Index

a
A-B-A block copolymer
 – emulsions stabilized with 236–240
 – water-in-oil emulsions stabilized with 240–245
adsorption 9, 10, 12
 – characteristics, of ionic surfactants 99
 – experimental tools 99–101
 – results 102–107
 – theory 101–102
 – of surfactants at liquid/liquid interface 14
 – emulsification mechanism 17–19
 – emulsification methods 19–20
 – Gibbs adsorption isotherm 14–17
 – role in droplet formation 22–26
 – role in emulsion formation 21–22
anchoring chain 209
anisotropic etching 86
anisotropy 66
average energy dissipation rate 144

b
bagasse particleboard 170
Bancroft rule 24
batch mixers 129, 132–133, 134
batch rotor–stator mixers 154–157
Bell-shaped conductivity curves 203
Bingham plastic systems 221
bitumen emulsions 5
Bohlin rheometer (Bohlin Instruments, UK) 226
breakup conditions 69
Brownian diffusion 35, 37
Brownian motion 3, 54, 193
bulk rheology of emulsions 53–54
 – concentrated emulsions behavior analysis 54–57

c
calibration curves 119
capillary method 118
capillary number 140, 141
capillary pressure 66, 81
catastrophic inversion 47
cationic emulsifiers 81
characteristic length 44
charge-stabilized emulsions 43
classical model, of particle size 182, 183
coalescence 4, 45–46, 161, 185
 – phase inversion 47–48
 – rate 46–47
cohesive energy ratio (CER) 31–32
cohesive stress 140
colloid mills 129–130
comb stabilizer 211
concentrated emulsions viscoelastic properties 59–60
 – deformation and droplet breakup in emulsions during flow 66–72
 – high interval phase emulsions (HIPEs) 61–65
constant stress (creep) measurements 222–223
Coulter counter 226
counteracting stress 24
creaming and sedimentation 3, 35–36
 – prevention 37–40
 – rates 36–37
creep measurements, see constant stress (creep) measurements
critical aggregation concentration (CAC) 182–183
critical capillary number 141
critical coagulation concentration (CCC) 189, 190, 194
critical flocculation concentration (CFC) 42, 43, 229
critical flocculation temperature (CFT) 231
critical micelle concentration (CMC) 103
critical packing parameter (CPP) for emulsion selection 32–35
critical volume fraction (CFV) 43
curved interface 6

de
Debye–Hückel equation 102
Debye–Hückel parameter 191–192
deep reactive ion etching (DRIE) 88
deformation and droplet breakup in emulsions during flow 66–72
Derjaguin approximation 191
differential scanning calorimetry 170
Diffrain 119
dilational elasticity, interfacial 50
dilational viscoelasticity 100, 105, 106
dilational viscosity, interfacial 51
direct imaging 115–118
direct membrane emulsification 78–79
disjoining pressure 45

disruptive stress 140
DLVO theory 11, 190, 193, 194
double and multiple emulsions 2
double-layer extension 10–11
Dougherty–Krieger equation 219, 241
droplet coalescence investigation techniques 121–123
droplet concentration 36
droplet disruption 173
droplet size reduction 37
drop profile tensiometry 100

drop size distributions
– and average drop sizes 138–140
– prediction, during emulsification 160–163
dynamic (oscillatory) measurements 223–226
e
Einstein equation 53
elastic interaction 213, 214–216
electrolytes, paraffin emulsion stability as function of 189–195
electrophoretic mobility measurements 189, 192
electrostatic potential 191
electrostatic repulsion 9–12
electrosteric stabilization 175, 195
elongational flow 141
empirical models 161
emulsions 1. See also individual entries
– adsorption of surfactants at liquid/liquid interface 14
– emulsification mechanism 17–19
– emulsification methods 19–20
– Gibbs adsorption isotherm 14–17
– role in droplet formation 22–26
– role in emulsion formation 21–22
– breakdown processes 3
– bulk rheology of emulsions 53–54
– concentrated emulsions viscoelastic properties 59–60
– deformation and droplet breakup in emulsions during flow 66–72
– high interval phase emulsions (HIPEs) 61–65
– creaming and sedimentation 3, 35–36
– prevention 37–40
– rates 36–37
– emulsifier nature 1–2
– emulsifiers selection 26
– cohesive energy ratio (CER) 31–32
– critical packing parameter (CPP) for emulsion selection 32–35
– hydrophilic–lipophilic balance (HLB) 26–29
– phase inversion temperature (PIT) 29–31
– experimental ηr–ψ curves 57–58
– droplet deformability influence 58–59
– flocculation 4
– mechanism 40–43
– rules for reducing 43–44
– industrial applications 4–5
– interaction energies between emulsion droplets and combinations
– electrostatic repulsion 9–12
– steric repulsion 12–13
– van der Waals attraction 8–9
– Ostwald ripening 4, 44–45
– phase inversion 4
– physical chemistry of systems
– interface (Gibbs dividing line) 5–6
– rheology 48
– and emulsion stability correlation 51–53
– interfacial dilational elasticity 50
– interfacial dilational viscosity 51
– interfacial shear viscosity measurement 49–50
– interfacial 48–49
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– – non-Newtonian effects</td>
<td>51</td>
</tr>
<tr>
<td>– stability correlation</td>
<td>51–53</td>
</tr>
<tr>
<td>– system structure</td>
<td>2</td>
</tr>
<tr>
<td>– thermodynamics of formation and breakdown</td>
<td>6–8</td>
</tr>
<tr>
<td>equation of state approach</td>
<td>14</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>202</td>
</tr>
<tr>
<td>ethylcellulose nanoemulsions, for nanoparticle preparation</td>
<td>202–204</td>
</tr>
<tr>
<td>experimental $\eta_r - \phi$ curves</td>
<td>57–58</td>
</tr>
<tr>
<td>– droplet deformability influence</td>
<td>58–59</td>
</tr>
<tr>
<td>fiber-optical spot scanning (FSS)</td>
<td>113</td>
</tr>
<tr>
<td>flocculation</td>
<td>4, 40, 186</td>
</tr>
<tr>
<td>– controlled</td>
<td>39</td>
</tr>
<tr>
<td>– depletion</td>
<td>39</td>
</tr>
<tr>
<td>– of electrostatically stabilized emulsions</td>
<td>41–42</td>
</tr>
<tr>
<td>– mechanism</td>
<td>40–43</td>
</tr>
<tr>
<td>– rules for reducing</td>
<td>43–44</td>
</tr>
<tr>
<td>– of sterically stabilized emulsions</td>
<td>42–43</td>
</tr>
<tr>
<td>Flory–Huggins interaction parameter</td>
<td>213, 214</td>
</tr>
<tr>
<td>focused beam reflectance measurement (FBRM)</td>
<td>113</td>
</tr>
<tr>
<td>food emulsion</td>
<td>4</td>
</tr>
<tr>
<td>Fraunhofer diffraction theory</td>
<td>112</td>
</tr>
<tr>
<td>Freeze–Thaw cycles, paraffin emulsion</td>
<td>186–189</td>
</tr>
<tr>
<td>stability as function of</td>
<td></td>
</tr>
<tr>
<td>frequency sweep</td>
<td>224</td>
</tr>
<tr>
<td>Frumkin ionic compressibility (FIC)</td>
<td>101, 103–104</td>
</tr>
<tr>
<td>geometrically mediated breakup</td>
<td>82</td>
</tr>
<tr>
<td>Gibbs adsorption equations</td>
<td>15, 183</td>
</tr>
<tr>
<td>Gibbs adsorption isotherm</td>
<td>14–17</td>
</tr>
<tr>
<td>Gibbs approach</td>
<td>14</td>
</tr>
<tr>
<td>Gibbs–Deuhem equation</td>
<td>6, 14</td>
</tr>
<tr>
<td>Gibbs dividing line</td>
<td>5–6</td>
</tr>
<tr>
<td>Gibbs-Marangoni effect</td>
<td>24–25</td>
</tr>
<tr>
<td>glass capillary microfluidic devices</td>
<td>89–93</td>
</tr>
<tr>
<td>Grace curves, see stability curves</td>
<td></td>
</tr>
<tr>
<td>graft copolymers</td>
<td>211</td>
</tr>
<tr>
<td>grafting onto technique</td>
<td>211</td>
</tr>
<tr>
<td>Grahame’s equation</td>
<td>191</td>
</tr>
<tr>
<td>grooved-type microchannel arrays</td>
<td>86–88</td>
</tr>
<tr>
<td>Hamaker constant</td>
<td>9, 40, 190, 191</td>
</tr>
<tr>
<td>Herschel–Bulkley general model</td>
<td>222</td>
</tr>
<tr>
<td>high interval phase emulsions (HIPEs)</td>
<td>61–65</td>
</tr>
<tr>
<td>high-shear mixers</td>
<td>127, 138</td>
</tr>
<tr>
<td>homopolymer</td>
<td>210</td>
</tr>
<tr>
<td>Hough transformation</td>
<td>116</td>
</tr>
<tr>
<td>hyperbolic flow</td>
<td>141</td>
</tr>
<tr>
<td>hydrodynamic diameter</td>
<td>203</td>
</tr>
<tr>
<td>hydrodynamic flow focusing</td>
<td>83</td>
</tr>
<tr>
<td>hydrophilic–lipophilic balance (HLB)</td>
<td>26–29</td>
</tr>
<tr>
<td>incipient flocculation</td>
<td>42</td>
</tr>
<tr>
<td>industrial applications</td>
<td>4–5</td>
</tr>
<tr>
<td>industrial-scale rotor–stator mixers</td>
<td>134</td>
</tr>
<tr>
<td>– radial discharge mixers</td>
<td>129, 130–131</td>
</tr>
<tr>
<td>interaction energies, between emulsion droplets and combinations</td>
<td></td>
</tr>
<tr>
<td>– electrostatic repulsion</td>
<td>9–12</td>
</tr>
<tr>
<td>– steric repulsion</td>
<td>12–13</td>
</tr>
<tr>
<td>– van der Waals attraction</td>
<td>8–9</td>
</tr>
<tr>
<td>interfacial rheology</td>
<td></td>
</tr>
<tr>
<td>– emulsion stability correlation</td>
<td>51–53</td>
</tr>
<tr>
<td>– interfacial dilational elasticity</td>
<td>50</td>
</tr>
<tr>
<td>– interfacial dilational viscosity</td>
<td>51</td>
</tr>
<tr>
<td>– interfacial shear viscosity measurement</td>
<td>49–50</td>
</tr>
<tr>
<td>– interfacial tension and surface pressure</td>
<td>48–49</td>
</tr>
<tr>
<td>– non-Newtonian effects</td>
<td>51</td>
</tr>
<tr>
<td>interfacial tension</td>
<td>29</td>
</tr>
<tr>
<td>– gradients</td>
<td>23</td>
</tr>
<tr>
<td>interfacial tension gradient</td>
<td>50</td>
</tr>
<tr>
<td>inulin</td>
<td>211</td>
</tr>
<tr>
<td>INUTEC® N25</td>
<td>211</td>
</tr>
<tr>
<td>INUTEC® SP1</td>
<td>45, 211, 216</td>
</tr>
<tr>
<td>laser systems</td>
<td>112–115</td>
</tr>
<tr>
<td>laser beam diffraction</td>
<td>112</td>
</tr>
<tr>
<td>laser Doppler anemometry (LDA)</td>
<td>145</td>
</tr>
<tr>
<td>laser systems</td>
<td>112–115</td>
</tr>
<tr>
<td>light transmission method</td>
<td>119</td>
</tr>
<tr>
<td>liquid–liquid interface</td>
<td>182, 184</td>
</tr>
<tr>
<td>liquid–liquid systems, drop size in</td>
<td>145–147</td>
</tr>
<tr>
<td>– two phase</td>
<td>140</td>
</tr>
<tr>
<td>low energy emulsification</td>
<td>200</td>
</tr>
<tr>
<td>Kolmogorov length scale</td>
<td>142, 143, 150–151</td>
</tr>
<tr>
<td>Krafft point</td>
<td>173, 175, 176, 183</td>
</tr>
<tr>
<td>laminar flow, maximum stable drop size in</td>
<td>141–142</td>
</tr>
<tr>
<td>Laplace pressure</td>
<td>6, 17, 18, 66, 173</td>
</tr>
<tr>
<td>Lasentech (USA)</td>
<td>117</td>
</tr>
<tr>
<td>light transmission method</td>
<td>119</td>
</tr>
<tr>
<td>liquid–liquid interface</td>
<td>182, 184</td>
</tr>
<tr>
<td>liquid–liquid systems, drop size in</td>
<td>145–147</td>
</tr>
<tr>
<td>– two phase</td>
<td>140</td>
</tr>
</tbody>
</table>
m
Marangoni effect 23
mean drop size 139
measurement techniques 109–112, 118–120
– droplet coalescence investigation techniques 121–123
– online droplet size measurement techniques
 – direct imaging 115–118
 – laser systems 112–115
 – sound systems 115
melting strain 63, 225
membrane and microfluidic devices 77
– droplet application 93
– glass capillary microfluidic devices 89–93
– membrane emulsification 78
 – direct 78–79
 – operating parameters 80
 – premix 79–80
 – surfactants 80–81
 – transmembrane pressure and wall shear stress 81
– microfluidic devices with parallel microchannel arrays 85–86
 – grooved-type 86–88
 – straight-through 88–89
– microfluidic flow-focusing devices (MFFD) 83–84
– microfluidic junctions 82–83
micellar emulsions and microemulsions 2
microfluidic flow-focusing devices (MFFD) 83–84
micronozzle array, straight-through 89
miniemulsion polymerization 201
mixed emulsions 2
mixed surfactant films 46, 51
mixed surfactant system 173, 177, 178, 184
mixing interaction 213–214
Monte Carlo simulation 122
multipass processing, of rotor–stator mixers 136, 137
nuclear magnetic resonance (NMR) 119
numerical simulation, in rotor–stator mixers 154, 162

o
O/S ratio 200, 202, 203
oil-in-water (O/W) 70, 203
– emulsion rheology stabilized with poly(vinyl alcohol) 226
 – emulsions stabilized with A-B-A block copolymer 236–240
 – oil volume fraction effect 226–229
 – PVA-stabilized emulsion stability 229–236
 – water-in-oil emulsions stabilized with A-B-A block copolymer 240–245
– flow curves of emulsion 56
– interface, crystalline phases 46
– macroemulsions 2, 29
– nanoemulsions 200
– oil slick dispersions 5
– oil volume fraction effect, on emulsion rheology 226–229
online droplet size measurement techniques
 – direct imaging 115–118
 – laser systems 112–115
 – sound systems 115
opsonization 202
optical microscopy 189
orthokinetic stability 185–186
oscillating drop and bubble pressure analyzer (ODBA) 99, 100, 101, 104–107
osmotic free energy of interaction 12
osmotic repulsion, see mixing interaction
Ostwald ripening 4, 44–45, 185

p
paraffin emulsions 169
– formation and characterization 178–181
– industrial applications 170
– particle size control 181–185
– preparation 172–174
– properties 170–172
– stability 185
 – as function of electrolytes 189–195
 – as function of Freeze–Thaw cycles 186–189
 – as function of time under shear 185–186
– surfactant systems used in formulation 174
 – phase behavior 175–178
particle vision and measurement (PVM®) 117
phase Doppler anemometry (PDA) 112
Index

phase inversion 4, 47–48
phase inversion composition (PIC) 200
phase inversion emulsification methods 200
phase inversion temperature (PIT) 29–31, 200
photolithography 85
photon correlation spectroscopy (PCS) 240
physical models 161
Pickering emulsions 2
pluronics 1, 210
Pluronic™ unimers 202
polarized optical microscopy (POM) 175
poly(dimethylsiloxane) 82
polydispersity 77, 178–181
poly(ethylene oxide) (PEO) 210–211, 198, 239, 242
poly(12-hydroxystearic acid) (PHS) 216, 217, 242
poly(lactic acid) (PLA) 91
polymeric nanoparticles 199–205
polymeric surfactants 1, 209
– adsorbed layers, and droplets 212–213
– elastic interaction 214–216
– mixing interaction 213–214
– emulsions stabilized by 216–219
– W/O emulsions stabilized with PHS-PEO-PHS block copolymer 219–220
– general classifications 210–212
polymer layer overlap 213, 214
poly(methyl methacrylate) (PMMA) 86
poly(propylene oxide) (PPO) 210–211
poly(vinyl alcohol) (PVA) 210
– emulsion rheology stabilized with 226
– emulsions stabilized with A-B-A block copolymer 236–240
– oil volume fraction effect 226–229
– PVA-stabilized emulsion stability 229–236
– water-in-oil emulsions stabilized with A-B-A block copolymer 240–245
poly(vinyl pyrrolidone) 210
power draw, in rotor–stator mixers 144–145
premix membrane emulsification 79–80
profile analysis tensiometer (PAT) 99, 100, 104–105
protein films 51–53
pseudoplastic (shear thinning) system 221
pseudoternary water/mixed surfactant system 177
pulsed drop method 50
pulsed-field gradient (PFG) 119
pulse-echo technique 115
reflectance technique 119–120, 123–124
refractive index 121
residual shear viscosity 221
Reynolds number 19, 68, 71
rigidity modulus 226
Ross mixers 132, 146
rotor–stator mixers 127
– advanced analysis of emulsification/dispersion processes in 152–153
– drop size distribution prediction during emulsification 160–163
– velocity and energy dissipation rate 153–160
– classification and applications 128–129
– batch mixers 129, 132–133, 134
– colloid mills 129–130
– design and arrangement 133–136
– operation 136–137
– toothed devices 129, 131–132, 134
– engineering description of emulsification and dispersion processes 138
– average drop size in liquid–liquid systems 145–147
– drop size distributions and average drop sizes 138–140
– drop size in liquid–liquid two-phase systems 140
– maximum stable drop size in laminar flow 141–142
– maximum stable drop size in turbulent flow 142–143
– flow characterization 143–145
– possible arrangements, for batch processing 135
– products manufactured using 128
– scale-up rules 147–152

S
Sauter mean diameter 140, 143, 146, 150, 151
Schultz–Hardy rule 194
shear flow, simple 141
shear stress 66, 79, 81, 143–144
shear viscosity measurement, interfacial 49–50
Shirasu porous glass (SPG) 80
Silverson mixers 131, 132, 133, 134, 136, 145, 146, 148, 157
single-pass processing, of rotor–stator mixers 136, 137
INDEX

SINTERFACE Technologies (Berlin, Germany) 99
small-angle X-ray scattering (SAXS) measurements 175, 178, 183, 184
Smoluchowski equation 189, 192
sodium dodecyl sulfate (SDS) 1, 16, 24
solvent evaporation method 201, 204
sound systems 115
spatial filtering velocimetry (SFV) 113
steady state measurements 220–222
stereo microscope 116
steric interaction free energy 213
steric repulsion 12–13
steric stabilization 40, 209–210
– energy–distance curves 215
– oil-in-water (O/W) emulsion rheology stabilized with poly(vinyl alcohol) 226
– emulsions stabilized with A-B-A block copolymer 236–240
– oil volume fraction effect 226–229
– PVA-stabilized emulsion stability 229–236
– water-in-oil emulsions stabilized with A-B-A block copolymer 240–245
– polymeric surfactants
– adsorbed layers and droplets 212–216
– emulsions stabilized by 216–220
– general classifications 210–212
– rheological technique principles
– constant stress (creep) measurements 222–223
– dynamic (oscillatory) measurements 223–226
– steady state measurements 220–222
Stokes–Einstein equation 41
Stokes law 36, 204
straight-through microchannel arrays 88–89
strain sweep 224
stroboscope 116, 117
surface charge density 191
surface excess 14
surface potential calculation methods 191–192
surfactants 17, 18, 80–81
– systems, used in formulation 174
– phase behavior 175–178
thermodynamics, of emulsion formation and breakdown 6–8
thickeners 38, 220
T-junction 82
toothed devices 129, 131–132, 134
transmembrane pressure and wall shear stress 81
transmission electron microscopy (TEM) 204
turbulent flow, maximum stable drop size in 142–143
turbulent inertial (TI) 71
turbulent viscous (TV) 71
ultrasonic spectroscopy 115
Ultra-Turrax mixers 131, 226
van der Waals attraction 4, 8–9
van der Waals potential 190, 193
velocity and energy dissipation rate 153–160
viscosity ratio 146
– modified 69
viscosity–volume fraction
– curves 57
– relationship 68, 241
volume restriction interaction, see elastic interaction
water/ionic surfactant system 175
water/nonionic surfactant system 175
water-in-oil (W/O) 203
– emulsions, stabilized with A-B-A block copolymer 240–245
– macroemulsions 2, 29
– flow curves of emulsions 56
Weber number 20, 140
Weissenberg number 69
Weissenberg rheometer 79
wide angle X-ray scattering (WAXS) 170
Winsor concept 31
yield stress 221, 226, 229
Y-junction 83
zero shear viscosity, see residual shear viscosity
zeta potential 189–190, 191–192
Zwitterionic surfactants 81