hormones or neurotransmitters, and
nucleic acids. Generally, receptors are macromolecular in nature and thus consid-
erably larger than the efficacious molecules, the ligands. For the binding process,
however, they must be treated as equivalent partners (unlike for enzyme kinetics,
where the enzyme as catalyst does not take part in the reaction).

As a precondition for binding studies specific binding must be established and
unspecific association excluded. There exist many reasons for unspecific binding,
like hydrophobic or electrostatic interactions (charged ligands can act as counter-
ions for the surplus charges of proteins). A rough indicator for specific binding is
the magnitude of the dissociation constant, which is mostly below 10–3 M (although
there are exceptions, like the binding of H2O2 to catalase or glucose to glucose iso-
merase). Specific binding is characterized by a defined number of binding sites n,
which is in stoichiometric relationship to the macromolecule. In contrast, unspe-
cific binding has no defined number of binding sites, and thus the binding process
is not saturable. Furthermore, the ligand can be replaced by structural analogs,
while different or distantly related compounds are not accepted.

In the following the processes leading to a specific interaction between a li-
gand and a macromolecule will be described, i.e. how the ligand finds its bind-
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ing site and which factors determine the affinity. The essential mechanisms of
interaction between ligand and macromolecule are then presented.

1.1
Diffusion

A prerequisite for any reaction of a ligand with a macromolecule is the fact that
the partners must find one another. In a free space a particle moves in a
straight direction with a kinetic energy of kBT/2, T being the absolute tempera-
ture and kB the Boltzmann constant. According to Einstein’s relationship a parti-
cle with mass m, moving in a distinct direction with velocity � possesses kinetic
energy m�2/2. Combining both relationships Eq. (1.1) follows:

�2 � kBT�m � �1�1�

Accordingly, a macromolecule like the lactate dehydrogenase (Mr = 140000)
would move at a rate of 4 m s–1, its substrate lactic acid (Mr = 90.1) at 170 m s–1,
and a water molecule (Mr = 18) at 370 m s–1. Enzyme and substrate will fly past
one another like rifle bullets. In the dense fluid of the cell, however, the moving
particles are permanently hampered and deflected from linear movement by
countless obstacles: water molecules, ions, metabolites, macromolecules and
membranes and, actually, the molecule moves more like a staggering drunkard
than in a straight progression. However, this tumbling increases the collision
frequency and the probability of distinct molecules meeting one another.

The distance x covered by a molecule in solution within time t in one direc-
tion depends on the diffusion coefficient D according to the equation:

x2 � 2Dt � �1�2�

The diffusion coefficient is itself a function of the concentration of the diffusing
compound, in dilute solutions it can be regarded as constant. It depends on the
particle size, the consistency of the fluid and the temperature. For small molecules
in water the coefficient is D = 10–5 cm2 s–1. A cell with the length 1 �m will be
passed within 0.5 ms, 1 mm within 500 s, thus, for a thousandfold distance a mil-
lionfold time is required. This demonstrates that there exists no ‘diffusion velocity’,
the movement of the molecules is not proportional to time, but to its square root. A
diffusing molecule does not remember its previous position, it does not strive sys-
tematically for new spaces but searches new regions randomly in undirected
movement. As an example, a 10 cm high saccharose gradient, used in ultracentri-
fugation for separation and molecular mass determination of macromolecules,
has a life-span of about four months, taking D = 5� 10–6 cm2 s–1 for saccharose.
The tendency of the gradient to equalize its concentration is considerably low.

Equation (1.2) describes the one-dimensional diffusion of a molecule. For dif-
fusion in a three-dimensional space over a distance r the diffusion into the
three space directions x, y and z is assumed to be independent of each other:
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r2 � x2 � y2 � z2 � 6Dt � �1�3�

Mere meeting of ligand and macromolecule is not sufficient to accomplish spe-
cific binding, rather the ligand must locate the binding site on the macromole-
cule. This is realized by translocation of the ligand volume 4�R3/3 by the rele-
vant distance of its own radius R. After a time tx the molecule has searched (ac-
cording to Eq. (1.3) for r = R) a volume of:

6Dtx

R2 �
4�R3

3
� 8�DRtx � �1�4�

The volume searched per time unit is 8�DR, the probability of collision for a
certain particle in solution is proportional to the diffusion coefficient and the
particle radius.

At the start of a reaction A + B�P both participants are equally distributed in
solution. Within a short time, molecules of one type, e.g. B, become depleted in
the vicinity of the molecule of the other type (A) not yet converted, so that a
concentration gradient will be formed. Consequently, a net flow � of B-mole-
cules occurs in the direction of the A-molecules located at a distance r,

� � dn
dt
� DF

dc
dr

� �1�5�

n is the net surplus of molecules passing through an area F within time t, c is
the concentration of B-molecules located at a distance r from the A-molecules.
This relationship in its general form is known as Fick’s First Law of Diffusion. In
our example of a reaction of two reactants, F has the dimension of a spherical
surface with the radius r. Eq. (1.5) then changes into:

dc
dr

� �
r

� �

4�r2D	
�1�6�

D� is the diffusion coefficient for the relative diffusion of the reactive molecules.
Integration of Eq. (1.6) yields:

cr � c
 � �

4�rD	
�1�7�

where cr is the concentration of B-molecules at the distance r and c� the con-
centration at infinite distance from the A-molecules. The last corresponds ap-
proximately to the average concentration of B-molecules. The net flow � is pro-
portional to the reaction rate and that is again proportional to the average con-
centration c of those B-molecules just in collision with the A-molecules, rA+B

being the sum of the radii of an A- and a B-molecule:

� � kcrA�B � �1�8�
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where k is the rate constant of the reaction in the steady-state, where cr becomes
equal to crA+B

and r equal to rA+B. Inserted into Eq. (1.7), this becomes:

crA�B �
c


1� k
4�rA�BD	

� �1�9�

The net flow under steady-state conditions is:

� � kac
 �1�10�

where ka is the relevant association rate constant. Equations (1.8)–(1.10) may
thus be rewritten:

1
ka
� 1

4�rA�BD	
� 1

k
� �1�11�

This relation becomes linear in a graph plotting 1/ka against the viscosity � of
the solution as, according to the Einstein-Sutherland Equation, the diffusion coef-
ficient at infinite dilution D0 is inversely proportional to the friction coefficient f
and that again is directly proportional to the viscosity �:

D0 � kBT
f
� kBT

6��r
� �1�12�

1/k is the ordinate intercept. In the case of k�4�rA+BD� the intercept is placed
near the coordinate base, it becomes:

ka � 4�rA�BD	 � �1�13�

This borderline relationship is known as the Smoluchowski limit for translating
diffusion, the reaction is diffusion-controlled. In contrast to this, in reaction-con-
trolled reactions the step following diffusion, i.e. the substrate turnover, deter-
mines the rate. A depletion zone emerges around the enzyme molecule, as sub-
strate molecules are not replaced fast enough. A diffusion-limited dissociation oc-
curs, if the dissociation of the product limits the reaction. Viewing two equally
reactive spheres with radii rA and rB and diffusion coefficients DA and DB, we
obtain for Eq. (1.13):

ka � 4�rA�BD	 � 4��rA � rB��DA � DB� � �1�14�

By inserting Eq. (1.12) and with the approximation rA = rB and with D0 = DA = DB

we obtain:

ka � 8kBT
3�

� �1�15�
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Thus the association rate constants for diffusion-controlled reactions are in the
range 109–1010 M–1 s–1.

Uniform values should be obtained if the rate constants are exclusively deter-
mined by diffusion. In reality, however, the values of the rate constants of diffu-
sion-controlled reactions of macromolecules vary within a range of more than five
orders of magnitude. The reason for this variation is that, for successful binding of
the ligand, random collision with the macromolecule is not sufficient. Both mol-
ecules must be in a favorable position to each other. This causes a considerable
retardation of the binding process. On the other hand, attracting forces could fa-
cilitate the interaction and direct the ligands towards their proper orientation. Un-
der such conditions rate constants can even surpass the values of mere diffusion
control. Quantitative recording of such influences is difficult as they depend on
the specific structures of both the macromolecule and the ligand. Theories have
been developed to establish general rules for ligand binding.

Ligand approach a macromolecule at a rate according to Eq. (1.13), but only
those meeting the correct site in the right orientation will react. If the binding
site is regarded as a circular area, forming an angle � with the center of the
macromolecule (see Fig. 1.1), the association rate constant of Eq. (1.13) will be
reduced by the sine of that angle:

1.1 Diffusion 11

Fig. 1.1 Schematic illustration of the interaction of a sub-
strate molecule with its binding site on the enzyme (A). B,
productive and unproductive binding, sliding of the ligand
along the surface; C, gating.



ka � 4�rA�BD	 sin � � �1�16�

The necessity of appropriate orientation between ligand and binding site should be
considered by the introduction of a suitable factor, depending on the nature of the
reactive groups involved. It is also suggested that the ligand may associate unspe-
cifically to the surface of the macromolecule, where it dissociates in a two-dimen-
sional diffusion to find the binding site (sliding model; Berg, 1985, Fig. 1.1 B). Such
unspecific binding, however, is not able to distinguish between the specific ligand
and other metabolites which may also bind and impede the two-dimensional dif-
fusion. The gating model (Fig. 1.1C) assumes the binding site to be opened and
closed like a gate by changing the conformation of the protein, thus modulating
the accessibility for the ligand (McCammon and Northrup 1981).

A basic limit for the association rate constant for the enzyme substrate is the
quotient from the catalytic constant kcat and the Michaelis constant Km (cf. Sec-
tion 2.2.1):

kcat

Km
� kcatk1

k�1 � k2
�1�17�

frequently around 108 M–1 s–1 for a diffusion-controlled reaction. For most enzyme
reactions the reaction rate is determined more by the non-covalent steps during
substrate binding and product dissociation rather than by the cleavage of bounds.

1.2
Interaction between Macromolecules and Ligands

1.2.1
Binding Constants

Binding of a ligand A to a macromolecule E

E� A k1� EA �1�18�
k�1
�

is described with the law of mass action, applying the association constant Ka:

Ka � k1

k�1
� �EA
�A�E �1�19 a�

or its reciprocal value, the dissociation constant Kd:

Kd � k�1

k1
� �A�E�EA �1�19 b�

Both notations are used, the association constant more frequently for the treatment
of equilibria, the dissociation constant for enzyme kinetics. Here the dissociation
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constant will be employed throughout. The association constant has the dimension
of a reciprocal concentration (M–1), the higher the numerical value, the higher the
affinity. Conversely, dissociation constants possess the dimension of a concentration
(M) and lower values indicate stronger binding. Eqs. (1.19a, b) are not quite correct,
in the place of concentrations c (e.g. [A]) activities a = fc should be used. Since activity
coefficients f approach one in very dilute solutions they can be disregarded for en-
zyme reactions.

If one reaction component is present in such a large excess that its concentra-
tion change during the reaction can be neglected, the absolute concentration
can be included in the constant. This applies especially for water, if it takes part
in the reaction, e.g. in hydrolytic processes:

A�H2O enzyme� P�Q ��

As a solvent, with a concentration of 55.56 mol l–1, water exceeds by far the nano- to
millimolar amounts of the other components in an enzyme assay and any change in
its concentration will hardly be detectable. Therefore, a binding constant for water
cannot be determined and the reaction will be treated as if water is not involved:

K 	d �
�A�H2O
�P�Q � Kd�H2O � Kd � �A

�P�Q �

Hydrogen ions, frequently involved in enzyme reactions, are treated in a similar
manner. An apparent dissociation constant is defined:

Kapp � Kd�H� �

Contrary to genuine equilibrium constants this constant is dependent on the
pH value in the solution.

1.2.2
Macromolecules with One Binding Site

To determine the binding constants for a distinct system the mass action law (Eq.
(1.19)) can be applied. However, the terms required for solution of the equation,
the concentrations of the free macromolecule [E], the free substrate [A] and the
enzyme-substrate complex [EA], are unknown. Only the total amounts of macro-
molecule [E]0 and of ligand [A]0 added to the reaction are known. They separate
into free and bound components according to the mass conservation principle:

�E0 � �E � �EA �1�20�

�A0 � �A � �EA � �1�21�

Binding experiments yield the portion of the ligand bound to the macromole-
cule [A]bound (see Chapter 3). In the simple reaction with only one ligand bind-
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ing to a macromolecule (Eq. (1.18)) [A]bound is equal to [EA]. Inserting Eq. (1.20)
into Eq. (1.19 b) eliminates the free macromolecule concentration [E]:

�Abound �
�E0 �A

Kd � �A � �1�22�

This equation describes the binding of a ligand to a macromolecule with one bind-
ing site. It will be discussed in detail in the following section together with the
analogous Eq. (1.23) for macromolecules with several identical binding sites.

1.3
Macromolecules with Identical Independent Binding Sites

1.3.1
General Binding Equation

Most proteins and enzymes found in living organisms are composed of more than
one, mostly identical, subunit. For reasons of symmetry it can be taken that each
of these subunits carries one identical binding site for the ligand, so that the num-
ber n of binding sites equals the number of subunits. This is a plausible assump-
tion, but it must be stated that, in the strict sense, identity means equality of bind-
ing constants. If affinities of binding sites located on non-identical subunits are
the same by chance, or if a single subunit possesses more than one binding site
with similar binding constants (e.g. due to gene duplication), this will not be dif-
ferentiated by binding analysis and requires additional experiments.

Binding of a ligand to identical sites on the same macromolecule can occur
independently, otherwise the first bound ligand can influence the following
binding steps. Such influences will be considered in Section 1.5, while here
only independent binding is considered. Such binding processes are principally
described by Eq. (1.22), since it should make no essential difference whether
the binding occurs at a macromolecule with only one binding site, or whether n
sites are gathered on the same macromolecule. If [F]0 = n[E]0 is assumed to be
the total amount of binding sites, this can replace [E]0 in Eq. (1.22):

�Abound �
�F0 �A

Kd � �A �
n �E0 �A
Kd � �A �1�23�

The number of binding sites is indicated in the numerator, but as a further dif-
ference it must be considered, that [A]bound can no longer be equated with [EA],
but comprises all partially saturated forms of the macromolecule:

�Abound � �EA � 2 �EA2 � 3 �EA3 � � � � n �EAn �1�24�
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In fact the macromolecule will be saturated stepwise:

E� A � EA K 	1 �
�E�A
�EA

EA� A � EA2 K 	2 �
�EA�A
�EA2

EA2 � A � EA3 K 	3 �
�EA2�A
�EA3

��
� ��

�

EAn�1 � A � EAn K 	n �
�EAn�1�A
�EAn �

Each step has its own dissociation constant. For independent binding all indi-
vidual dissociation constants may be taken as equal and Eq. (1.23) will be ob-
tained. Although these considerations lead to the correct binding equation, the
derivation was simplified. The correct derivation, which is much more compli-
cated, is given in Box 1.1.

1.3 Macromolecules with Identical Independent Binding Sites 15

Box 1.1 Derivation of the General Binding Equation

The dissociation constants of the individual binding steps are called macro-
scopic dissociation constants K�, in contrast to microscopic (or intrinsic) bind-
ing constants K for binding to the individual sites of the macromolecule.

Scheme 1. Macroscopic and microscopic binding constants of a macromolecule with
three identical binding sites. The E-form at the left in the lower scheme shows the relative
orientation and the denomination of the binding sites. The constants are designated
according to the sequence of occupation, the last figure indicating the actual occupation.
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This is demonstrated in Scheme 1 for a macromolecule with three binding
sites. The first binding step has one macroscopic dissociation constant K1�,
but three microscopic dissociation constants, designated as K1, K2, and K3,
according to the numbers of the binding sites 2E1

3. Therefore, one ligand
binding to the macromolecule can choose between three binding sites
and, consequently, three different macromolecule species can be formed.
For the second binding step three forms are also possible, but there are
six ways to obtain these species, accordingly there exist six microscopic dis-
sociation constants (K12 etc.). From these three forms three equilibria char-
acterized by three microscopic binding constants (K123 etc.) lead to the one
fully saturated macromolecule form. Obviously the complete binding pro-
cess is described by three macroscopic and twelve microscopic dissociation
constants (Scheme 1). The relationship between both types of constants can
be established by applying the respective mass action laws. The macroscopic
dissociation constant of the first binding step is defined as:

K 	1 �
�E�A
�EA �

�E�A
�EA � �AE � �EA �

The microscopic binding constants are used to replace the individual mac-
romolecule forms

K1 � �E�A�EA � �EA � �E�A
K1

K2 � �E�A�AE � �AE � �E�A
K2

K3 � �E�A�EA � �EA � �E�AK3

K 	1 �
1

1
K1
� 1

K2
� 1

K3

�

If the three binding sites are identical, the microscopic constants can be
equalized, K1 = K2 = K3 = K, and both types of constants are related as
K�= K/3.

Correspondingly, the second binding step is:

K 	2 �
�EA�A
�EA2 �

��EA � �AE � �EA��A
�AEA � �EA

A � �AEA

K12 � �E
A�A
�AEA � �AEA � �E

A�A
K12 etc., hence

K 	2 �
K13K21K23 � K12K13K23 � K13K21K32

K13K23 � K12K23 � K13K21 �
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For K12 � K13 � � � � � K results K 	2 � K.

The third binding step is:

K 	3 �
�EA2�A
�EA3 �

��AEA � �EA
A � �AEA��A
�AEA

A
�

K123 � �AEA�A
�AEA

A
� �AEA � K123�AEA

A
�A etc.

For K123 � K132 � � � � � K results K 	3 � 3K.
Even if all microscopic dissociation constants are identical, they differ
from the macroscopic ones and there are differences between each bind-
ing step. The general relationship between both types of dissociation
constants for n binding sites is

K 	d � Kd
i

n� i� 1
� �2�

i representing the respective binding step. Ligands occupying stepwise a
macromolecule with identical sites have � possibilities of orientation, de-
pending on the respective binding step i:

� � n�

�n� i��i� �3�

For the derivation of the general binding equation a saturation function r
is defined as the quotient from the portion of bound ligand to the total
amount of the macromolecule:

r � �Abound

�E0
� �EA � 2�EA2 � 3�EA3 � � � � n�EAn
�E � �EA � �EA2 � �EA3� � � � �EAn � �4�

The concentrations of the individual macromolecule forms are not accessi-
ble experimentally and are replaced by the macroscopic dissociation
constants:

K 	1 �
�E�A
�EA � �EA � �E�A

K 	1

K 	2 �
�EA�A
�EA2 � �EA2 � �EA�A

K 	2
� �E�A

2

K 	1K 	2

K 	3 �
�EA2�A
�EA3 � �EA3 � �EA2�A

K 	3
� �E�A

3

K 	1K 	2K 	3
��
� ��

� ��
�

K 	n �
�EAn�1�A
�EAn � �EAn � �EAn�1�A

K 	n
� �E�An

K 	1K 	2K 	3 � � �K 	n
�
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Thus evolves:

r �
�A
K 	
� 2�A2

K 	1K 	2
� 3�A3

K 	1K 	2K 	3
� � � �

n�An
K 	1K 	2K 	3 � � � K 	n

1� �A
K 	1
� �A

2

K 	1K 	2
� �A3

K 	1K 	2K 	3
� � � �

�An
K 	1K 	2K 	3 � � � K 	n

�

�n

i�1

i�Ai
�i
j�1

K 	j

� �

1�
�n

i�1

�Ai
�i
j�1

K 	j

� �5�

In the case of independent identical binding sites the macroscopic bind-
ing constants of the individual binding steps according to Eq. (2) are re-
placed by a uniform microscopic constant Kd:

r �

�n

i�1

i
�i

j�1

n� j� 1
j

� �
�A
Kd

� �i

1�
�n

i�1

�i

j�1

n� j� 1
j

� �
�A
Kd

� �i
� �6�

The product terms of the numerator and denominator are binomial coeffi-
cients, which can be converted as follows:

n
i

	 

� n�

i��n� i��
� �

�

so that Eq. (6) may be written in the form:

r �

�n

i�1

i
n
i

	 
 �A
Kd

� �i

1�
�n

i�1

n
i

	 
 �A
Kd

� �i
�

Applying the binomial rule, the denominator can be converted as (1+[A]/
Kd)n. For the numerator the derived binomial rule applies:

r �
n
�A
Kd

� �
1� �A

Kd

� �n�1

1� �A
Kd

� �n �

By reduction the already known form of the binding equation (Eq. (1.23))
will be achieved:

r � �Abound

�E0
� n�A

Kd � �A � �7�



Irvin Langmuir developed such an equation in 1916 for the adsorption of gases
to solid surfaces and, therefore, the authorship of this equation is ascribed to
him, although Adrian J. Brown and Victor Henri had already developed a simi-
lar equation in 1900, which was examined in detail by Leonor Michaelis and
Maud Menten in 1913. This Michaelis-Menten equation, already exhibiting some
modifications in comparison to Eq. (1.23), is of general importance for enzyme
kinetics (see Section 2.2.1).

Equation (1.23) describes the relationship between the free and the bound li-
gand. By successive increase of the free ligand a saturation curve will be ob-
tained (Fig. 1.2A), which follows mathematically the function of a right-angle
hyperbola (this will be explained in Section 2.3.1, Box 2.1). At extremely high
concentrations of A ([A]��) Kd in the denominator of Eq. (1.23) can be ig-
nored and the curve approaches n, the number of binding sites. At the position
where the free ligand concentration equals the value of the dissociation
constant, [A] = Kd, r= n/2, according to Eq. (1.23). In this manner the Kd value
can be determined from half saturation. Thus both the dissociation constant
and the number of binding sites can be obtained from this saturation curve
(Fig. 1.2A).

There exist three, principally equivalent modes of plotting binding data. The
amount of bound ligand [A]bound obtained from the experiment can be plotted
directly against the free ligand concentration [A]. Saturation will be reached at
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Fig. 1.2 Modes of representation of binding data. (A) Direct
plot; (B) semi-logarithmic plot; (C) Scatchard plot; (D) dou-
ble-reciprocal plot; (E) Hanes plot.



n[E]0. It is more convenient to take the saturation function r by division of
[A]bound by [E]0, as discussed already. If r is further divided by n, the function Y
results:

Y � �Abound

n�E0
� �A

Kd � �A � �1�23 a�

In this case the value of the saturation becomes 1. The function Y is used if dif-
ferent mechanisms are compared theoretically (without defining n) or, experi-
mentally, where the portion of bound ligand is not directly known, as in spec-
troscopic titrations (see Section 1.3.2.2).

1.3.2
Graphic Representations of the Binding Equation

1.3.2.1 Direct and Linear Diagrams
Generally binding studies should yield 3 kinds of information:
� The affinity of the macromolecule for the ligand, represented by the value of

the dissociation constant Kd.
� The number of binding sites n.
� The respective binding mechanism.

The goal of graphic representations is to obtain this information in a clear, un-
ambiguous manner. There exist different kinds of graphic representations and
it must be decided which will be the most appropriate for the respective experi-
mental data. Usually the data will be represented in a variety of plots because
special aspects will become more obvious in one type than in another, although,
as a rule, missing information cannot be recalled by any representation.

The direct representation of binding data has already been discussed
(Fig. 1.2A). This is always recommended as a primary step, since the data suffer
no distortion, especially with respect to the error distribution, due to recalcula-
tions, as in linear diagrams. A difficulty is the treatment of saturation, which is
mostly underestimated, as saturation is actually reached at infinity. It must be
considered that experimentally a continuous curve is not obtained, rather, a scat-
tering set of data points. Thus determination of n, and also of Kd, depending on
half saturation, may become difficult. Non-linear regression analysis improves
the analysis.

Besides the problems of determination of the constants, the detection of pos-
sible alternative binding mechanisms (which will be discussed later) is more dif-
ficult with the direct, non-linear plot, because weak deviations from the normal
function will easily be hidden behind the data scatter. Linear representations
partly avoid such disadvantages but they reveal other limitations.

An alternative non-linear representation is the semi-logarithmic plotting of the
saturation function r against log [A]. This diagram is recommended especially
when larger concentration ranges are covered, which cannot be resolved complete-
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ly in the direct plot. Sigmoidal curves are obtained in the semi-logarithmic repre-
sentation (Fig. 1.2B) and the logarithm of Kd is obtained from half saturation.

The similarity of the binding equation with the Michaelis-Menten equation
holds also for the linearization methods, which will be discussed in detail in
Section 2.3.1. Accordingly, there exist three simple linear transformations of the
equations. One is the double-reciprocal plot, ascribed to Klotz (1946) (although he
was not the original author; moreover, equivalent plots are designated differently
for binding and kinetic treatments as will be discussed in Section 2.3.1.3). The
reverse form of Eq. (1.23) is:

1
r
� 1

n
� Kd

n�A � �1�25�

Plotting 1/r against 1/[A] should result in a straight line, intercepting the ordi-
nate at 1/n and the abscissa at –1/Kd. Therefore, both constants can easily be
obtained by extrapolation (Fig. 1.2 D). Alternative mechanisms show characteris-
tic deviations from linearity. The double-reciprocal plot has the advantage of
separation of the variables (in contrast to the other two linear diagrams), how-
ever, due to the reciprocal entry, strong distortions of the error limits result,
being compressed to the high and expanded to the low ligand range. Linear re-
gression is not applicable and especially the determination of n at the ordinate
intercept often becomes dubious with scattering data.

Because n is an important value, the plot of Scatchard (1949) is preferred for
the analysis of binding data. It is derived from Eq. (1.25) by multiplying by rn/
Kd:

r
�A �

n
Kd
� r

Kd
� �1�26�

Plotting r/[A] versus r results in a straight line intersecting the abscissa at n
and the ordinate at n/Kd (Fig. 1.2 C). In this diagram also the error limits do
not remain constant, but increase towards high ligand concentrations, but the
effect is lower than with the double-reciprocal diagram and linear regression is
often applied. Although the variables are not separated, this is the most reliable
linear diagram.

A third diagram is obtained by multiplying Eq. (1.25) by [A]:

�A
r
� �A

n
� Kd

n
� �1�27�

This diagram, known in enzyme kinetics as the Hanes plot, is seldom used for
binding analysis. By plotting [A]/r versus [A], Kd/n follows from the ordinate
and –Kd from the abscissa intercept (Fig. 1.2E). An advantage of this represen-
tation are the nearly constant error limits.
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1.3.2.2 Analysis of Binding Data from Spectroscopic Titrations
Although methods for determination of binding are discussed later (see Chap-
ter 3.4), theoretical aspects of the analysis will be discussed here. Spectroscopic
titrations are convenient methods to study binding processes but the data need
a special treatment as the diagrams discussed so far cannot be applied directly.
The main difference to other binding methods is that the share of the free li-
gand [A] cannot be obtained directly by experiment and also the share of bound
ligand results only as a relative spectral change, not as a molar concentration.
The experimental procedure is usually the addition of increasing amounts of
the ligand to a constant amount of the macromolecule in a photometric cuvette
and the spectral change is recorded in dependence on the ligand concentration.
Only the total amount of the added ligand [A]0 is known, while for a plot as
shown in Fig. 1.2 A the free ligand concentration is required. In principal the
same problem exists in enzyme kinetics where also the total substrate concen-
tration is taken. However, because of the very low (‘catalytic’) enzyme concentra-
tions the amounts of total and free ligand can be equated. This is not possible
with binding measurements, where the macromolecule will be present in high
concentrations to produce a detectable signal. Therefore, direct representation of
the spectral change against [A]0, as obtained from the experiment (titration
curve), cannot be evaluated as discussed in Section 1.3.2.1 with Kd at half satura-
tion. There exist different approaches to the evaluation of such titration curves,
one of them, the Dixon plot, will be discussed in Section 2.3.1.1.

For direct evaluation of titration curves it can be assumed that in the low con-
centration range of the ligand for [A]0 < [E]0 nearly all ligand added will bind to
the macromolecule, thus [A]0� [A]bound and no free ligand appears. Under these
conditions a linear relation between the added ligand and [A]bound will occur, dis-
cernible by a linear increase in the spectral signal in the low ligand range. A tangent
at this part of the titration curve represents the share of the bound ligand through-
out (Fig. 1.3 A). At higher ligand concentration only part of the ligand will bind and
the remaining free ligand causes deviation of the saturation curve from the initial
tangent. The spectral signal still increases upon further addition of ligand as long as
free binding sites are available, but the increase will cease when all sites become
occupied. Now the saturation curve tends to a saturation plateau, which can be in-
dicated by an asymptotic line (also here it must be considered that saturation occurs
actually at infinity). The optical signal at the position of the asymptotic line corre-
sponds to the amount of ligand bound at saturation, and thus to all available binding
sites n[E]0. The concentration of n[E]0 can be obtained directly from the abscissa
coordinate of the intersection point of both the initial tangent and the asymptote
(see Fig. 1.3A). The relative values of the optical signal at the ordinate can be con-
verted to Y values, setting the saturation equal to Y = 1. The total amount of ligand
[A]0 is the sum of free and bound ligand. Both shares can be obtained directly by a
parallel line to the abscissa at any point of the curve. The distance from the ordinate
axes to the tangent (abscissa coordinate) is [A]bound and that from there to the titra-
tion curve is [A]. In this manner all measured data can be converted into these two
values, with the exception of the points in the low ligand range, which are used for
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aligning the tangent. With the knowledge of [A]bound and [A], the conventional dia-
grams described in Section 1.3.2.1 and the respective evaluation of the constants can
be performed. The severe disadvantage of this procedure is that it depends essen-
tially on the alignment of the tangent. If there is a larger scatter, or if the assumption
that at low ligand concentrations all ligand will be bound is not valid, the alignment
will become incorrect. This is especially the case with low affinity binding, where
there is a tendency to align the tangent too flat. Principally, the higher the affinity,
the more the experimental curve approaches the two asymptotic lines, both these
lines represent the case of infinite high affinity.

To circumvent the uncertainty of the initial tangent, the titration curve can be
directly linearized according to a procedure suggested by Stockell (1959), where
the free ligand concentration in Eq. (1.23) is replaced by [A]0. The spectral signal
is converted into values for Y, saturation being defined as Y = 1. To derive a linear
relationship r = nY = n[EA]/[E]0 is inserted into Eq. (1.25), and [A]bound = n[EA]:

1

Y
� 1� Kd

�A0 � n�EA � 1� Kd

�A0 � nY �E0
�

Transformation to

�A0
Y
� �A0 � n�E0�1� Y� � Kd

results in:

�A0
�E0Y

� Kd

�E0�1� Y� � n � �1�28�

In this diagram (Fig. 1.3B) a straight line should result and n and Kd can be ob-
tained from the ordinate and abscissa intercepts, respectively. There still re-
mains the uncertainty of the saturation asymptote, which is required for the def-
inition of Y = 1. Therefore, the measurements must be extended far into the
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Fig. 1.3 Evaluation of spectroscopic titrations. (A) Direct plotting, (B) Stockell plot.



saturation range. This plot is very sensitive even for weak deviations from the
theoretical function and a wrong saturation value may distort the whole curve.
For this reason the Stockell plot is more difficult to interpret compared with the
direct linearization methods of the binding equation in the case of alternative
mechanisms or artificial influences.

For the evaluation procedure of Job (1928) the total concentrations of ligand and
macromolecule are kept constant and only the molar proportions of both compo-
nents are altered. X is the mol fraction of the macromolecule and Y that of the li-
gand, X + Y = 1. This is plotted against [A]bound, determined, for example, by an op-
tical signal or the enzyme activity. A curve results as shown in Fig. 1.4 and tangents
are aligned at the positions X = 0 and Y = 0. Their common intercept has the value:

Yi

Xi
� Kd � nc0

Kd � c0
� �1�29�

Xi and Yi are the mol fractions of macromolecule and ligand at the intercept,
c0 = [E]0 + [A]0 is the (constant) sum of the total concentrations of macromolecule
and ligand. For c0�Kd then Xi/Yi = n. Here the stoichiometry of the binding can
be taken from the ratios of the mol fractions at the tangent intercept. For
c0�Kd then Xi/Yi = 1, the curve takes a symmetrical shape and the intercept al-
ways has the value 1, irrespective of the actual number of binding sites. This is
a disadvantage of the Job plot. It can be circumvented as long as the sum of the
macromolecule and ligand concentrations is higher than the value of the disso-
ciation constant. If n is known, Kd can be calculated from Eq. (1.29), whereby
the condition c0�Kd should be regarded. Kd can also be obtained from the
maximum of the curve in Fig. 1.4 according to

Kd � ��n� �� n�2c0

4�n
� �1�30�

Here � represents the ratio of the actual measured value at the maximum, Mm,
to the saturation value, M�.
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1.3.3
Binding of Different Ligands, Competition

Due to the high binding specificity of proteins and especially of enzymes, usual-
ly only the physiological ligand or the enzyme substrate will be able to bind,
while all other metabolites will be excluded. However, this selection cannot be
absolute and compounds with high structural homology to the ligand may also
be accepted. Knowing the configuration of the binding site or the active center
such analogs can be designed and may, sometimes, bind even with higher affin-
ity than the natural ligand. Such analogs may induce similar effects as the li-
gand, but mostly they are inactive and block the binding site for the native li-
gand, preventing its action and revealing an antagonistic effect. This competition
for a distinct binding site of two or more compounds is a valuable tool to inves-
tigate specific binding, the action of drugs depends frequently on the antagonis-
tic effect (e.g. �-receptor blocker). Competition is also a valuable tool in cases
where binding of the ligand is difficult to detect, e.g. because of the lack of a
measurable signal. In such cases a detectable second, e.g. fluorescent-labeled, li-
gand is applied. At first the binding characteristic and the dissociation constant
of the labeled ligand is determined, thereafter the measurements are repeated
in the presence of constant amounts of the unlabeled ligand and the dissocia-
tion constant for this ligand is obtained as described in the following.

The competition can be described by the scheme:

The binding affinities are expressed by the dissociation constants KA and KB for
both compounds:

KA � �E�A�EA and KB � �E�B�EB �1�31 a�

The total amount of the macromolecule is

�E0 � �E � �EA � �EB � �

[E] and [EB] are replaced by KA and KB in Eq. (1.31a):

�E0 �
KA�EA
�A 1� �B

KB

� �
� �EA �
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By conversion the following expression for [EA] is obtained:

�EA � �E0�A
�A � KA 1� �B

KB

� � �

For a macromolecule with n binding sites Eq. (1.32) results, as discussed al-
ready for Eq. (1.23):

r � n�A
�A � KA 1� �B

KB

� � � �1�32�

The double-reciprocal relationship is:

1
r
� 1

n
� KA

n�A 1� �B
KB

� �
�1�33�

and the Scatchard equation:

r
�A �

n

KA 1� �B
KB

� �� r

KA 1� �B
KB

� � � �1�34�

Compared with the general binding equation there are now two variable con-
centration terms, but as long as one of them (e.g. B) remains constant and only
A is altered, the term within the brackets will also remain constant and the be-
havior corresponds essentially to the general binding equation with a hyperbolic
curve (Fig. 1.5A). The only difference is that the value of KA is increased by the
value of the term in brackets. If, in a second test series, another concentration
of B is taken (but remains constant during the test series), the resulting curve
will again be modified by a change in the apparent value of KA. In this manner
a series of hyperbolic curves are obtained. All can be linearized in the double-re-
ciprocal plot (Fig. 1.5 B), the Scatchard plot (Fig. 1.5C) and the Hanes plot
(Fig. 1.5D). The pattern of the lines is remarkable, with a common ordinate in-
tercept in the double-reciprocal diagram, a joint abscissa intercept in the Scatch-
ard plot and parallel lines in the Hanes plot. These patterns can be taken as in-
dicative of a competition mechanism.

While the dissociation constant KA for the first ligand can be obtained as al-
ready described in the absence of B, the constant for B, KB, can be derived e.g.
from the abscissa intercept KA(1 + [A]KB) in the double-reciprocal diagram from
a knowledge of KA.

Further procedures for the analysis of competition data are described in Sec-
tion 2.5.3.3. It must, however, be considered, that, unlike with enzyme kinetic
studies, competition is not always unequivocal and can easily be mixed up with
the non-competitive mechanism, as is described in the following section.
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1.3.4
Non-competitive Binding

A non-competitive binding mechanism exists if the second ligand induces the
binding of the first one, but does not exclude its binding. While for competition
it is assumed that both ligands bind to the same site, in the non-competitive
mechanism both occupy different sites, which both influence one another, e.g.
because of steric or electrostatic interactions.

Therefore the constants for binding to the free macromolecule, KA and KB, differ
from those for the macromolecule occupied already with one ligand, K 	A and K 	B:
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Fig. 1.5 Competition of a ligand for the same binding site.
The concentration of ligand A is altered with ligand B at
various, but constant amounts. (A) Direct plot, (B) double-
reciprocal plot, (C) Scatchard plot, (D) Hanes plot.
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K 	A �
�EB�A
�EAB and K 	B �

�EA�B
�EAB � �1�31 b�

and, considering also Eq. (1.31 a), they are linked

KA

KB
� K 	A

K 	B
� �1�35�

The total amount of the macromolecule is:

�E0 � �E � �EA � �EB � �EAB

and the individual macromolecule forms can be eliminated by the constants de-
fined in Eqs. (1.31 a,b):

�E0 � �E �
�E�A

KA
� �E�B

KB
� �E�A�B

KAK 	B
�

�E � �E0
1� �A

KA
� �B

KB
� �A�B

KAK 	B

�

The portion of [A]bound is:

�Abound � �EA � �EAB � �E�A
KA
� �E�A�B

KAK 	B
�

�Abound �
�E0�A

KA
1� �B

K 	B

� �

1� �A
KA
� �B

KB
� �A�B

KAK 	B

�

The final equation for the non-competitive binding is obtained by replacing
[A]bound by r = [A]bound/[E]0, assuming n binding sites and multiplying by KA:

r �
n�A 1� �B

K 	B

� �

KA 1� �B
KB

� �
� �A 1� �B

K 	B

� � � �1�36�

It is obvious that the equation will reduce to the normal binding equation if
KB = K 	B (and, consequently KA = K 	A), i.e. if there is no mutual interaction be-
tween both ligands. Transformation into the double-reciprocal form yields:

1 Multiple Equilibria28



1
r
� 1

n
�

KA 1� �B
KB

� �

n�A 1� �B
K 	B

� �	 � �1�37�

This will give a pattern of straight lines with a joint ordinate intercept, as
shown in Fig. 1.5B. Accordingly, the Scatchard plot

r
�A � n

1� �B
K 	B

� �

KA 1� �B
KB

� �� r
1� �B

K 	B

� �

KA 1� �B
KB

� � �1�38�

will yield a pattern of straight lines as shown in Fig. 1.5C (the same situation
holds also for the Hanes plot, Fig. 1.5 D). Obviously both competitive and non-
competitive binding are indistinguishable by graphic analysis, and this is a ser-
ious source of misinterpretation, the more so, as both corresponding mecha-
nisms in enzyme kinetics are readily distinguishable by graphic analysis (see
Section 2.5.3.2). The reason for this discrepancy may not be immediately clear.
In enzyme kinetics there is a similar situation with the partially competitive in-
hibition, which yields just the same pattern in linearized diagrams as the com-
petitive mechanism (Section 2.5.3.7) and, in fact, non-competitive binding must
be regarded as analogous to this and not to the non-competitive inhibition. This
discrepancy arises because in non-competitive inhibition only the enzyme sub-
strate complex [EA] is enzymatic active, while the complex with both substrate
and inhibitor bound [EAI] is inactive. In contrast, with partially competitive in-
hibition both complexes are assumed to be equally active. This is just the situa-
tion in binding experiments, where the share of ligand A actually bound to the
macromolecule will be determined by experiment which will not differentiate
between [EA] and [EAB], regarding both as equally active. To avoid this misinter-
pretation, there exists a simple control. Plotting the slopes of the straight lines
of the double-reciprocal diagrams against the concentration of the second li-
gand, B, must yield a straight line (with –KB as abscissa intercept) for competi-
tive binding, but for non-competitive binding there is a deviation from linearity.
Such secondary diagrams can also be derived from the Scatchard and the Hanes
representations and are discussed in more detail in Section 2.5.3.2.

1.4
Macromolecules with Non-identical, Independent Binding Sites

Various enzymes, membrane receptors and other macromolecules possess dif-
ferent binding sites for the same ligand. They may be located at the same sub-
unit, but more often they are an indication of the presence of non-identical sub-
units. An example is the bacterial tryptophan synthase, consisting of two types
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of subunits (�� �), each binding indole as the intermediate of the enzyme reac-
tion. Because the enzyme has the structure �2�2, binding both to identical and
non-identical sites occurs at the same time. Identical sites are called binding
classes and one macromolecule can possess several (m) binding classes, each
with several identical binding sites (n1, n2, n3 . . .).

Obviously, a ligand binding to such a macromolecule will occupy the site with
the highest affinity first, followed by occupation of the lower affinity sites,
which require higher ligand concentrations. Assuming independent binding,
each binding class will be saturated according to the general binding equation
(Eq. (1.23)), so that the total binding process will be the sum of the individual
saturation functions for each binding class:

r � n1�A
Kd1 � �A �

n2�A
Kd2 � �A � � � �

nm�A
Kdm � �A � �1�39�

Kd1, Kd2 etc. are the dissociation constants of the individual binding classes.
Each binding process follows a normal hyperbolic binding curve and the result-
ing function is a superposition of different hyperbolae (Fig. 1.6 A). It shows a
steep increase in the low concentration range of the ligand, where the high af-
finity site becomes occupied. At higher ligand concentrations, when this site be-
comes saturated, the low affinity sites will be occupied, resulting in a further,
but smoother, rise of the curve. Although the curve does not have a pure hyper-
bolic shape, the deviation is difficult to recognize, especially with scattered data
points; linearized plots are superior because they show characteristic deviations
from linearity. Figures 1.6 B–D show the individual (linear) curves for a high
and a low affinity site and the resulting composed function in the double-reci-
procal, the Scatchard and the Hanes diagram, respectively.

It is easier to create a composed function from the partial functions than to
resolve the individual functions for the separate binding sites from a composed
function obtained by experimental results. There are several unknown values to
be determined, such as the number of binding classes involved, the number of
identical sites per binding class and the values of the dissociation constants and
it is impossible to get all the information from one curve. As can be seen from
Fig. 1.6, the individual functions are not merely the asymptotes to the extreme
ranges of the resulting curve, although it may be assumed that at very low and very
high ligand concentrations the high and low affinity sites, respectively, will be oc-
cupied preferentially. The Scatchard plot can be analysed by using the graphic
method of Rosenthal (1967) (Fig. 1.7). The resulting curve may be considered to
be composed of two straight lines, the slopes of which are initially taken from both
end parts of the resulting curve and are moved in a parallel manner so that the
sum of their ordinate intercepts corresponds to the ordinate intercept of the result-
ing curve. Lines drawn through the coordinate origin meet the resulting curve at a
point P. Its coordinates are the sums of the coordinates of the respective intersec-
tion points of the individual curves, as described for Fig. 1.7. For an appropriate
evaluation a computer analysis is strongly recommended (Weder et al. 1976).
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Fig. 1.6 Binding of a ligand to two binding classes of different
affinity. The individual curves for the high and the low affinity
site, and the resulting curve are shown. (A) Direct plotting,
(B) double-reciprocal plot, (C) Scatchard plot, (D) Hanes plot.

Fig. 1.7 Graphic analysis of a binding curve
with two binding classes according to Ro-
senthal (1967). 1 and 2 are the lines of the
separate binding classes. A straight line is
drawn from the coordinate origin with the
slope 1/[A], intersecting the individual lines

at P1 and P2 and the resulting curve at P.
The sum of the coordinates [A]bound/
([A]bound/[A]) of the individual intersection
points must yield the coordinates of the re-
sulting curve, otherwise, the position of the
individual lines must be changed.



Nevertheless, the analysis of such binding curves has only indicative character. On
the one hand there is no essential difference in the resulting curves with two or
with more binding classes and, on the other hand, there are also other binding
mechanisms, showing similar curves, like negative cooperativity and half-of-the-
sites-reactivity (see Section 1.5.6) or isoenzymes. Determination of the number
and identity of the subunits of the macromolecule by other methods, like molec-
ular mass determination, should be undertaken in parallel.

1.5
Macromolecules with Identical, Interacting Binding Sites, Cooperativity

1.5.1
The Hill Equation

About one hundred years ago it was observed the binding of oxygen to hemo-
globin does not follow a hyperbolic saturation function, according to the bind-
ing equation, but has a characteristic S- or sigmoidal shape (Bohr 1904). Re-
markably, the closely related myoglobin behaves quite normally (Fig. 1.8). Since
this time this atypical behavior of hemoglobin has challenged a large number
of scientists to derive theoretical approaches and to develop fundamental tech-
niques, like X-ray crystallography of proteins and methods for the detection of
fast reactions. No other biological compound has inspired the development of
biochemistry so much as hemoglobin. This atypical saturation behavior ac-
quired even more interest when similar curves were found with enzymes occu-
pying key positions in the metabolism. It became obvious that an important
regulatory principle of the cell is hidden behind this phenomenon.

1 Multiple Equilibria32

Fig. 1.8 Oxygen saturation curves for myoglobin and hemo-
globin (according to M.F. Perutz, Sci. Am. 1978, 239(6), 68–86).



Archibald Vivian Hill undertook, in 1910, a first attempt to explain this atypical
behavior. He suggested that not only one but several (n) oxygen molecules bind
simultaneously to the hemoglobin molecule:

E� nA � EAn � �1�40�

The dissociation constant according to the mass action law is defined as:

Kd � �E�A
n

�EAn �1�41�

and in analogy to Eq. (1.23) a binding equation can be derived for this mecha-
nism, replacing [A] by [A]n:

r � n�An
Kd � �An � �1�42�

This Hill equation indeed yields sigmoidal saturation curves. It was the intention
of Hill to determine the number of oxygen molecules, n, actually binding to he-
moglobin. This can be achieved by linearization of Eq. (1.42), replacing r by
Y = r/n (the number 1 in the expression Y/(1–Y) has the significance of the sat-
uration value):

Y

1� Y
� �A

n

Kd
�

In a logarithmic form the power n enters into the slope:

log
Y

1� Y
� n � log�A � log Kd �1�43�

if the left term is plotted against log [A] (Fig. 1.9). Presupposing the validity of
Eq. (1.43) a straight line should be expected and the number, n, of oxygen mole-
cules bound to hemoglobin should be derived directly from the slope. However,
the function obtained from the experimental data looks quite different. Instead
of a linear dependence a characteristic three-phase behavior is revealed, starting
from a slope of exactly 1 at low ligand concentrations, increasing to a maximum
slope for the hemoglobin saturation curve of n= 2.8, and thereafter decreasing
again to 1 near saturation of [A]. Obviously, the function obtained deviates in
two essential respects from the prediction of Eq. (1.43), the missing linearity
and a slope lower than the expected value for the 4 subunits. It must be empha-
sized that this three-phase shape is not a special feature of hemoglobin but is
observed with all enzymes showing sigmoidal saturation behavior. As can be
easily seen, Eq. (1.43) becomes the normal binding Eq. (1.23) for n = 1, and for
this the Hill plot will indeed yield a straight line with a slope of exactly one.
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Thus, the observed saturation behavior for sigmoidal curves appears to be a
transition from two different, normal binding states at low and high ligand con-
centrations, respectively. This cannot be explained by the Hill equation and to-
gether with the wrong prediction of the number of binding sites n this equation
may be regarded as useless. It is in fact not useful for describing sigmoidal sat-
uration behavior, however, the diagram derived from this equation, still known
as the Hill plot, proved to be a good graphic representation for any type of devia-
tion from normal saturation behavior, as will be discussed later. It can also be
used for the presentation of hyperbolic saturation curves, where both linearity
and a slope of one is an indication of normal binding behavior. The abscissa in-
tercept at half saturation, i.e. for log Y/(1–Y) = 0, is Kd/n and becomes equal to
Kd for n= 1. Nevertheless, there is no real advantage over the other linearized
diagrams to justify the circumstantial conversion of the experimental data.

1.5.2
The Adair Equation

Hill had no knowledge of the real structure of hemoglobin and did not realize
that the number of binding sites was underestimated by applying his equation.
It was 15 years later when G.S. Adair established that hemoglobin actually con-
sists of four subunits and, thus, four oxygen molecules should bind. He derived
an approach for the description of sigmoidal binding behavior, which, although
some modifications have to be considered later, remains valid today in its funda-
mental aspects. He showed that the mechanism suggested by Hill is an over-
simplification. If more than one ligand binds to a macromolecule, inevitably a
consecutive binding process must be assumed. Even at high ligand concentra-
tions binding will be initiated by occupation of one binding site by the first li-
gand, followed by binding of the second one, and so on, until all sites are occu-
pied. This is formulated by the reaction sequence:
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Fig. 1.9 Hill plot for positive and
negative cooperativity. The dotted
tangents to the curves in the lower
and upper ligand ranges have a
slope of 1, corresponding to nor-
mal hyperbolic binding. The Hill
coefficient nh is the slope of the
dashed tangents to the maximum
deviation.



E + A � EA�

EA + A � EA2�

EA2 + A � EA3�
: : :

EAn–1 + A � EAn�

The sum of this reaction sequence:

E + nA � EAn�

is identical with Scheme (1.40) from which Hill derived his equation. In fact he
ignored intermediate binding steps and allowed only simultaneous binding of
all ligands. Binding of single ligands is strictly forbidden by this mechanism
and it remains to be explained how a macromolecule will manage to avoid bind-
ing of individual ligands and allow only occupation of all sites at the same time.
Comparable processes can be imagined for crystallization and polymerization
reactions. Each chemist knows from his own experience that crystallization,
even from pure, oversaturated solutions, can require days or weeks or may not
occur at all. However, addition of seed crystals or even scratching at the glass
wall will immediately provoke the formation of crystals in the whole solution.
Similar processes are observed by the formation of fibers, like actin and myosin,
from their subunits, where also the first aggregation step is strongly disfavored.
For a macromolecule with several binding sites, it must be assumed that their
affinity for the ligand is negligible, but just at the moment when one ligand
binds, all sites acquire a high affinity state and thus the binding of one ligand
entails instantaneous binding of all others. Actually, such exclusive binding is
not very realistic and macromolecules, like haemoglobin, possessing more bind-
ing sites cannot reject the binding of a single ligand molecule. However, this
first binding can strongly favor the binding of the following ligands. Such
mechanisms, which assume that one ligand supports binding of others is called
cooperativity. The Hill equation describes an extremely strong, not very probable,
cooperativity, while the approach of Adair describes this phenomenon on a
more realistic basis.

The derivation of the Adair equation has already been anticipated in Box 1.1
by the derivation of the general binding equation. The saturation function is de-
fined as r, the ratio of the bound ligand [A]bound to the total enzyme [E]0, both
expressed by the different enzyme forms:

r � �Abound

�E0
� �EA � 2�EA2 � 3�EA3 � � � � n�EAn
�E � �EA � �EA2 � �EA3� � � � �EAn � �1�44�

The intermediate enzyme forms are substituted by the macroscopic binding
constants for the individual binding steps i.
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In contrast to the general binding equation, the individual binding constants
cannot be replaced by one single common constant and, therefore, the Adair
equation reads:

r �
�A
K 	
� 2�A2

K 	1K 	2
� 3�A3

K 	1K 	2K 	3
� � � �

n�An
K 	1K 	2K 	3 � � � K 	n

1� �A
K 	1
� �A

2

K 	1K 	2
� �A3
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� � � �

�An
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i�Ai
�i
j�1

K 	j

� �

1�
�n

i�1

�Ai
�i
j�1

K 	j

� �1�45�

Since now every binding step gets its individual binding constant, the change
in the affinity from the first to the following binding steps can easily be demon-
strated. Increasing affinity can be realized by decreasing values for the binding
constants K 	1 � K 	2 � K 	3 � � � Under these conditions sigmoidal saturation curves
are obtained and they show indeed the three-phase behavior in the Hill plot, as
observed by applying real saturation data of hemoglobin with oxygen. Since the
binding constants for each individual step cannot be obtained directly, they
must be estimated and adapted until the theoretical curve fits the experimental
data satisfactorily. The maximum steepness of the curve depends on the ratio of
the individual constants, the more they differ, especially the higher the differ-
ence between the first and the last constant, the steeper the maximum slope. It
can be seen that in any case the maximum slope ranges between 1 and n, the
number of individual binding steps (usually identical with the number of bind-
ing sites, respectively, of identical subunits of the macromolecule). However, n
cannot be surpassed by any combination of the constants. The maximum slope
approaches n the higher the difference between the constants, while it ap-
proaches 1 the more the constants became equal to one another. From this con-
sideration the value of 2.8 for oxygen binding to hemoglobin can be understood.
The first oxygen raises the affinity for the following ones. If this rise is extreme-
ly strong, a value of 4 would be expected, corresponding to the four binding
sites. In the case of only a moderate rise, a value between 1 and n will be ob-
tained. So the maximum slope in the Hill plot is a measure of the cooperativity
between the sites, a value near 1 meaning low cooperativity and a value near n
high cooperativity. Different from the original assumption of Hill, the maxi-
mum slope indicates not the number of ligands bound or of binding sites on
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the macromolecule, but is a measure of cooperativity, the knowledge of binding
sites being presupposed. To differentiate from n, the number of identical bind-
ing sites, the maximum slope in the Hill plot is designated as nh (or h).
Although nh does not indicate the actual number of binding sites, it gives a hint
for their minimum number, since 1 < nh < n. For example, the value of nh = 2.8
found for hemoglobin shows that this macromolecule must be composed of at
least 3 identical subunits (n can only be an integer).

A comment should be made about the significance of n: it stands for the
number of identical binding sites, identical meaning of equal affinity, character-
ized by equal dissociation constants. If they are different, deviations as dis-
cussed in Section 1.4 will be obtained. However, no presupposition is made as
to whether these binding sites are localized on one single subunit or protein
chain (e.g. generated by gene duplication) or on separated subunits, nor there is
any presupposition as to whether these separate subunits must be identical or
can be different. Obviously identical subunits possess identical binding sites,
while even apparently identical sites localized at the same polypeptide chain can
differ in their binding constants, due to dissimilar constraints of the protein
molecule. Therefore, identical binding sites are usually assumed to be located
on identical subunits and n stands both for identical binding sites and identical
subunits, although this must be taken with caution. Regarding hemoglobin, it
consists of non-identical (�2�2) subunits, which is so far consistent with this
consideration, as the binding constants can be taken as identical.

Although the Adair equation, in contrast to the Hill equation, is able to de-
scribe formally the experimental binding curves, it remains unsatisfactory as it
is not based on a plausible binding mechanism. The Adair mechanism assumes
that the binding steps, and not the binding sites of the macromolecule, differ in
their affinity. In the absence of ligand all binding sites are regarded to be equal,
and each binding step produces a defined change in the affinities of the still un-
occupied binding sites. Consequently, the binding site of the macromolecule
which becomes occupied last has to change its affinity n times, from K 	1 to K 	4
although it is not involved in the preceding binding steps. It is a theoretical
mechanism, giving no explanation of how these affinity changes are achieved.

1.5.3
The Pauling Model

The first plausible description of cooperative phenomena was proposed in 1935
by Linus Pauling. He considered the macromolecule to consist of identical bind-
ing sites with an uniform binding constant Kd. He further assumed that the
subunit occupied by a ligand confers a stabilizing effect on the unoccupied sub-
units enhancing their affinities, expressed by an interaction factor �. Consider-
ing the statistical factors described in Box 1.1, Eq. (2), the following constants
can be ascribed to each individual binding step:
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Entering these constants into the Adair equation, the following binding function
results:

r �
4�A
Kd
� 12��A2

K2
d

� 12�3�A3
K3

d

� 4�6�A4
K4

d

1� 4�A
Kd
� 6��A2

K2
d

� 4�3�A3
K3

d

� �6�A4
K4

d

� �1�46�

Although this relationship is simpler than the Adair equation it gives an intui-
tive description of the sigmoidal binding mechanism.

1.5.4
Allosteric Enzymes

The first attempts to explain the sigmoidal binding behavior concentrated on
the immediate effect of oxygen on hemoglobin. Subsequently, it became obvious
that this atypical binding behavior is not restricted to hemoglobin alone, but is
a feature of numerous key enzymes and that it concerns not only one single li-
gand like oxygen or an enzyme substrate, but it can be influenced by other li-
gands, called effectors. For distinction the direct effects of the single ligand are
denoted as homotropic effects, while influences from effectors are called heterotop-
ic effects. These influences can either be positive or negative and the respective
effector acts, correspondingly, as activator or inhibitior. The effectors act not by
direct interaction with the first ligand, e.g. by displacement from its binding site
(competition), rather they occupy a spatially separate binding site. This is called
an allosteric center from the Greek words ����� for different and 	
����� for ri-
gid. Accordingly, enzymes showing these features are called allosteric enzymes.
The separate allosteric center permits the regulation of the enzyme by metabo-
lites, which are completely different from the physiological ligands of the en-
zyme, like substrates, cofactors or coenzymes. An important regulatory principle
is the feedback inhibition. Metabolic pathways are frequently controlled by their
end products, which inhibit the first step of the pathway, so that intermediates
will not accumulate. The final product of the pathway is quite different from
the substrate or product of the enzyme catalyzing the initial step and will be
not recognized by its catalytic site. Therefore it binds to an allosteric center,
from which it influences, e.g. by conformational change, the catalytic efficiency
of the enzyme. It had been observed that allosteric effectors confer a characteris-
tic influence on the sigmoidal saturation function of the substrate. Inhibitors,
although reducing the catalytic efficiency, increase the homotropic effect by inten-
sifying the sigmoidal shape of the saturation curve, while activators raise the
catalytic efficiency by weakening the homotropic effect, converting the sigmoidal
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shape of the saturation curve into a hyperbolic one. Theoretical approaches to
explain cooperative effects with enzymes and related proteins must, therefore,
also include heterotropic effects. It should be stressed, that cooperativity, i.e. in-
crease of affinity of the same ligand upon consecutive binding and allostery, i.e.
binding to spatially separated sites, are principally two independent phenomena,
which may also occur separately in distinct enzymes. It is, however, an empiri-
cal observation that both features are usually combined in the same enzyme or
protein system, since they both supplement one another and the regulatory
power can be fully expressed only by combination of both phenomena. There-
fore, it is justified to understand allosteric enzymes as a notation for enzymes
revealing both cooperativity and allostery. Allostery is observed with various
enzymes, but also with several non-enzyme proteins, like hemoglobin or the
acetylcholine receptor and, therefore, in the following no differentiation is made
between enzymes and proteins.

1.5.5
The Symmetry or Concerted Model

In 1965 Jacques Monod, Jeffries Wyman and Jean-Pierre Changeux presented
the first comprehensive model for the description of allosteric enzymes in the
publication On the Nature of Allosteric Transition: A Plausible Model. It became a
guideline for the better understanding of regulatory mechanisms on enzymes.
This concerted or symmetry model is based on certain presuppositions (see
Fig. 1.10) which were deduced from observations made with hemoglobin and
several allosteric enzymes:
1. An allosteric system is an oligomer composed of a defined number, n, of

identical units (protomers). The protomer can either consist of a single sub-
unit (polypeptide chain) or be composed of several non-identical subunits.

2. Protomers occupy equal positions in the macromolecule, there exists at least
one symmetry axis.

3. The enzyme can accept at least two states of conformation termed T (tense)
and R (relaxed), which differ in their energy potential. In the absence of
ligand the transition from one into the other state occurs spontaneously, L
being the equilibrium constant between both states:

L � �T0�R0
� �1�47�

4. The molecular symmetry is preserved during the transition from one enzyme
form to the other. At the same time all subunits of an enzyme molecule exist
either in the T- or the R-state, intermediate forms with protomers in different
conformations are excluded.

5. Both enzyme forms differ in their affinity for the ligand, T being the low
affinity (or less active) and R the high affinity (or fully active) enzyme form,
the ratio c of the dissociation constants for both forms is correspondingly:
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c � KR

KT
	 1 � �1�48�

6. In the absence of ligand the equilibrium L is in favor of the low affinity form
T, i.e. L > 1.

The binding of the ligand to the two enzyme forms is described by the equili-
bria:

T � R

T � A � TA R � A � RA

TA � A � TA2 RA � A � RA2

TA2 � A � TA3 RA2 � A � RA3

��
� ��

�

TAn�1 � A � TAn RAn�1 � A � RAn �

The individual enzyme forms can be replaced by microscopic binding constants,
which are assumed to be identical for all protomers in the same conformation:
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Fig. 1.10 Schematic representation of the con-
formational states and the fractional saturation
of a tetramer macromolecule according to the
symmetry model.



�TA � �Tn �A
KT

�RA � �Rn �A
KR

�TA2 � �TA �n� 1��A
2KT

�RA2 � �RA �n� 1��A
2KR

��
� ��

�

�TAn � �TAn�1 �AnKT
�RAn � �RAn�1 �AnKR

�

From the fraction of the binding sites occupied by ligand

Y � 1
n
� ��TA � 2�TA2 � � � � n�TAn� � ��RA � 2�RA2 � � � � n�RAn�
��T0 � �TA � �TA2 � � � � �TAn� � ��R0 � �RA � �RA2 � � � � �RAn�

�1�49�
the general saturation function for the symmetry model is obtained, replacing �

for [A]/KR, the ligand concentration, reduced by its dissociation constant:

Y � Lc��1� c��n�1 � ��1� ��n�1

L�1� c��n � �1� ��n � �1�50�

Sigmoidal saturation curves are obtained when all three preconditions: L > 1, c < 1
and n> 1 are fulfilled simultaneously. If only one fails, c or n becoming 1 or L ap-
proaching to low values, Eq. (1.50) reduces to the general binding equation:

Y � �

1� �
� �A

KR � �A � �1�23�

Conversely, the cooperativity, or the sigmoidicity, of the saturation curve be-
comes more intense, the more these preconditions are fulfilled, i.e. the larger L
and n and the smaller c. In the direct non-linear plot (Fig. 1.11 A) such changes
are less detectable, while the linear plots show characteristic deviations from a
straight line. In the double-reciprocal plot (Fig. 1.11B) the curve deviates to-
wards the upper right, in the Hanes plot (Fig. 1.11D) to the upper left, and in
the Scatchard plot (Fig. 1.11 C) a maximum is passed. Further information
about the cooperative systems can be obtained from the Hill plot (Fig. 1.9). As
already mentioned, the curve progresses from a straight line with a slope of 1
at low ligand concentrations through a steeper section in the medium satura-
tion range and returns to a straight line with a slope of 1 in the saturation
range. Both sections with the slope of 1 represent simple binding characteris-
tics, to the T-state in the very low and the R-state in the high saturation range.
The distance between the two straight lines is an indication of the energy differ-
ence between the R- and T-states. The cooperative effect is greatest in the steep-
est area, where the system switches from the low affinity T-state to the high af-
finity R-state. The maximum slope is the Hill coefficient (nh) indicating the
strength of cooperativity (see below).
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The cooperative effect can be illustrated by considering that the first binding li-
gand will find only a few molecules in the high affinity R-state out of a surplus of
non-binding molecules in the T-state. Binding will stabilize the R-state and with-
draw it from the equilibrium. To restore the original equilibrium a molecule from
the T-state will be converted into the R-state. Thus, for the following ligand, four
additional binding sites (assuming n = 4 for this example) are accessible. The num-
ber of accessible binding sites thus increases faster than the ligand concentration
causing a disproportionate increase in binding or activity. This process will pro-
ceed until the pool of molecules in the T-state is depleted and the whole macro-
molecule population is shifted to the R-form. Then cooperative binding changes
to normal binding and the slope in the Hill plot reduces to 1.

The relative size of the Hill coefficient between the limits 1< nh < n is determined
by the values of L and c: the better the conditions L�1 and c�1 are fulfilled, the
more nh will approach the number of protomers n. In no case, however, can n be
surpassed by nh. Conversely, nh cannot fall below 1 with any combination of L and c.
The Hill coefficient thus proves to be a measure of the strength of cooperativity. The
more it approaches the number of protomers, the more pronounced the coopera-
tivity becomes. In the extreme case of nh = n the mechanism defined by the Hill
equation (Eq. (1.42)) applies. In its strict definition the Hill coefficient indicates
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Fig. 1.11 Binding curves of cooperative systems according to
the symmetry model in different representations. (A) Direct
plot, (B) double-reciprocal plot, (C) Scatchard plot, (D) Hanes
plot. No cooperativity: L= c = 1; weak cooperativity: L = 5,
c = 0.1; strong cooperativity: L = 100, c = 0.01.



the reaction order with respect to the varied ligand. According to Eq. (1.40), n should
only be an integer but since the mechanism depends on the strength of subunit–
subunit interactions a fractional reaction order can also exist. The highest possible
reaction order, i.e. maximal cooperativity, is achieved when all binding sites become
simultaneously occupied. Therefore, the Hill coefficient is not a direct measure of
the number of binding sites (or protomers), but ranges between 1 and n (as long as
no other mechanism is responsible for the sigmoidal curve). There exists, however,
no direct proportionality between nh and n. An increase in n is not paralleled by a
similar increase in nh, even for identical values of L and n. In Table 1.1 oxygen-bind-
ing proteins from different organisms are compared with their number of proto-
mers and the observed Hill coefficients. While n increases from 1 to 100 the Hill
coefficient only rises to 6. This follows also from theoretical calculations.

Heterotopic effectors influence the equilibrium of R- and T-states by binding to
allosteric centers. Activators act in the same manner as the cooperative ligand.
They bind preferentially to the R-form and shift the equilibrium in this direc-
tion. L becomes diminished in the presence of the activator, the cooperativity
will be attenuated and the Hill coefficient decreases. Consequently, in the pres-
ence of the activator the macromolecule will persist essentially in the R-state, so
that the original cooperative ligand will find only the active R-state and bind to
this in a quite normal, non-cooperative manner. Conversely, the inhibitor binds
to and stabilises the T-form, increasing L and, subsequently, nh, intensifying the
cooperativity. Larger amounts of ligand are now required to shift the equilib-
rium towards the R-form, revealing an inhibitory effect.

The influence of effectors can be considered in Eq. (1.50) by modifying the
equilibrium constant from L to L�. The meaning of L� is:

L	 � L
1� d�
1� �

� �n

� 1� e
1� 

� �n

� �1�51�

� and  are the concentrations of inhibitor, or activator, reduced by their respec-
tive binding constants KRi and KRa to the R-form; d = KRi/KTi > 1 and e= KRa/KTa

< 1 are the ratios of the binding constants for the R- and T-states of inhibitor
and activator, respectively.
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Table 1.1 Relationship between the number of protomers n
and the Hill coefficient nh with heme proteins from different
organisms (after Wyman 1967)

Protein Source n nh

Myoglobin Mammalian 1 1
Myoglobin Molluscs 2 1.5
Hemoglobin Mammalian 4 2.8
Hemocyanin Lobster 24 4
Chlorocruorin Spirographis �80 5
Erythrocruorin Arenicola >100 6



1.5.6
The Sequential Model and Negative Cooperativity

One year after the postulation of the concerted model D. E. Koshland, G. Nemethy
and D. Filmer (1966) presented an alternative model for allosteric enzymes which
describes the cooperative phenomena and heterotopic effects equally well. The
general prerequisites are comparable, the macromolecule is assumed to be com-
posed of several identical subunits and exists in at least two conformations, differ-
ing in their affinity. The low affinity or inactive T-state (for uniformity the terms
from the concerted model are also applied here) prevails in the absence of ligand,
the high affinity or fully active R-state in the presence of ligand. Kt is the equilib-
rium constant of both enzyme forms in the absence of ligand:

Kt � �T��R� � 1 � �1�52�

There exist two substantial differences from the concerted model. Before postulat-
ing the sequential model Koshland developed the induced-fit hypothesis. It replaced
the previous lock-and-key model of Emil Fischer (1894), which assumed that sub-
strate specificity of enzymes is based on preformed rigid binding regions, into
which only the proper substrate molecule can lock like a key. In comparison with
this theory the induced-fit hypothesis predicted that the binding site would be cre-
ated interactively by enzyme and substrate. Only the actual substrate is able to in-
duce this adaptation. This hypothesis is a fundamental prerequisite for the se-
quential model. Unlike the concerted model, where the ligand is not actively in-
volved in the shift from the T- to the R-state but only selects the form with higher
affinity, the sequential model assumes that conformation transition is induced by
the binding of the ligand. As a second difference from the concerted model a se-
quential transition is assumed, only subunits to which the ligand binds change
into the R-form, all others remain in the T-state. The transition occurs stepwise
in parallel with the saturation of the enzyme (Fig. 1.12).

Cooperativity originates from the interaction between the subunits. The inten-
sity of the interaction depends on the conformational state of the neighboring
subunits and is defined by interaction constants. They indicate the ratio of inter-
acting (e.g. TT) to non-interacting subunits (T, T). As these are relative factors,
the constant KTT for the TT-interactions is defined as 1:

KTT � �T��T��TT�
�TT��T��T� � 1 �1�53�

KRT � �T��R��TT�
�RT��T��T� �

�R��TT�
�RT��T� �1�54�

KRR � �R��R��TT�
�RR��T��T� � �1�55�
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The interactions between the subunits can either be stabilizing (KRT and
KRR < 1) or destabilizing (KRT and KRR > 1).

The saturation function for the sequential model is derived from the general
form of the Adair equation (Eq. (1.45)):

Y � 1
n
�
�A�
�1
	 2�A�2

�2
	 3�A�3

�3
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n�A�n
�n

�0 	 �A�
�1
	 �A�

2

�2
	 �A�

3

�3
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�A�n
�n

� �1�56�

The terms �0, �1 etc. include all constants relevant for the respective binding
step: the constant KR for binding of the ligand to the R-state (binding to the
lower affinity T-state is neglected), the constant Kt for the equilibrium between
the two macromolecule forms, and the substrate concentration [A] considered
in the equation with the power of the respective binding step i. The possible in-
teractions between subunits determine the type of interaction constants to be
considered for each binding step. This is demonstrated in Table 1.2 for the case
of a macromolecule consisting of three identical subunits in a linear arrange-
ment. Although such an arrangement is highly improbable, it is taken as a sim-
ple model to demonstrate the derivation of a rate equation in the sequential
model. By inserting the � links into Eq. (1.56) the following equation results:

Y � 1
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Because this model rests on the respective types of interactions each aggregation
state and each arrangement of subunits needs its own derivation and the above
equation is valid only for the trimeric arrangement. In Fig. 1.13 some aggregation
states and subunit arrangements are depicted. Obviously the number of possible
arrangements increases with the number of subunits, e.g. for a tetramer there exist
three symmetric orientations, linear, square and tetrahedral. This complicates the
treatment of the model. Whereas for the concerted model one single equation can
be applied for any oligomer, for the sequential model not only the number, but also
the respective arrangement of subunits must be known. Furthermore, it must be
considered that with higher aggregates different interactions can occur, even be-
tween identical subunits. For example a hexamer composed of two trimers will
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Fig. 1.12 Schematic representation of the conformation states
and the fractional saturation of a tetrametric macromolecule
according to the sequential model.



possess other interactions within the trimer structure (Fig. 1.13, horizontal arrow),
than those between the contact regions of the two trimers (Fig. 1.13, vertical ar-
row). For each type of contact site individual interaction constants must be defined.

Such complications render the application of the model more difficult and also
the interaction constants are usually not accessible and must be estimated. How-
ever, the significance of both models rests not in their relative ease of treatment,
but on their ability to gain a better understanding of regulatory mechanisms for
which both models provide a clear conceptual basis. More information on the ex-
istence of one of these models for a distinct enzyme or protein requires detailed
structural and conformational studies. One indication for the prevalence of one
of the two models can be the relative position of the cooperative area (i.e. the max-
imum slope in the Hill plot) within the saturation function. In the sequential
model it coincides exactly with the half-saturation range, in the concerted model
this area shifts with rising n to the lower saturation range.
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Table 1.2 Conformation states and definitions of the �-values
for a trimeric macromolecule with the subunits in a linear ar-
rangement according to the sequential model

Enzyme conformation Interaction constants � values

Free enzyme
TTT KTTKTT = 1 �0 = 1

1st Binding step
TRT KRTKRT = KRT

2 �1 = (KRT
2 + 2KRT)KRKt

TTR+RTT KTTKRT + KRTKTT = 2KRT

2nd Binding step
RTR KRTKRT = KRT

2 �2 = (KRT
2 +2KRTKRR)KR

2 Kt
2

RRT+TRR KRTKRR+KRRKRT = 2KRTKRR

3rd Binding step
RRR KRRKRR =KRR

2 �3 = KRR
2 KR

3 Kt
3

Fig. 1.13 Possible arrangements of
subunits of differently aggregated
macromolecules. Different horizontal
and vertical subunit contacts for the
hexamer are indicated by arrows at
the bottom right.



Heterotopic effects can be explained in the sequential model in a similar
manner as in the concerted model. Allosteric activators reduce the cooperative
effect by inducing the transition from the inactive to the active state like the co-
operative ligand or substrate, while allosteric inhibitors strengthen the coopera-
tive effect by stabilizing the T-state.

A special feature of the sequential model is the fact that interactions need not
be stabilizing, but may also be destabilizing if KTR and KRR are larger than KTT.
The deviation from the normal hyperbolic saturation function is reversed to sig-
moidal curves, rather it resembles that of non-identical independent binding
centers (see Section 1.4), and in the linearized plots corresponding deviations
result (see Fig. 1.6). In the Hill plot, instead of a maximum slope higher than 1
in the cooperative range, a minimum slope less than 1 is obtained. This anti-co-
operative behavior, which is in contrast to normal cooperativity (also termed pos-
itive cooperativity) is defined as negative cooperativity. It is observed in several en-
zymes. The first example was the binding of NAD to glyceraldehyde-3-phos-
phate dehydrogenase and served as evidence for the validity of the sequential
model (Convay and Koshland 1968).

In a strict sense many examples of negative cooperativity actually obey the
mechanism of half-of-the-sites reactivity. The first ligand occupies one site of the
macromolecule and interferes with the binding to the second site by steric or
electrostatic interactions or by covalent reactions, like phosphorylation, so that
occupation of the second, originally identical, site becomes aggravated. Thus
only half of the original binding sites are saturated, the other half remains un-
saturated or requires very high ligand concentrations for saturation. Although
the binding behavior and the respective graphical representations are very simi-
lar it is not a genuine negative cooperativity mediated by interaction of sub-
units. Half-of-the-sites reactivity was observed e.g. with alcohol dehydrogenase,
malate dehydrogenase and alkaline phosphatase (Levitzki and Koshland 1976).

Obviously, evaluation of binding curves which deviate from normal behavior
in a sense like negative cooperativity is difficult because of several alternative ex-
planations, such as half-of-the-sites reactivity, non-identical binding centers, dif-
ferent enzyme forms or isoenzymes. Additional information, especially from
structural studies, is required to differentiate, with regard to negative cooperativ-
ity and half-of-the-sites reactivity, between identical subunits and non-identical
subunits. A negative cooperative mechanism has been reported for many mac-
romolecules like glyceraldehyde-3-phosphate dehydrogenase, CTP-synthetase,
desoxythymidine kinase, receptors and binding of tRNA to ribosomes. The
physiological advantage of negative cooperativity may be the greater insensitivity
to fluctuations in the concentration of metabolites, like substrates or effectors.
Due to the high affinity of the first binding step these systems are already very
active and able to maintain a basic turnover at low substrate levels. A larger in-
crease in the substrate concentrations causes only a small further activity in-
crease, but the system is able to follow substrate variations over a wide range in
a damped mode without reaching early saturation.
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1.5.7
Analysis of Cooperativity

Observation of atypical, i.e. sigmoidal saturation behavior with a distinct system
is a first indication for the prevalence of cooperativity. Since the main mecha-
nisms are based on the change in binding constants (K-systems), for analysis
binding measurements are recommended. Since changes in the substrate affini-
ty influences the enzyme reaction via the Km-value, measurements of enzyme
activity, which are easier to perform, can also yield sigmoidal dependences. Al-
ternatively, the two enzyme conformations can differ in their catalytic activity in-
stead of in their affinity (V-systems). A combination of both binding and kinetic
measurements will give valuable additional information. This holds also for the
action of the effectors, which can also be studied by both techniques. For the
analysis of sigmoidal curves, linearized plots are preferable to direct, non-linear
representations, as deviations from the linear progression are easily detectable
(Fig. 1.11). These curves can be linearized by entering [A]n instead of [A], where
the Hill coefficient nh (indicating the reaction order for [A]) and not the number
of binding sites n must be used. To establish a cooperative mechanism a larger
number of measurements is required than for hyperbolic systems and a broader
concentration range of the ligand has to be covered.

Deviations from normal behavior may, however, have other reasons. Sigmoid-
al saturation curves can be observed in multiple substrate reactions, but artifi-
cial effects can also cause such curves. Enzymes are often unstable in dilute so-
lutions and when a test series is performed from high to low substrate concen-
trations, the rates for the latter experiments may slow down because of this ef-
fect. A further source of error is the underestimation of initial velocities in the
lower substrate range, especially with high amounts of enzyme, as will be dis-
cussed in Section 2.3.2. With high enzyme concentrations the assumption
[A]0 = [A] is also no longer valid, which can also lead to misinterpretation.

As already mentioned an estimation of the strength of cooperativity is the rela-
tionship between the Hill coefficient and the number of binding sites n, with pos-
itive cooperativity nh ranging between 1 and n, and with negative cooperativity
tending to be below 1. In the Hill plot sigmoidal saturation curves usually show
a three phase course, from a straight line with nh = 1 across a steeper region with
a maximum Hill coefficient to again a straight line with nh = 1. Both straight lines
represent the two enzyme states and the distance between both asymptotes multi-
plied by RT

���
2



yields the difference between the free energies for the binding in-
teraction of the first and the last ligand (Fig. 1.9). The respective dissociation
constants for both states can be estimated from the ligand concentration at the po-
sition of half saturation: log {Y��1�Y�}= 0 for Y = 0.5. Since the cooperative range
is the transition area between both states, and this cooperative range is usually at
half saturation of the system, no defined dissociation constant can be obtained.
Nevertheless, as for a given system half saturation is always at a distinct ligand
concentration, a half saturation constant is defined also for cooperative systems,
which is, in contrast to real dissociation constants, termed S0.5.
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Sometimes the Rs-value is taken as a measure of cooperativity. It is defined as
the ratio of ligand concentration at 90% and 10% saturation, for a normal hy-
perbolic saturation curve the Rs-value is always 81. With positive cooperativity,
the curve becomes steeper and the Rs-value decreases with the strength of coop-
erativity, while it increases with negative cooperativity (Table 1.3). The Hill coef-
ficient and the Rs-value are not directly related. The Hill coefficient records co-
operativity at a certain point, i.e. at maximum deviation, while the Rs-value cov-
ers a wider ligand range, but the connection to the number of protomers is lost.
The estimation of the Rs-value is depicted in the semi-logarithmic diagram in
Fig. 1.14, which is especially suited for the plotting of broad ligand concentra-
tion ranges applied with cooperative systems. Because in this plot normal bind-
ing curves also reveal a sigmoidal shape, a distinction can only be made by the
steepness of the curve. The abscissa value of the turning point of the curve at
half-saturation indicates the Kd-value in the case of normal binding behavior, or
the S0.5-value for cooperative systems.

1.5 Macromolecules with Identical, Interacting Binding Sites, Cooperativity 49

Table 1.3 Comparison of the Hill coefficient nh and the Rs-val-
ue (Taketa and Pogell 1965)

nh Rs

0.5 6570
1.0 81
2.0 9
4.0 3

Fig. 1.14 Semi-logarithmic plot of saturation curves for the
determination of the Rs-value from the ratio of ligand concen-
tration at 90% and 10% saturation for 1) negative cooperative,
2) normal and 3) positive cooperative behavior. The ligand
concentration at half-saturation (Kd- or S0.5-value) is assumed
to be 1.



1.5.8
Physiological Aspects of Cooperativity

Cooperativity is one of the most important regulatory principles in the metabo-
lism and is found, besides hemoglobin, in many key enzymes of metabolic
pathways, in membrane-bound enzymes where it is influenced by membrane
fluidity, in transport systems and ATPases, in receptor–ligand binding (e.g. the
estrogen receptor), in acetylcholine esterase involved in synaptic transfer, and in
thrombine activity. The advantage of (positive) cooperative saturation behavior
rests in the over-proportional reaction of the system upon ligand fluctuations
and in the allosteric regulation frequently connected with the cooperative effect.
Allosteric regulation may also occur with normal binding systems without any
cooperativity, when an effector binds to a separated site, which influences the
active site. However, a normal system is not able to react in such a sensitive
manner as a cooperative system. Due to the steep increase in the sigmoidal sat-
uration curve in the middle saturation range that usually correlates with the
physiological range of ligand variation (Fig. 1.15), a slight concentration shift
causes a large activity change. The action of effectors is not only confined to in-
hibition or activation, they can also render the system less sensitive to substrate
variations. The activator elevates the system to full activity, the inhibitor brings
it down to a minimal level.

The question may be raised, which of the two models is preferred in nature
or do alternative mechanisms, not covered by these models, exist. Actually the
essential predictions of these models have proved correct, e.g. identical sub-
units, distinct conformations differing in their affinity, and allosteric regulatory
sites. In the following, thoroughly investigated examples of allosteric macromol-
ecules will be presented and it will be shown that aspects of both models can
be found, sometimes even in the same system. As shown in Fig. 1.16, both
models occupy extreme positions among all conceivable combinations of confor-
mation transitions. The concerted model permits only the uniform conforma-
tions bordered in the outer bands, the sequential model only the diagonal states
of direct linkage of ligand binding and conformation transition. So both models
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Fig. 1.15 Regulatory significance of
allosteric enzymes. The physiological
ligand range is highlighted 1) Nega-
tive cooperativity, 2) normal binding,
3) positive cooperativity with activa-
tor, 4) without effector and 5) with
inhibitor.



comprise already all plausible combinations. States not considered by them may
also be included, but it is obvious that high cooperativity can only be obtained
from the extreme positions. Therefore, an alternative model cannot be created
without contributing additional aspects.

A test criterion for both models is their requirement of identical subunits. Co-
operativity cannot be described with a monomeric macromolecule (with the ex-
ception that a macromolecule existing as a monomer in one state will aggregate
to form the other state). Ribonuclease was the first example of an exclusively
monomeric enzyme with sigmoidal saturation behavior. The cooperativity can-
not be caused by interaction of subunits and thus is also not explained by the
two models discussed so far. This phenomenon can, however, be explained by
the ratio of the time dependences of the transition between the two states and
the catalytic conversion of substrate to product, if the catalytic step is faster than
the conformational transition. In contrast to both allosteric models, which are
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Fig. 1.16 Possible conformational and binding states of a tet-
rameric macromolecule. The lower affinity T-forms are pre-
sented as squares, the high affinity R-forms as circles. The
vertical bars at the left and right enclose the states permitted
in the concerted model, the diagonal bar the states assumed
in the sequential model.



based on equilibria, here kinetic, non-equilibria states are considered. This is,
therefore, termed kinetic cooperativity and can only be detected in the presence
of the catalytic turnover, i.e. by observing product formation, while binding
measurements will yield normal saturation behavior. A plausible model, the slow
transition model, has been derived, which will be described in Section 2.8.2.

In the last decades more detailed information about allosteric systems has
been gathered which refines the picture of this class of proteins and enzymes.
The existence of separate centers for regulation and for action has been widely
established, the average distance between the centers being 3.0–4.0 nm. A more
unexpected feature is the fact that binding sites for substrates as well as regula-
tory sites can be located at subunit interfaces rather than at a distinct subunit.
In muscle nicotine receptor the binding sites for acetylcholine are located at
subunit boundaries.

It also turns out that the assumption of only two states is a simplification
valid possibly only for distinct systems, while different sub-conformations are
assumed in other cases, e.g. that distinct subunits in one (the T-) state can
adopt conformations leading to the other (R-) state.

A further extension of the allosteric models is to membrane inserted struc-
tures, like membrane receptors and transmembrane ion channels, where the
regulatory sites, to which (e.g.) the neurotransmitter binds, is at one side (syn-
aptic side) of the membrane, with the active center on the opposite site of the
membrane, so that the interaction between the two different sites is mediated
by a transmembrane allosteric transition. Equilibrium (in the absence of the
ligand) prevails between a silent resting state and an active (e.g. open channel)
state, agonists stabilizing the active and antagonists the silent state. A conse-
quence of transmembrane polarity given by the two opposite sites is the exis-
tence of only one symmetry axis, perpendicular to the membrane plane.

1.5.9
Examples of Allosteric Enzymes

1.5.9.1 Hemoglobin
Although not an enzyme, hemoglobin has given invaluable impetus for numer-
ous theoretical and experimental approaches, like the cooperative models, or the
advancement of fast kinetic techniques and X-ray structural analysis. The com-
parison of the sigmoidal characteristics for oxygen binding to tetrameric hemo-
globin with the hyperbolic saturation behavior of the closely related monomer
myoglobin demonstrates clearly the significance of the interaction of subunits
for cooperativity. As an apparent contradiction to the postulates of the coopera-
tive models, hemoglobin consists of two pairs of non-identical subunits �2�2

and should rather be regarded as a dimer consisting of two protomers. Accord-
ingly, the Hill coefficient should not be greater than a value of 2, but a value of
nearly 3 is actually found. The �- and �-subunits, however, possess not only a
comparable structure, but also their affinities to oxygen are similar and thus
they may be regarded as identical. X-ray crystallographic studies by Max Perutz
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(1970, 1990) permit a detailed insight into the allosteric and cooperative ma-
chinery of hemoglobin. In the absence of oxygen (desoxyhemoglobin) hemoglobin
is in a T-state of low affinity that is stabilized against the R-state of the oxygen-
rich oxyhemoglobin by eight additional salt bridges between the subunits. Cleav-
age by carboxypeptidase of the C-terminal His and Tyr residues, which are in-
volved in salt bridges, results in a non-cooperative form with high affinity for
oxygen.

The divalent iron ion is complex-bound to the haem cofactor, coordinated by
four porphyrine nitrogen atoms. In desoxyhemoglobin the iron exists in a high-
spin state, emerging 0.06 nm out of the plane of the porphyrine ring, stabilized
by a histidine residue on the fifth coordination site. The oxygen molecule binds
to the sixth coordination site. This causes the iron to adopt the low-spin state
and to move into the plane of the porphyrine ring, dragging along the histidine
and inducing a conformational change in the R-state by cleaving the eight salt
bridges between the subunits. The bound oxygen molecule stabilizes the R-state.

The significance of the sigmoidal saturation behavior for the regulation of the
oxygen binding is demonstrated by its dependence on the concentration of pro-
tons (Bohr effect). The protons released from hydrogen carbonate in the blood cap-
illaries bind to the terminal amino acids of hemoglobin and stabilize the T-state.
The sigmoidicity of the saturation function becomes more pronounced, the bind-
ing capacity decreases and oxygen is released into the tissue. In contrast, higher
oxygen binding caused by the elevated oxygen pressure in the lung releases pro-
tons from the hemoglobin, pH is lowered and the sigmoidicity decreases, induced
by the stabilized R-state. The low pH in turn induces the release of CO2 from hy-
drogen carbonate in the lung. 2,3-Bisphosphoglycerate stabilizes the T-state by
connecting the �-subunits and decreases the oxygen binding capacity.

Recent investigations revealed aspects, which are not in accord with the mere
symmetry model and require an extension. By encapsulation of hemoglobin in
silica gel the T- and the R-states could be stabilized and it could be shown that
subunits in the T-state can adopt R-like properties which is not merely consis-
tent with the concerted model (Viappiani et al. 2004). Obviously heterotopic ef-
fects causing tertiary structural changes play a much greater role in determin-
ing the function of hemoglobin than do the homotopic T and R transitions in
the quaternary structure (Yonetani et al. 2002).

1.5.9.2 Aspartate Transcarbamoylase
This enzyme from Escherichia coli clearly demonstrates the spatial separation of
catalytic and regulatory centers on distinct polypeptide chains. The native en-
zyme molecule consists of six catalytic subunits (C, Mr = 33000), joined in two
trimers, and six regulatory subunits (R, Mr = 17000) that form three dimers, re-
sulting in a (C3)2(R2)3 structure. Catalytic and regulatory centers are 6 nm apart.
The allosteric activator ATP and the inhibitor CTP both bind to the same region
at the R-subunit. CTP stabilises the T-state and enhances the sigmoidal charac-
ter of the substrate saturation function. ATP binds preferentially to the R-form
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and weakens the cooperativity of the substrate aspartate which also binds prefer-
entially to the R-form. At the transition from the T- to the R-state the two catalytic
trimers move apart by 1.1 nm and rotate by 12� in relation to each other, while
the regulatory dimers rotate by 15� around the two-fold molecule axis. Because
of this transition several amino acid residues important for the binding of aspar-
tate move towards the active center and increase the affinity for the substrate.
The removal of the regulatory subunits results in the loss of cooperativity and
the regulation by ATP and CTP, while the catalytic activity is retained. With this
enzyme it was also possible to demonstrate the concerted transition from the T-
state to the R-state according to the symmetry model. The occupation of half of
all binding sites by the transition state analog N-phosphoacetyl-L-aspartate
(PALA) is sufficient to transfer the entire enzyme molecule into the R-state.

Aspartate transcarbamoylase is a good example of end-product inhibition. The
enzyme catalyzes the initial reaction of the pyrimidine nucleotide biosynthesis
pathway and is inhibited by CTP, the end-product of the pathway. The activator
ATP is the end-product of the purine biosynthesis pathway. As for the nucleic
acid biosynthesis, both nucleotides are required in an equal ratio, a surplus of
purine nucleotides stimulates pyrimidine synthesis, which in turn is inhibited
by a surplus of pyrimidine nucleotides (Kantrowitz and Lipscomp 1990).

1.5.9.3 Aspartokinase
Aspartokinase I: homoserine dehydrogenase I from Escherichia coli catalyzes the
first and the third step of the threonine biosynthesis pathway. Methionine bio-
synthesis controlled by an aspartokinase II: homoserine dehydrogenase II, and
lysine biosynthesis regulated by an aspartokinase III, both branch off from this
pathway. Aspartokinase I: homoserine dehydrogenase I consists of four identical
subunits (Mr = 86 000). Each subunit has catalytic centers for both enzyme activ-
ities on two separate domains (multifunctional enzyme). The separate domains
with their respective enzyme activities could be obtained by partial proteolysis
or mutations. The aspartokinase domains retain their tetramer structure while
homoserine dehydrogenase dissociates into dimers. In the native enzyme both
activities are subject to end-product inhibition by threonine that shows a sigmoidal
saturation pattern. This is more pronounced in the aspartokinase activity
(nh�4) than in the homoserine dehydrogenase activity (nh�3). While the sep-
arate aspartokinase domain is still inhibited by threonine, the homoserine dehy-
drogenase domain becomes insensitive to this inhibition. Thus in the native en-
zyme both activities are regulated by one single regulatory binding site located
on the aspartokinase domain. This was demonstrated by a one-step mutation
where cooperativity for both activities was reduced by a comparable degree, i.e.
to nh = 1.65 for aspartokinase and nh = 1.45 for homoserine dehydrogenase. It
may be concluded from this that the native enzyme was formed by a fusion of
the genes of two originally separate enzymes, an allosteric aspartokinase inhib-
ited by threonine, and an originally unregulated homoserine dehydrogenase
which was forced by fusion to adopt the allosteric properties.
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1.5.9.4 Phosphofructokinase
Phosphofructokinase is the most important regulatory glycolyse enzyme. The cor-
responding reverse reaction step in gluconeogenesis is catalyzed by another en-
zyme, fructose-1,6-bisphosphatase. This necessitates a close regulatory linkage in
order to avoid depletion of ATP by a futile cycle of the two counteracting reac-
tions, the forward reaction consuming one ATP that cannot be regained in the
reverse reaction. AMP is an activator of phosphofructokinase and an inhibitor
of fructose-1,6-biphosphatase. Phosphofructokinase, a tetramer enzyme, is in-
hibited by phosphoenolpyruvate, which stabilizes the T-state. The substrate fruc-
tose-6-phosphate exhibits a cooperative effect. The transition from T- to R-state
is effected by a counter-rotation of 7� of each two dimers, respectively. The bind-
ing of the inhibitor AMP to the tetramer fructose-1,6-biphosphatase causes a re-
orientation of two dimers by 19�. In mammals both enzymes are additionally
regulated by fructose-2,6-bisphosphate. The phosphofructokinase is allosterically
activated and fructose-1,6-bisphosphatase is inhibited by negative cooperativity.
Thus, both enzymes are subject to a reverse regulatory principle preventing a si-
multaneous parallel run of both reactions.

1.5.9.5 Allosteric Regulation of the Glycogen Metabolism
Biosynthesis and degradation of glycogen is also regulated by two allosteric
enzymes. Here the allosteric control is additionally overlaid by a regulation by
covalent modification, a phosphorylation governed by a cyclic cascade mecha-
nism. Glycogen synthase is activated by glucose-6-phosphate and inhibited by
AMP, while AMP activates and glucose-6-phosphate and ATP both inhibit the
glycogen phosphorylase. The transition of glycogen phosphorylase from the T- to
the R-state is accompanied by a relative rotation of the subunits against each
other of 10�. The quaternary structure of the enzyme is modified towards a
more favorable folding, the catalytic center moving into the vicinity of the allo-
steric AMP binding center and the phosphorylation site. This enzymatic active
R-state is stabilized on the one hand by AMP and on the other hand by phos-
phate residues covalently bound at the phosphorylation site.

1.5.9.6 Membrane Bound Enzymes and Receptors
The nicotinic acetylcholine receptor was first described in fish electric organ (Heid-
mann and Changeux 1978). Five subunits arrange in a pentameric ring-like as-
sembly in the order �1, �, �1, �, and �1, i.e. 4 non-identical subunits, only �1
contributing two copies. All four non-identical subunits, however, possess high
sequence homology, obviously emanating from a fourfold gene duplication, so
that the pentameric structure can be regarded as pseudo-symmetrical with a five-
fold rotational axis. The five subunits consist of three domains: the hydrophilic,
extracellular N-terminal domain carries the neurotransmitter binding site, four
membrane-spanning segments forming together a transmembrane channel,
and a hydrophilic domain to the cytoplasmic site, which is susceptible to phos-
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phorylation and transmits the signal obtained from the neurotransmitter site
into the cell.

There exist only two binding sites with both �1 subunits and a �, respectively,
a � subunit for acetylcholine. These are located at the boundary between the
subunits, the acetylcholine binding domain consists of three loops of the � sub-
unit and three loops of the � or � subunit, respectively. This is in contrast to the
symmetry model where the number of binding sites is assumed to be equal to
the protomer number and subject to the same symmetry conditions.

The G-protein-coupled receptors (GPCRs) are generally viewed as monomeric al-
losteric proteins. They consist of seven transmembrane � helices. The ligand
binding site is located between the transmembrane helices or the extracellular
domain. The intracellular loop and the C-terminal segment interact with the G-
protein. The active forms of GPCRs occur as transmembrane oligomers (dimers
or higher oligomers), e.g. functional chimeras between muscarinic and adrener-
gic receptors. Upon ligand binding dimerization may occur.

The microbial tl-lipase binds with high affinity to the membrane. The catalytic
triad Asp, His, and Ser of the catalytic center is accessible from the surface only
through a pocket with a lid. This closes reversibly the access to the active site.
Fluorescence studies using a tryptophan in the lid-helix revealed a two-state
model where an inactive closed-lid state (Kd = 350 �M) and an active open-lid
state (Kd = 53 �M) could be discerned (Berg and Jain 2002).

1.6
Non-identical, Interacting Binding Sites

The description of the binding of ligands to identical, to non-identical indepen-
dent, and to identical interacting binding sites should consequently be com-
pleted by the treatment of ligands binding to non-identical, interacting binding
sites. However, such cases have not yet been convincingly identified. Hemoglo-
bin may be such an example due to its � and � subunits, but because of their
similar binding constants they behave like identical subunits. Different indepen-
dent binding sites cause – as shown in Section 1.4 – a deviation from the nor-
mal binding pattern (Fig. 1.6) which is just opposite to positive cooperativity
with identical interacting binding sites (Fig. 1.9), as can easily be seen from the
double-reciprocal plots comparing Fig. 1.6B and Fig. 1.11 B. With positive coop-
erativity the curve deviates to the upper right, with differing binding sites to the
lower right. At comparable intensity both effects will compensate each other, re-
sulting in a straight line as in normal binding patterns. Even at different inten-
sities of both effects they will partially compensate one another and only the
predominant mechanism can manifest itself in a weakened form. The same ap-
plies for the simultaneous existence of positive and negative cooperativity (e.g.
if the initial binding step increases and the final one decreases the affinity), as
the latter shows a similar curvature as binding to non-identical sites. The signif-
icance of such superpositions in the sense of a counter-regulation or fine tuning
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may be discussed, incomplete compensations of counteracting effects may be
responsible for inhomogeneities sometimes observed in saturation curves. In
the absence of convincing examples, however, it remains open how far counter-
acting mechanisms within the same system actually exist.

On the other hand superposition of congeneric effects like negative coopera-
tivity and binding to non-identical subunits will result in an amplification, but
there are also no convincing examples.
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