Contents

List of Contributors XVII
Introduction XXIII

Part One Molecular Separation 1

1 Molecular Modeling, A Tool for the Knowledge-Based Design of Polymer-Based Membrane Materials 3
Dieter Hofmann and Elena Tocci

1.1 Introduction 3
1.2 Basics of Molecular Modeling of Polymer-Based Membrane Materials 5
1.3 Selected Applications 7
1.3.1 Hard- and Software 7
1.3.2 Simulation/Prediction of Transport Parameters and Model Validation 8
1.3.2.1 Prediction of Solubility Parameters 9
1.3.2.2 Prediction of Diffusion Constants 9
1.3.3 Permeability of Small Molecules and Free-Volume Distribution 12
1.3.3.1 Examples of Polymers with Low Permeability of Small Molecules (e.g., PO_2 \leq 50 Barrer) 13
1.3.3.2 Examples of Polymers with High Permeability of Small Molecules (e.g., 50 Barrer \leq PO_2 \leq 200 Barrer) 13
1.3.3.3 Examples of Polymers with Ultrahigh Permeability of Small Molecules (e.g., PO_2 \geq 1000 Barrer) 14
1.4 Summary 16
References 17

2 Polymeric Membranes for Molecular Separations 19
Heru Susanto and Mathias Ulbricht

2.1 Introduction 19
2.2 Membrane Classification 19
3 Fundamentals of Membrane Solvent Separation and Pervaporation 45

Bart Van der Bruggen

3.1 Introduction: Separation Needs for Organic Solvents 45
3.2 Pervaporation and Nanofiltration Principles 46
3.3 Membrane Materials and Properties for Solvent Separation 48
3.3.1 Solvent-Stable Polymeric Membrane Materials 48
3.3.2 Ceramic Membrane Materials 49
3.3.3 Solvent Stability 52
3.3.4 Structural Properties for Membranes in NF and PV 52
3.4 Flux and Separation Prediction 53
3.4.1 Flux Models in NF 53
3.4.2 Rejection in NF 55
3.4.3 Models for PV: from Solution-Diffusion to Maxwell–Stefan 56
3.4.4 Hybrid Simulations 57
3.5 Conclusions 58
References 58

4 Fundamentals of Membrane Gas Separation 63

Tom M. Murphy, Grant T. Offord, and Don R. Paul

4.1 Introduction 63
4.2 Polymer Structure and Permeation Behavior 64
4.3 Membranes from Glassy Polymers: Physical Aging 69
4.4 Membranes from Rubbery Polymers: Enhanced CO₂ Selectivity 75
9 CO₂ Capture with Membrane Systems 195
Rune Bredesen, Izumi Kumakiri, and Thijs Peters

9.1 Introduction 195
9.1.1 CO₂ and Greenhouse-Gas Problem 195
9.1.2 CO₂ Capture Processes and Technologies 196
9.2 Membrane Processes in Energy Systems with CO₂ Capture 199
9.2.1 Processes Including Oxygen-Separation Membranes 199
9.2.2 Precombustion Decarbonization Processes Including Hydrogen and Carbon Dioxide Membrane Separation 202
9.2.3 Postcombustion Capture Processes with Membrane Separation 205
9.3 Properties of Membranes for Hydrogen, Oxygen, and Carbon Dioxide Separation 206
9.3.1 Membranes for Oxygen Separation in Precombustion Decarbonization and Oxy-Fuel Processes 206
9.3.1.1 Flux and Separation 206
9.3.1.2 Stability Issues 207
9.3.2 Membranes for Hydrogen Separation in Precombustion Decarbonization 207
9.3.2.1 Microporous Membranes 208
9.3.2.2 Dense Metal Membranes 209
9.3.2.3 Stability Issues 209
9.3.2.4 Dense Ceramic Membranes 210
9.3.3 Membranes for CO₂ Separation in Precombustion Decarbonization 211
9.3.4 CO₂ Separation in Postcombustion Capture 211
9.3.4.1 CO₂ Separation Membranes 211
9.3.4.2 Membrane Contactors for CO₂ Capture 212
9.4 Challenges in Membrane Operation 212
Contents

9.4.1 Diffusion Limitation in Gas-Phase and Membrane Support 212
9.4.2 Membrane Module Design and Catalyst Integration 214
9.5 Concluding Remarks 216
References 216

10 Seawater and Brackish-Water Desalination with Membrane Operations 221
Raphael Semiat and David Hasson
10.1 Introduction: The Need for Water 221
10.2 Membrane Techniques in Water Treatment 221
10.3 Reverse-Osmosis Desalination: Process and Costs 226
10.3.1 Quality of Desalinated Water 228
10.3.2 Environmental Aspects 229
10.3.3 Energy Issues 230
10.4 Treatment of Sewage and Polluted Water 232
10.4.1 Membrane Bioreactors 234
10.4.2 Reclaimed Wastewater Product Quality 234
10.5 Fouling and Prevention 235
10.5.1 How to Prevent 236
10.5.2 Membrane Cleaning 237
10.6 R&D Directions 237
10.6.1 Impending Water Scarcity 237
10.6.2 Better Membranes 237
10.6.3 New Membranes-Based Desalination Processes 238
10.7 Summary 240
References 240

11 Developments in Membrane Science for Downstream Processing 245
João G. Crespo
11.1 Introduction 245
11.1.1 Why Membranes for Downstream Processing? 245
11.2 Constraints and Challenges in Downstream Processing 246
11.2.1 External Mass-Transport Limitations 246
11.2.2 Membrane Fouling 247
11.2.3 Membrane Selectivity 249
11.3 Concentration and Purification of Small Bioactive Molecules 249
11.3.1 Electrodialysis 250
11.3.2 Pervaporation 251
11.3.3 Nanofiltration 253
11.4 Concentration and Purification of Large Bioactive Molecules 255
11.4.1 Ultrafiltration 256
11.4.2 Membrane Chromatography 260
11.5 Future Trends and Challenges 261
References 262
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Integrated Membrane Processes</td>
<td>265</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>265</td>
</tr>
<tr>
<td>12.2</td>
<td>Integrated Membrane Processes for Water Desalination</td>
<td>266</td>
</tr>
<tr>
<td>12.3</td>
<td>Integrated Membrane Process for Wastewater Treatment</td>
<td>271</td>
</tr>
<tr>
<td>12.4</td>
<td>Integrated Membrane System for Fruit-Juices Industry</td>
<td>274</td>
</tr>
<tr>
<td>12.5</td>
<td>Integrated Membrane Processes in Chemical Production</td>
<td>276</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusions</td>
<td>281</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>281</td>
</tr>
</tbody>
</table>

Part Two Transformation 285

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Fundamental of Chemical Membrane Reactors</td>
<td>287</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>287</td>
</tr>
<tr>
<td>13.2</td>
<td>Membranes</td>
<td>289</td>
</tr>
<tr>
<td>13.3</td>
<td>Membrane Reactors</td>
<td>294</td>
</tr>
<tr>
<td>13.4</td>
<td>Catalytic Membranes</td>
<td>301</td>
</tr>
<tr>
<td>13.5</td>
<td>Thermodynamic Equilibrium in Pd-Alloy Membrane Reactor</td>
<td>301</td>
</tr>
<tr>
<td>13.6</td>
<td>Conclusions</td>
<td>303</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Mathematical Modeling of Biochemical Membrane Reactors</td>
<td>309</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>14.2</td>
<td>Membrane Bioreactors with Membrane as Bioreactor</td>
<td>310</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Enzyme Membrane Reactor</td>
<td>311</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Whole-Cell Membrane Bioreactor</td>
<td>312</td>
</tr>
<tr>
<td>14.3</td>
<td>Membrane Bioreactors with Membrane as Separation Unit</td>
<td>312</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Moving-Bed Biofilm Membrane reactor</td>
<td>312</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Wastewater Treatment by Whole-Cell Membrane Reactor</td>
<td>313</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Membrane Fouling</td>
<td>313</td>
</tr>
<tr>
<td>14.4</td>
<td>Mathematical Modeling of Membrane Bioreactor</td>
<td>314</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Modeling of Enzyme Membrane Layer/Biofilm Reactor</td>
<td>314</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Concentration Distribution and Mass-Transfer Rates for Real Systems</td>
<td>318</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Prediction of the Convective Velocity through Membrane with Cake and Polarization Layers</td>
<td>321</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Convective Flow Profile in a Hollow-Fiber Membrane</td>
<td>323</td>
</tr>
<tr>
<td>14.4.4.1</td>
<td>Without Cake and Polarization Layers</td>
<td>323</td>
</tr>
<tr>
<td>14.4.4.2</td>
<td>With Cake and Polarization Layer</td>
<td>324</td>
</tr>
</tbody>
</table>
14.4.5 Mass Transport in the Feed Side of the Hollow-Fiber Membrane Bioreactor 325
14.5 Modeling of the MBR with Membrane Separation Unit 327
14.5.1 Moving-Bed-Biofilm Membrane Reactor 327
14.5.2 Submerged or External MBR Process 327
14.5.3 Fouling in Submerged Membrane Module 328
14.6 Conclusions and Future Prospects 328

References 332

15 Photocatalytic Membrane Reactors in the Conversion or Degradation of Organic Compounds 335
Raffaele Molinari, Angela Caruso, and Leonardo Palmisano

15.1 Introduction 335
15.2 Fundamentals on Heterogeneous Photocatalysis 336
15.2.1 Mechanism 336
15.2.2 Photocatalysts: Properties and New Semiconductor Materials Used for Photocatalytic Processes 336
15.2.2.1 Titanium Dioxide 338
15.2.2.2 Modified Photocatalysts 338
15.3 Photocatalytic Parameters 340
15.4 Applications of Photocatalysis 341
15.4.1 Total Oxidations 341
15.4.2 Selective Oxidations 343
15.4.3 Reduction Reactions 344
15.4.4 Functionalization 344
15.4.5 Hydrogen Production 345
15.4.6 Combination of Heterogeneous Photocatalysis with Other Operations 346
15.5 Advantages and Limits of the Photocatalytic Technologies 346
15.6 Membrane Photoreactors 348
15.6.1 Introduction 348
15.6.2 Membrane Photoreactor Configurations 348
15.6.2.1 Pressurized Membrane Photoreactors 349
15.6.2.2 Sucked (Submerged) Membrane Photoreactors 349
15.6.2.3 Membrane Contactor Photoreactors 350
15.6.3 Parameters Influencing the Photocatalytic Membrane Reactors (PMRs) Performance 352
15.6.4 Future Perspectives: Solar Energy 353
15.7 Case Study: Partial and Total Oxidation Reactions in PMRs 354
15.7.1 Degradation of Pharmaceutical Compounds in a PMR 354
15.7.2 Photocatalytic Production of Phenol from Benzene in a PMR 357
15.8 Conclusions 358
References 358
18.2.3 Dialysis Requirements 415
18.2.4 Mass Transfers in a Hemodialyzer 416
18.2.4.1 Characterization of Hemodialyzers Performance 416
18.2.5 Hemofiltration and Hemodiafiltration 417
18.2.6 Various Types of Hemodialyzers 418
18.2.6.1 Various Types of Membranes 419
18.2.6.2 Optimization of Hemodialyzer Performance 420
18.3 Plasma Separation and Purification by Membrane 421
18.3.1 Introduction 421
18.3.2 The Baxter Autopheresis C System for Plasma Collection from Donors 421
18.3.3 Therapeutic Applications of Plasma Separation 422
18.3.3.1 Plasma Exchange 423
18.3.3.2 Selective Plasma Purification by Cascade Filtration 423
18.4 Artificial Liver 426
18.4.1 Introduction 426
18.4.2 Physical Principles 426
18.4.3 Convection + Adsorption Systems 428
18.4.4 Diffusion + Adsorption Systems 428
18.4.5 Future of Artificial Livers 429
18.4.6 Conclusions 430
References 430

19 Membranes in Regenerative Medicine and Tissue Engineering 433
Sabrina Morelli, Simona Salerno, Antonella Piscioneri, Maria Rende, Carla Campana, Enrico Drioli, and Loredana De Bartolo
19.1 Introduction 433
19.2 Membranes for Human Liver Reconstruction 434
19.3 Human Lymphocyte Membrane Bioreactor 439
19.4 Membranes for Neuronal-Tissue Reconstruction 440
19.5 Concluding Remarks 443
References 444

Part Three Membrane Contactors 447

20 Basics in Membrane Contactors 449
Alessandra Criscuoli
20.1 Introduction 449
20.2 Definition of Membrane Contactors 449
20.3 Mass Transport 452
20.4 Applications 455
20.5 Concluding Remarks 460
References 460
21 Membrane Emulsification: Principles and Applications 463

Lidietta Giorno, Giorgio De Luca, Alberto Figoli, Emma Piacentini, and Enrico Drioli

21.1 Introduction 463
21.2 Membrane Emulsification Basic Concepts 465
21.3 Experimental Bases of Membrane Emulsification 468
21.3.1 Post-Emulsification Steps for Microcapsules Production 474
21.3.2 Membrane Emulsification Devices 476
21.4 Theoretical Bases of Membrane Emulsification 479
21.4.1 Torque and Force Balances 480
21.4.2 Surface-Energy Minimization 485
21.4.3 Microfluid Dynamics Approaches: The Shape of the Droplets 486
21.5 Membrane Emulsification Applications 488
21.5.1 Applications in the Food Industry 488
21.5.2 Applications in the Pharmaceutical Industry 489
21.5.3 Applications in the Electronics Industry 490
21.5.4 Other Applications 491
21.6 Conclusions 493

References 494

22 Membrane Contactors in Industrial Applications 499

Soccorso Gaeta

22.1 Air Dehumidification: Results of Demonstration Tests with Refrigerated Storage Cells and with Refrigerated Trucks 505
22.2 Refrigerated Storage Cells 507
22.3 Refrigerated Trucks 508
22.4 Capture of CO₂ from Flue Gas 510

References 512

23 Extractive Separations in Contactors with One and Two Immobilized L/L Interfaces: Applications and Perspectives 513

Stefan Schlosser

23.1 Introduction 513
23.2 Contactors with Immobilized L/L Interfaces 516
23.3 Membrane-Based Solvent Extraction (MBSE) and Stripping (MBSS) 517
23.3.1 Case Studies 519
23.4 Pertraction through BLME 525
23.4.1 Case Studies 526
23.5 Pertraction through SLM 527
23.5.1 Case Studies 529