Contents to Volume 1

Contents to Volume 2 XIIIPreface XVIIAbout the Editors XIXList of Contributors for Both Volumes XXIII

Part One Spectroscopic Methods for Nano Interfaces 1

1	Doman and Elvavorrance Spectroscopy Counted with Scopping			
•	Raman and Fluorescence Spectroscopy Coupled with Scanning Tunneling Microscopy 3			
	Noriko Nishizawa Horimoto and Hiroshi Fukumura			
4.4				
1.1	Introduction 3			
1.2	Outline of STM Combined with Optical Spectroscopy 4			
1.2.1	Raman Spectroscopy 4			
1.2.2	Fluorescence Spectroscopy 6			
1.3	Theoretical Approaches 6			
1.4	Experimental Approaches 8			
1.4.1	STM Combined with Raman Spectroscopy 8			
1.4.2	STM Combined With Fluorescence Spectroscopy 12			
1.5	Future Prospects 13			
	References 16			
2	Vibrational Nanospectroscopy for Biomolecules and Nanomaterials 19			
	Yasushi Inouye, Atsushi Taguchi, and Taro Ichimura			
2.1	Introduction 19			
2.2	Surface Plasmon Polaritons 20			
2.3	Near-Field Optical Microscopy Using a Metallic Nano-Tip 22			
2.4	Tip-Enhanced Near-Field Raman Spectroscopy and Imaging 24			
2.4.1	Raman Spectroscopy 25			
2.4.2	Near-Field Nano-Raman Microscopy 25			
2.4.3	Tip-Enhanced Near-Field Raman Spectroscopy and Imaging 26			

ı	Contents to	Volume 1
	2.5	Tip Effect on Near-Field Raman Scattering 30
	2.6	Conclusion 36
		References 36
	3	Near-Field Optical Imaging of Localized Plasmon Resonances in Metal Nanoparticles 39 Hiromi Okamoto and Kohei Imura
	3.1	Introduction 39
	3.2	Near-Field Spectroscopic Method 40
	3.3	Fundamental Spectroscopic Characteristics of Gold
	5.5	Nanoparticles 42
	3.4	Wavefunction Images of Plasmon Modes of Gold Nanorod — Near-Field Transmission Method 42
	3.5	Ultrafast Time-Resolved Near-Field Imaging of Gold Nanorods 45
	3.6	Near-Field Two-Photon Excitation Images of Gold Nanorods 47
	3.7	Enhanced Optical Fields in Spherical Nanoparticle Assemblies and
		Surface Enhanced Raman Scattering 48
	3.8	Concluding Remarks 51
		References 52
	4	Structure and Dynamics of a Confined Polymer Chain Studied by Spatially and Temporally Resolved Fluorescence Techniques 55 Hiroyuki Aoki
	4.1	Introduction 55
	4.2	Conformation of a Confined Polymer Chain 56
	4.2.1	Polymer Ultra-Thin Film 56
	4.2.2	Near-Field Optical Microscopy 56
	4.2.3	Structure of a Single Polymer Chain 58
	4.3	Dynamics of a Confined Polymer Chain 61
	4.3.1	Polymer Brush 61
	4.3.2	Fluorescence Depolarization Method 61
	4.3.3	Dynamics of a Polymer Brush 63
	4.4	Summary 67
		References 68
	5	Real Time Monitoring of Molecular Structure at Solid/Liquid Interfaces by Non-Linear Spectroscopy 71 Hidenori Noguchi, Katsuyoshi Ikeda, and Kohei Uosaki
	5.1	Introduction 71
	5.2	Sum Frequency Generation Spectroscopy 72
	5.2.1	Brief Description of SFG 72
	5.2.2	Origin of SFG Process 73
	5.2.3	SFG Spectroscopy 74
	5.2.4	Experimental Arrangement for SFG Measurements 77

5.2.4.1	Laser and Detection Systems 77
5.2.4.2	Spectroscopic Cells 78
5.3	SFG Study of the Potential-Dependent Structure of Water at a Pt
	Electrode/Electrolyte Solution Interface 80
5.3.1	Introduction 80
5.3.2	Results and Discussion 80
5.3.3	Conclusions 83
5.4	Photoinduced Surface Dynamics of CO Adsorbed on a Platinum
	Electrode 84
5.4.1	Introduction 84
5.4.2	Results and Discussion 85
5.4.3	Conclusions 88
5.5	Interfacial Water Structure at Polyvinyl Alcohol (PVA) Gel/Quartz
	Interfaces Investigated by SFG Spectroscopy 89
5.5.1	Introduction 89
5.5.2	Results and Discussions 90
5.5.3	Conclusions 92
5.6	Hyper-Raman Spectroscopy 94
5.6.1	Selection Rules for Hyper-Raman Scattering 94
5.6.2	Enhancement of Hyper-Raman Scattering Intensity 94
5.6.3	Conclusion 96
5.7	General Conclusion 96
	References 97
6	
6	
	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi
6.1	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103
6.1 6.2	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104
6.1 6.2 6.3	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106
6.1 6.2 6.3 6.4	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107
6.1 6.2 6.3 6.4 6.5	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108
6.1 6.2 6.3 6.4 6.5 6.6	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109
6.1 6.2 6.3 6.4 6.5 6.6 6.7	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112
6.1 6.2 6.3 6.4 6.5 6.6	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113
6.1 6.2 6.3 6.4 6.5 6.6 6.7	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117 Hideki Fujiwara and Keiji Sasaki
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117 Hideki Fujiwara and Keiji Sasaki Introduction 117
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117 Hideki Fujiwara and Keiji Sasaki Introduction 117 Weak Force Measurements 117
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7 7.1 7.1.1 7.1.2	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117 Hideki Fujiwara and Keiji Sasaki Introduction 117 Weak Force Measurements 117 Potential Analysis Method Using Photon Force Measurement 118
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117 Hideki Fujiwara and Keiji Sasaki Introduction 117 Weak Force Measurements 117 Potential Analysis Method Using Photon Force Measurement 118 Measurement of the Hydrodynamic Interaction Force Acting between
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7 7.1 7.1.1 7.1.2	Fourth-Order Coherent Raman Scattering at Buried Interfaces 103 Hiroshi Onishi Why Buried Interfaces? 103 Optical Transitions 104 Experimental Scheme 106 Application to a Liquid Surface 107 Application to a Liquid/Liquid Interface 108 Applications to Solid Surfaces 109 Frequency Domain Detection 112 Concluding Remarks 113 References 113 Dynamic Analysis Using Photon Force Measurement 117 Hideki Fujiwara and Keiji Sasaki Introduction 117 Weak Force Measurements 117 Potential Analysis Method Using Photon Force Measurement 118

VIII	Contents to	Volume 1
ı	7.2.2	Potential Analysis Method for Hydrodynamic Force Measurement 122
	7.2.3	Trapping Potential Analysis 124
	7.3	Kinetic Potential Analysis 125
	7.4	Summary 129 References 130
	8	Construction of Micro-Spectroscopic Systems and their Application to
		the Detection of Molecular Dynamics in a Small Domain 133 Syoji Ito, Hirohisa Matsuda, Takashi Sugiyama, Naoki Toitani, Yutaka Nagasawa, and Hiroshi Miyasaka
	8.1	Introduction 133
	8.2	Development of a Near-Infrared 35 fs Laser Microscope and its Application to Higher Order Multiphoton Excitation 133
	8.2.1	Confocal Microscope with a Chromium: Forsterite Ultrafast Laser as an Excitation Source 134
	8.2.2	Detection of Higher Order Multiphoton Fluorescence from Organic Crystals 135
	8.2.3	Multiphoton Fluorescence Imaging with the Near-Infrared 35 fs Laser Microscope 137
	8.3	Application of Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature at a Small Area in Solution 139
	8.3.1	Experimental System of FCS 139
	8.3.2	The Principle of the Method of Measurement of Local Temperature Using FCS 140
	8.3.3	Measurement of Local Temperature for Several Organic Solvents 141
	8.3.4	Summary 146
	8.4	Relaxation Dynamics of Non-Emissive State for Water-Soluble CdTe Quantum Dots Measured by Using FCS 147
	8.4.1	Samples and Analysis of Experimental Data Obtained with FCS 147
	8.4.2	Non-Emissive Relaxation Dynamics in CdTe Quantum dots 148
	8.5	Summary 150
		References 152
	9	Nonlinear Optical Properties and Single Particle Spectroscopy of CdTe Quantum Dots 155 Lingyun Pan, Yoichi Kobayashi, and Naoto Tamai
	0.1	Introduction 155

CdTe Quantum Dots 155 Lingyun Pan, Yoichi Kobayashi, and Naoto Tamai 9.1 Introduction 155 9.2 Nonlinear Optical Properties of CdTe QDs 156 9.3 Optical Trapping of CdTe QDs Probed by Nonlinear Optical Properties 158 9.4 Single Particle Spectroscopy of CdTe QDs 162 9.5 Summary 166 References 167

Part Two	Nanostructure Characteristics and Dyna	mics 171
----------	--	----------

10	Morphosynthesis in Polymeric Systems Using Photochemical Reactions 173
	Hideyuki Nakanishi, Tomohisa Norisuye, and Qui Tran-Cong-Miyata
10.1	Introduction 173
10.2	Morphosynthesis of Polymeric Systems by Using Light 174
10.2.1	Significance of Photochemical Reactions 174
10.2.2	Polymer Mixtures Used in this Study 175
10.2.3	Polymers with Spatially Graded Morphologies Designed from Photo-Induced Interpenetrating Polymer Networks (IPNs) 175
10.2.4	Designing Polymers with an Arbitrary Distribution of Characteristic Length Scales by the Computer-Assisted Irradiation (CAI) Method 177
10.2.5	Reversible Phase Separation Driven by Photodimerization of
	Anthracene: A Novel Method for Processing and Recycling Polymer Blends 181
10.3	Concluding Remarks 184
	References 185
11	Self-Organization of Materials Into Microscale Patterns by Using
	Dissipative Structures 187
	Olaf Karthaus
11.1	Self-Organization and Self-Assembly 187
11.2	Dissipative Structures 189
11.3	Dynamics and Pattern Formation in Evaporating Polymer Solutions 191
11.4	Applications of Dewetted Structures in Organic Photonics and Electronics 196
11.5	Summary 198
	References 198
12	Formation of Nanosize Morphology of Dye-Doped Copolymer Films and Evaluation of Organic Dye Nanocrystals Using a Laser 203 Akira Itaya, Shinjiro Machida, and Sadahiro Masuo
12.1	Introduction 203
12.2	Position-Selective Arrangement of Nanosize Polymer Microsphere
	Onto a PS-b-P4VP Diblock Copolymer Film with Nanoscale Sea–island Microphase Structure 205
12.3	Nanoscale Morphological Change of PS-b-P4VP Block
	Copolymer Films Induced by Site-Selective Doping of a Photoactive Chromophore 208
12.3.1	Nanoscale Surface Morphology of PS-b-P4VP Block Copolymer Films 208

Contents to	o Volume 1		
12.3.2	Nanoscale Surface Morphological Change of PS-b-P4VP Block Copolymer Films Induced by Site-Selective Doping of a Photoactive Chromophore 208		
12.4	Site-Selective Modification of the Nanoscale Surface Morphology of Dye-Doped Copolymer Films Using Dopant-Induced Laser Ablation 211		
12.5	Photon Antibunching Behavior of Organic Dye Nanocrystals on a Transparent Polymer Film 217 References 221		
13	Molecular Segregation at Periodic Metal Nano-Architectures on a Solid Surface 225 Hideki Nabika and Kei Murakoshi		
13.1	Molecular Manipulation in Nano-Space 225		
13.1.1	Lipid Bilayer and its Fluidic Nature 225		
13.1.2	Controlling Molecular Diffusion in the Fluidic Lipid Bilayer 227		
13.1.3	Self-Spreading of a Lipid Bilayer or Monolayer 229		
13.1.4	Controlling the Self-Spreading Dynamics 230		
13.1.5	Molecular Manipulation on the Self-Spreading Lipid Bilayer 233		
13.2	Summary 235 References 236		
14	Microspectroscopic Study of Self-Organization in Oscillatory Electrodeposition 239 Shuji Nakanishi		
14.1	Introduction 239		
14.2	Dynamic Self-Organization in Electrochemical Reaction Systems 240		
14.3	Oscillatory Electrodeposition 241		
14.3.1	Formation of a Layered Nanostructure of Cu–Sn Alloy 242		
14.3.2	Layered Nanostructures of Iron-Group Alloys 246		
14.3.3	Layered Nanostructure of Cu/Cu ₂ O 247		
14.3.4	Nanostructured Metal Filaments 250		
14.4	Raman Microspectroscopy Study of Oscillatory Electrodeposition of Au at an Air/Liquid Interface 252		
14.5	Summary 255 References 256		
15	Construction of Nanostructures by use of Magnetic Fields and Spin Chemistry in Solid/Liquid Interfaces 259 Hiroaki Yonemura		
15 1	Introduction 259		

Construction of Nanostructures by the use of Magnetic Fields 260

Materials Using Polymer Wrapping 260

Magnetic Orientation and Organization of SWNTs or their Composite

х

15.2

15.2.1

15.2.2	Effects of Magnetic Processing on the Morphological, Electrochemical, and Photoelectrochemical Properties of Electrodes Modified with C_{60} -Phenothiazine Nanoclusters 264
15.2.3	Effects of Magnetic Processing on the Luminescence Properties of Monolayer Films with Mn ²⁺ -Doped ZnS Nanoparticles 268
15.3	Spin Chemistry at Solid/Liquid Interfaces 270
15.3.1	Magnetic Field Effects on the Dynamics of the Radical Pair in a C_{60} Clusters—Phenothiazine System 270
15.3.2	Magnetic Field Effects on Photoelectrochemical Reactions of Electrodes Modified with the C ₆₀ Nanocluster-Phenothiazine System 272
15.4	Summary 274 References 274
16	Controlling Surface Wetting by Electrochemical Reactions of Monolayers and Applications for Droplet Manipulation 279 Ryo Yamada
16.1	Introduction 279
16.1.1	Self-Assembled Monolayers 279
16.1.2	Preparation of Gradient Surfaces 280
16.1.3	Spontaneous Motion of a Droplet on Wetting Gradients 281
16.1.4	Surface Switching 282
16.2	Ratchet Motion of a Droplet 284
16.2.1	Ratchet Motion of a Droplet on Asymmetric Electrodes 284
16.2.2	Ratchet Motion of a Droplet Caused by Dynamic Motions of the Wetting Boundary 285
16.3	Conclusion 289
	References 291
17	Photoluminescence of CdSe Quantum Dots: Shifting, Enhancement and Blinking 293 Vasudevanpillai Biju and Mitsuru Ishikawa
17.1	Introduction 293
17.2	Synthesis of CdSe Quantum Dots 295
17.2.1	Synthesis of CdSe Quantum Dots in Organic Phases 295
17.2.1.1	Synthesis of CdSe Quantum Dots from Dimethyl Cadmium 295
17.2.1.2	Synthesis of CdSe Quantum Dots from Cadmium Sources Other Than Dimethyl Cadmium 296
17.2.2	Synthesis of Water-Soluble Quantum Dots 296
17.3	Bandgap Structure and Photoluminescence of CdSe Quantum Dots 298
17.4	Photoluminescence Spectral Shifts 299
17.4.1	Physical Effects on Spectral Shifts 300
17.4.2	Chemical Effects on Spectral Shifts 301

XII	Contents to Volume 1					
	17.5	Enhancement of Photoluminescence in CdSe Quantum Dots	303			
	17.6	On and Off Luminescence Blinking in Single Quantum Dots	306			
	17.6.1	Power-Law Statistics of On and Off Time Distributions 308				
	17.6.2	Modified Blinking 308				
	17.7	Conclusions 312				
		References 312				

Contents to Volume 2

Part	Three	Active	Surfaces	315
rait	Tillee	ACLIVE	Surfaces	212

- The Genesis and Principle of Catalysis at Oxide Surfaces:
 Surface-Mediated Dynamic Aspects of Catalytic Dehydration
 and Dehydrogenation on TiO₂(110) by STM and DFT 317
 Yohei Uemura, Toshiaki Taniike, Takehiko Sasaki, Mizuki Tada,
 and Yasuhiro Iwasawa
- 19 Nuclear Wavepacket Dynamics at Surfaces 337 Kazuya Watanabe
- Theoretical Aspects of Charge Transfer/Transport at Interfaces and Reaction Dynamics 357

 Hisao Nakamura and Koichi Yamashita
- 21 Dynamic Behavior of Active Ag Species in NOx Reduction on Ag/Al₂O₃ 401
 Atsushi Satsuma and Ken-ichi Shimizu
- Dynamic Structural Change of Pd Induced by Interaction with
 Zeolites Studied by Means of Dispersive and Quick XAFS 427
 Kazu Okumura

Part Four Single Crystals 441

- 23 Morphology Changes of Photochromic Single Crystals 443
 Seiya Kobatake and Masahiro Irie
- 24 Direct Observation of Change in Crystal Structures During Solid-State Reactions of 1,3-Diene Compounds 459

 Akikazu Matsumoto

Molecular Nano Dynamics, Volume I: Spectroscopic Methods and Nanostructures Edited by H. Fukumura, M. Irie, Y. Iwasawa, H. Masuhara, and K. Uosaki Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32017-2

25	Reaction Dynamics Studies on Crystalline-State Photochromism			
	of Rhodium Dithionite Complexes	487		
	Hidetaka Nakai and Kiyoshi Isobe			

26 Dynamics in Organic Inclusion Crystals of Steroids and **Primary Ammonium Salts** 505 Mikiji Miyata, Norimitsu Tohnai, and Ichiro Hisaki

27 Morphology Changes of Organic Crystals by Single-Crystal-to-Single-Crystal Photocyclization 527 Hideko Koshima

Part Five Single Biocells 545

- 28 Femtosecond Laser Tsunami Processing and Light Scattering Spectroscopic Imaging of Single Animal Cells 547 Hiroshi Masuhara, Yoichiroh Hosokawa, Takayuki Uwada, Guillaume Louit, and Tsuyoshi Asahi
- 29 Super-Resolution Infrared Microspectroscopy for Single Cells 571 Makoto Sakai, Keiichi Inoue, and Masaaki Fujii
- 30 Three-Dimensional High-Resolution Microspectroscopic Study of Environment-Sensitive Photosynthetic Membranes 589 Shigeichi Kumazaki, Makotoh Hasegawa, Mohammad Ghoneim, Takahiko Yoshida, Masahide Terazima, Takashi Shiina, and Isamu Ikegami
- 31 Fluorescence Lifetime Imaging Study on Living Cells with Particular Regard to Electric Field Effects and pH Dependence 607 Nobuhiro Ohta and Takakazu Nakabayashi
- 32 Multidimensional Fluorescence Imaging for Non-Invasive Tracking of Cell Responses 623 Ryosuke Nakamura and Yasuo Kanematsu
- Fluorescence Correlation Spectroscopy on Molecular Diffusion Inside 33 and Outside a Single Living Cell 645 Kiminori Ushida and Masataka Kinjo
- 34 Spectroscopy and Photoreactions of Gold Nanorods in Living Cells and Organisms 669 Yasuro Niidome and Takuro Niidome

Dynamic Motion of Single Cells and its Relation to 35 Cellular Properties 689

Hideki Matsune, Daisuke Sakurai, Akitomo Hirukawa, Sakae Takenaka, and Masahiro Kishida

Index 703