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1.1
Introduction

Predicting the reactivity of catalytic systems is a nontrivial process that usually
requires knowledge about its geometric and electronic structure, properties deter-
mined by quantum mechanics (QM). Solving the Schr€odinger equation1) is a
nontrivial task even for small systems, and it becomes especially arduous when the
system involves multiple phases as is the case in a surface reaction. Theoretical
calculations nevertheless provide useful and important perspectives on chemical
reactions that are not accessible through experimental observations alone. Figure 1.1
schematically shows the hierarchy of multiscale modeling, starting from the sub-
atomic regime, over the electronic and atomistic regimes, to themeso- and finally the
macroscale. Different theoretical methods have been established to address ques-
tions related to each regime (or timescale and length scale); however, realistic
processes usually involve effects from all scales. In this chapter, we will focus on
the electronic and atomistic regimes, which not only provide the basis for climbing
up the hierarchy of multiscale modeling but also provide important mechanistic
information on catalytic reactions.

Quantum chemistry is the application of QM to better understand chemical
systems. In its purest form, QM calculations solve the Schr€odinger equation, which
provides the energy of a given configuration of nuclei and their electrons. There are
two general approaches to do this. One way is to solve the energy given by the
Schr€odinger equation approximately using a nonclassical wavefunction. Another
popular approach, density functional theory (DFT), uses the electronic density to
evaluate the energy of a system via an approximate functional. Both approaches have
their merits and provide a nonthermodynamical representation of the energy of a
system of electrons.

This chapter gives an introductory overview of the essential concepts behind
theoretical calculations of surface reactions, which we then apply to better under-
stand one of the key features in energy conversion and fuel cell technology:

1) For the relativistic case, one has to consider the Dirac equation.
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the electrocatalytic oxygen reduction reaction (ORR). After describing the multibody
problem in quantum mechanics, we will discuss the fundamentals behind wave
function- and density-based methods used to solve this problem. We will then focus
on density functional theory and its advantages and disadvantages in applications to
catalysis. Section 1.2, thefirst part of this chapter, endswith brief technical details one
has to grapple with whenmodeling surface reactions. This includes thermodynamic
approximations and other considerations that extend calculated values from theo-
retical studies to be more comparable to experiment. Section 1.3, the second part of
this chapter, shows an example how quantum mechanical DFT calculations can
resolve mechanistic details of a rather complex surface reaction.

1.2
Theoretical Background

1.2.1
The Many-Body Problem

Many material properties of interest to physicists and chemists can be obtained by
solving the many-body Schr€odinger equation. In stationary, nonrelativistic terms it
can be written as

ĤYðrisi;RnÞ ¼ EYðrisi;RnÞ; ð1:1Þ
where Ĥ is the Hamilton operator,Yðrisi;RnÞ is the many-body wave function, E is
the total energy of the system, si is the spin coordinate of electron i, and finally ri

Figure 1.1 Hierarchy of multiscale modeling of different time and length regimes.
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and Rn are the spatial coordinates of electron i and nucleus n, respectively. The
Hamiltonian for a systemconsisting of a set of nuclei and electrons canbewritten as2)

Ĥ ¼
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ð1:2Þ
where T̂n and t̂i are the respective kinetic energy operators for nuclei and electrons,
andZn is the charge on a nucleus. The two species (electrons and nuclei) interact with
each other and themselves. It is difficult to solve such a coupled system since the
motion of any particle is influenced by all other particles. Except for simple systems
such as a hydrogen atom, solving Eq. (1.1) with the corresponding Hamiltonian,
Eq. (1.2), is nontrivial for most materials that consist of several electrons and nuclei.
Therefore, simulations of realistic systems require different applications of
approximations.

1.2.2
Born–Oppenheimer Approximation

The Born–Oppenheimer (BO) approximation (introduced byMax Born and J. Robert
Oppenheimer in 1927 [1]) treats the electronic and nuclear degrees of freedom as
decoupled from each other. Nuclei are much more massive than electrons, so
electrons are assumed to instantaneously follow the motion of the nuclei. Conse-
quently, on the timescale of the motion of the electrons, the nuclei appear almost
stationary. The total wave function of Eq. (1.1) can then be written as3)

Yðrisi;RnÞ ¼ yeðrisi; fRngÞynðRnÞ ð1:3Þ
where yeðrisi; fRngÞ and ynðRnÞ are the electronic and nuclei wave functions, and
fRng denotes that nuclear spatial coordinates are parameters and not variables. We
then can divide the electronic and nuclear parts into
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2) Throughout this chapter, atomic units are assumed.

3) This is an expansion ofYðrisi;RnÞ in a series of eigenfunctions of the electronic Hamilton operator
Ĥe. Since in chemistry electronic excitations usually do not play a substantial role, we restrict our
discussion to the eigenfunctions with the lowest energy of the electronic system (ground state)
yeðrisi; fRngÞ.
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and
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In Eq. (1.4), Ĥe and ye depend only on the positions of the nuclei. In the case of
negligible nonadiabatic effects, this approximation introduces a very small error into
the energies, and this inaccuracy becomes even smaller for heavier elements [2].
Applying this approximation, we can restrict ourselves to the electronic part4)

(Eq. (1.4)), which can be solved exactly for one-electron systems only. Thus, we need
further approximations for systems with many electrons. Many techniques solve the
Schr€odinger equation approximately from first principles (ab initio). Two common
types of ab initio methods are the wave function-based and the density-based
approaches [3]. Both have been applied extensively in material science and catalysis.

1.2.3
Wave Function-Based Methods

The Born–Oppenheimer approximation reduces the many-body problem to the elec-
tronic part only (with the positions of the nuclei as parameters), but the electronic wave
function is still a function of the spatial coordinates of the electrons and their spin
variables.Wenowdescribe theHartree–Fock (HF) approximation,whichcanbeviewed
as the basis for all practical ab initio developments. This approach does not include any
correlation effects, and wewill later describe different approaches to account for these.

1.2.3.1 Hartree–Fock Approximation
In 1927, Hartree [4] considered the electron motions as independent (uncorrelated).
Each electron could then be treated as moving in an averaged field originating from
all other electrons.5) Three years later, Fock [5] followed Hartree�s idea to express the
overall electronic wave function as simple product of single-particle wave functions,
but he introduced the fermionic character of the electrons by using an antisymmetric
sum product of single-particle wave functions. The most simple ansatz for such a
representation is given by a single Slater determinant [6]:

ye ¼
1ffiffiffiffiffiffi
M!

p

j1ðr1s1Þ j1ðr2s2Þ . . . j1ðrMsMÞ
j2ðr1s1Þ j2ðr2s2Þ . . . j2ðrMsMÞ

..

. ..
. ..

.

jMðr1s1Þ jMðr2s2Þ . . . jMðrMsMÞ

����������

����������
; ð1:6Þ

where jiðrjsjÞ describes electron i at the position of electron j. According to Ritz [7],
the lowest-energy system state corresponds to the ground state, which is obtainable

4) Although Eq. (1.4) is themain electronic contribution, in practice we usually also consider the second
term of Eq. (1.5).

5) This is usually called the model of independent electrons or the effective one-particle model.
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by variation under the constraint of an orthonormal6) set of single-particle wave
functions jiðrjsjÞ:

d Ee�
XM
i;j¼1

eijhjijjji
8<
:

9=
; ¼ 0: ð1:7Þ

This finally leads to the well-known Hartree–Fock equations:

F̂ðriÞjjii ¼
XM
j¼1

eijjjji; i ¼ 1; 2; . . . ;M: ð1:8Þ

Here, F̂ is the Fock operator, which can be written as7)

F̂ðriÞ ¼ t̂i�
XN
v¼1

Zn

jri�Rvj þ
XM
j¼1

ð
j*
j ðr0Þ

1
jri�r0jjjðr0Þ dr0 þVxðriÞ: ð1:9Þ

The last term originates from the Pauli principle and describes the nonlocal
exchange, for which there is no classical analogue:

VxðriÞ ¼ �
XM
j¼1

ð
1

jri�r0j
j*
j ðr0ÞjjðriÞj*

i ðriÞjiðr0Þ
j*
i ðriÞjiðriÞ

dr0: ð1:10Þ

Due to the aforementioned nonlocal character of the exchange, practical calculation
of this term is extremely demanding. Dirac [8] and Bloch [9] independently showed
that the exchange integral for a free electron gas can be expressed as function of the
electronic density. In order to generalize this idea, Slater [10, 11] added a scaling factor
Xa to the expression for the free electron gas

VxðriÞ ¼ �3Xa
3
8p

rðriÞ
� �1=3

: ð1:11Þ

For the free electron gas, the scaling factor is 2/3. However, a value of Xa ¼ 0:7 led to
an improved accuracy for atoms [12, 13].

Insertion of the Slater approximation into the exchange term of the HF equations
finally leads to the so-called Hartree–Fock–Slater equation (HFS).

1.2.3.2 Post Hartree–Fock Methods
A critical shortcoming of HF theory is its lack of electronic correlation, that is, the
treatment of systems of electrons interactingwith each other. This correlation is often
separated into two parts.Dynamical correlation relates to responsiveness of electrons
interactingwith each other, while nondynamical electronic correlation relates to how a
real system�s energy is due to contributions from several accessible electronic states.
HF theory treats neither and is not accurate enough to make reliable chemical

6) In the variation, the constraints are usually included as Lagrange multipliers eij .

7) Spin variables have not been expressed explicitly.
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determinations, but additional corrections have been developed in order to account
for these shortcomings such as full CI (configurational interaction), Møller–Plesset
perturbation theory (MPn), complete active space (CAS), or coupled cluster (CC)
methods (see Refs. [14–16] formore details). Themajority of thesemethods are under
the umbrella of fully first-principles methods, that is, ab initiowave functionmethods
that incorporate no empirical data into their calculation. For problems in catalysis,
most of these methods are too expensive in practice; however, the MP2 method is
occasionally useful in calculating dispersion forces and van der Waals interactions.

General perturbation theory presumes that the magnitude of a perturbation in a
calculation is small compared to the unperturbed value of the calculation itself. This
is valid for the electron correlation energy, which is small compared to theHFenergy.
According to perturbation theory in quantum mechanics, the total Hamiltonian is
divided into the unperturbed reference Hamiltonian (Ĥ0) plus the Hamiltonian
corresponding to its correction (Ĥ

0
) times a scaling factor l, which determines the

strength of the perturbation:

Ĥ ¼ Ĥ0 þ lĤ
0
: ð1:12Þ

Based on this separation, perturbation theory yields the different terms of the
Taylor expansion of the electronic energy. Consequently, the first two orders of
correction to the energy of an electronic state n become

Eð1Þ
e;n ¼

D
y

ð0Þ
e;njĤ0jyð0Þ

e;n

E

Eð2Þ
e;n ¼

X
j 6¼n

���Dyð0Þ
e;njĤ0jyð0Þ

e;j

E���2
Eð0Þ
e;n�Eð0Þ

e;j

: ð1:13Þ

InMøller–Plesset perturbation theory, Ĥ0 is taken as the sum of one-electron Fock
operators. The sum of Eð0Þ

e;n þEð1Þ
e;n is the electronic HF energy,8) and additional Eði>1Þ

e;n

corrects the HF energy for electronic correlation. Calculations including the first
additional correction Eð2Þ

e;n are called MP2 methods, while MP3, MP4, and so on also
treat higher perturbation orders.

AlthoughMøller–Plesset perturbation theory in principle allows for a full inclusion
of electronic correlations, evaluating even the first correction terms becomes quite
expensive as the number of electrons in the system increases. Even nowadays,MP2 is
often considered too expensive for simulating surface reactions.

1.2.4
Density-Based Methods

Instead of employing many-body wave functions, density-based methods use the
electron density as the basic variable to evaluate the total energy and other properties.
A well-known density-based approach is the density functional theory, which was
introduced by Hohenberg and Kohn in 1964 [17] and further developed by Kohn and

8) In HF approximation, Eð1Þ
e;n ¼ 0.
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Sham in 1965 [18]. This method dates back to the works of Thomas and Fermi (TF).
Before describing the DFTapproach itself, we briefly review the TFmodel. Although
this section focuses on the electronic part of the many-body problem, for simplicity,
the index e is not given explicitly.

1.2.4.1 The Thomas–Fermi Model
The electronic part of the many-body wave function containing M electrons,
yðr1s1; . . . ; rMsMÞ, is not easy to calculate since it depends on 4M coordinates
(3M coordinates if spin is not considered). Thomas and Fermi proposed a simpler
approach, the TF model, using the electron density of the system rðrÞ as the basic
variable [19, 20]. A key advantage of this approach is that the electron density of M
electrons in a volume element dr depends only on three independent coordinates:

rðrÞ ¼
XM
i¼1

ð
yðr1s1; . . . ; rMsMÞ*dðri�rÞyðr1s1; . . . ; rMsMÞdðr1s1Þ . . .dðrMsMÞ:

ð1:14Þ
Here, the ground-state total energy and other properties can be expressed as

functionals of the electron density. By assuming that the kinetic energy density is
locally equal to that of a homogeneous electron gas, Thomas and Fermi formulated
the total energy functional ETF½rðrÞ� as

ETF rðrÞ½ � ¼ 3ð3p2Þ2=3
10

ð
rðrÞ5=3dr�

XN
v¼1

ZvrðrÞ
jr�Rvj drþ

1
2

ð ð
rðrÞrðr0Þ
jr�r0j drdr0:

ð1:15Þ
The first term denotes the kinetic energy of noninteracting electrons, and the

second and third terms are the classical electrostatic electron–nucleus attraction and
electron–electron repulsion, respectively. Later on, Dirac included the exchange
energy, which has no classical analogue, as an additional term to the TF model [8]:

EDirac
x ¼ � 3

4
3
p

� �1=3 ð
rðrÞ4=3dr: ð1:16Þ

TF calculated energies are usually too high. The Thomas–Fermi–Dirac (TFD)
model accounts for this by adding an appropriate exchange term that gives a negative
energy contribution. Despite this correction, calculated total energies are still not
accurate for chemical predictions since the kinetic energy is poorly described.
Although the TFmodel was not very successful in quantum chemistry or solid-state
physics, it is the starting point for DFT in the sense of using the electron density for
solving multielectron systems.

1.2.4.2 The Hohenberg–Kohn Theorems
The theoretical basis of DFTare two fundamental theorems, which were formulated
and mathematically proven by Hohenberg and Kohn [17] for nondegenerate ground
states. According to the first theorem, the electron density uniquely determines the
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external potential (the potential of the ions or nuclei) to within a constant. Therefore,
the total electronic energy of a system E can be expressed as a functional of the
electron density r,

E½r� ¼ T ½r� þ
ð
rðrÞVextðrÞdrþEee½r�; ð1:17Þ

where T ½r� is the kinetic energy functional and Eee½r� is the electron–electron
interaction energyandalso a functional. Bydefining theHohenberg–Kohn functional

FHK½r� ¼ T ½r� þEee½r�; ð1:18Þ

we obtain

E½r� ¼
ð
rðrÞVextðrÞdrþFHK½r�: ð1:19Þ

The exact solution to the Schr€odinger equation could be obtained with an explicit
expression for the universal functional FHK½r�. Unfortunately, this expression is still
unknown, but we will later show different approximations for this term. The
remaining electron–electron interaction Eee½r� can be written as

Eee½r� ¼ J½r� þEnoncl½r�; ð1:20Þ

where the first term is simply the classical Coulomb repulsion and the second term is
the nonclassical part that contains self-interaction correction, exchange, and Cou-
lomb correlation energy.

The second Hohenberg–Kohn theorem provides the energy variational principle
for the exact functional. The ground-state density r0ðrÞ is the density that minimizes
E½r�

E0 ¼ E½r0ðrÞ� � E½rðrÞ� ð1:21Þ
when

rðrÞ � 0 and
ð
rðrÞdr�M ¼ 0: ð1:22Þ

Energyminimization of the energy functional fulfills the Euler–Lagrange equation
under the constraint of a constant number of electronsM (Eq. (1.22)), which can be
written as

m ¼ dE½rðrÞ�
drðrÞ ¼ VextðrÞþ dFHK½rðrÞ�

drðrÞ ; ð1:23Þ

where the Lagrange multiplier m is the chemical potential of the electrons. In
principle, this formulation provides all ground-state properties, but the Hohen-
berg–Kohn theorems do not tell us how to find the universal functional FHK½r�. Later
on, Kohn and Sham [18] found rather accurate approximations for FHK½r�, and others
still continue this development.
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1.2.4.3 The Kohn–Sham Equations
KohnandShamdecomposed the exact kinetic energy functionalT ½r� into twoparts to
approximate the universal functional FHK½r� in terms of Eq. (1.18). The first term is
the kinetic energy of a system of noninteracting electrons Ts given by

Ts ¼ � 1
2

XN
i¼1

< wijr2jwi >; ð1:24Þ

where wi are the so-called Kohn–Sham orbitals. The second term contains all
remaining (and neglected) interactions in the noninteracting system (T�Ts).

The second contribution is a small correction and it is included along with the
nonclassical part of the electron–electron interaction Enoncl into a term defined as
exchange–correlation (xc) energy:

Exc½r� ¼ ðT ½r��Ts½r�Þ þ ðEee½r��J½r�Þ: ð1:25Þ

The energy functional Eq. (1.17) is now written as9)

E½r� ¼ Ts½r� þ
ð
rðrÞVextðrÞdrþ J½r� þExc½r�: ð1:26Þ

Finding suitable expressions for the Exc½r� term is the main challenge in DFT
development since it consists of all contributions that are not yet known exactly. The
Euler–Lagrange equation now has the form

ei
drðrÞ
dwi

¼ dE½rðrÞ�
drðrÞ

drðrÞ
dwi

¼ dTs½rðrÞ�
dwi

þVeff ðrÞdrðrÞ
dwi

ð1:27Þ

with

Veff ðrÞ ¼ VextðrÞþ
ð
rðr0Þ
jr�r0j dr

0 þVxcðrÞ; ð1:28Þ

where the exchange–correlation potential VxcðrÞ is

VxcðrÞ ¼ dExc½rðrÞ�
drðrÞ : ð1:29Þ

The solution of Eq. (1.27) is obtained by solving the following set of one-particle
equations

� 1
2
r2 þVeff ðrÞ

� �
wi ¼ eiwi; ð1:30Þ

9) In principle, the kinetic energy term Ts is a functional of the Kohn–Sham orbitals wi.
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where the electron density of the real system is constructed from the Kohn–Sham
orbitals

rðrÞ ¼
Xocc
i¼1

jwiðrÞj2: ð1:31Þ

Here, the summation runs over all occupied orbitals (occ). Equations (1.28), (1.30)
and (1.31) are known as Kohn–Sham equations. The procedure to solve a particular
problem is to start with a guessed rðrÞ, determine Veff from Eq. (1.28), and then
obtain a new rðrÞ from Eqs. (1.30) and (1.31). This procedure is then repeated until
rðrÞ is converged, and the total energy is obtained.10)

1.2.4.4 Exchange–Correlation Functionals
Density-based formulations reduce the complexity of the many-body problem, but
the resulting Kohn–Sham equation (1.30) still requires an xc functional. Different
approximations of this term are the key distinction of all DFT implementations.

Perdew [21, 22] has illustratively formulated the hierarchy of different approxima-
tions of the xc functional as a �Jacob�s ladder,� rising from the earth of Hartree to the
heaven of chemical accuracy (see Figure 1.2).

Starting from the earth of Hartree, the subsequent rungs of the ladder are defined
as follows:

. Local (spin) density approximation (L(S)DA): Here the exchange–correlation
energy of an inhomogeneous system is obtained by assuming that its density

10) This iterative process is known as the self-consistent field (SCF) approach.

Figure 1.2 Jacob�s ladder illustrating the hierarchy of exchange–correlation functionals.

10j 1 Modeling Catalytic Reactions on Surfaces with Density Functional Theory



can locally be treated as a uniform electron gas. The xc energy can then be written
as

ELDA
xc ½r� ¼

ð
rðrÞexcðrðrÞÞdr; ð1:32Þ

where excðrðrÞÞ is the xc energy per particle of the homogeneous electron gas,
which can be split into exchange and correlation terms

excðrðrÞÞ ¼ exðrðrÞÞþ ecðrðrÞÞ: ð1:33Þ
The exchange part is given by the Dirac expression (Eq. (1.16))

exðrðrÞÞ ¼ � 3
4

3
p

� �1=3

rðrÞ1=3: ð1:34Þ

The correlation component ec has been determined by Monte Carlo (MC)
calculations for a uniform electron gas considering a number of different
densities [2]. Although one might expect that the LDA functional is valid only
for a slowly varying density that might resemble a uniform electron gas, expe-
rience shows that this approximation is surprisingly valuable in a wide range of
problems in solid-state physics and material science. LDA is noted to calculate
molecular geometries and vibrational frequencies reasonably, but bond energies
are strongly overestimated.

. Generalized gradient approximation (GGA): Inadequacies in LDA brought about
a modified xc functional that, in addition to the density, contains terms for the
density gradient:

EGGA
xc ½r� ¼

ð
rðrÞexc rðrÞ;rrðrÞð Þdr: ð1:35Þ

One form of GGA introduced by Perdew, Burke, and Ernzerhof (PBE) [23] is
widely used in surface physics. In this approximation, the correlation energy is
expressed as

EGGA
c ½r� ¼

ð
r eunifc ðrÞþKðr; tÞ	 


dr; ð1:36Þ

with

Kðr; tÞ ¼ cln 1þ bt2

c

1þAt2

1þAt2 þA2t4

� �� �
ð1:37Þ

and

c ’ 0:031091; b ’ 0:066725; A ¼ b

c

1

e�e
unif=c
c �1

; t ¼ jrrj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð3p2rÞ1=3=p

q� �
r

:

ð1:38Þ
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Here, t is a dimensionless density gradient. The exchange energy in terms of an
enhancement factor Fx is written as

EGGA
x ½r� ¼

ð
reunifx ðrÞFxðsÞdr; ð1:39Þ

where eunifx ðrÞ and eunifc ðrÞ are, respectively, the exchange and correlation energies
per particle of a homogeneous electron gas at point r (see Eq. (1.34)) and s is
another dimensionless density gradient

s ¼ jrrj
2ð3p2rÞ1=3r

: ð1:40Þ

Finally, the function FxðsÞ is

FxðsÞ ¼ 1þk� k

1þms2=k
; ð1:41Þ

where k ¼ 0:804 and m ’ 0:21951.
. Meta-generalized gradient approximation (MGGA): The kinetic energy density,

tðrÞ, is an additional Kohn–Sham contribution that can be calculated. In general,
MGGA functionals have the following form:

EMGGA
xc ½r� ¼

ð
rðrÞexcðrðrÞ;rrðrÞ; tðrÞÞdr: ð1:42Þ

The main advantage of including kinetic energy densities is that it mostly
eliminates self-interaction errors, causing inaccuracies with LDA and GGA
functionals at low-density and strong interaction limits. In intermediate regions,
however, MGGA functionals usually do not provide substantial improvement to
corresponding GGAs.

. Hybrid DFT with exact exchange: An entirely different approach to improve
deficiencies in GGA functionals is to incorporate the so-called exact exchange
energy (EXX) contributions. The exact exchange energy Eexact

x is a derivative from
the Hartree–Fock approximation (see Section 2.3.1), and is obtained by solving
only the exchange part of the exchange–correlation functional exactly. The result is
an energy value that when scaled according to

Ehybrid
xc ¼ EGGA

xc þ a Eexact
x �EGGA

x

� � ð1:43Þ

provides a convenient cancellation of errors, making hybrid DFT methods
surprisingly accurate. Based on this idea, the highly popular hybrid DFTmethod
B3LYP combines exactHFexchangewith the Slater [24] local exchange functional.
In addition, it uses the Becke gradient correction [25], the local Vosko–Wilk–Nu-
sair exchange functional [26], and the Lee–Yang–Parr local gradient-corrected
functional [27]. Inclusion of thenonlocal exchange, however, limits thesemethods
to be applicable only for finite systems and not in a periodic representation.
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1.2.5
Technical Aspects of Modeling Catalytic Reactions

1.2.5.1 Geometry Optimizations
The following discussion of atomic properties in molecular configurations is
simplified by considering a Born–Oppenheimer potential energy surface (PES).
The PES is a hypersurface that is defined by the electronic energy as a function of the
nuclei positions Rn, which are 3N dimensional.11) We now concentrate on the
electronic part of the total energy that depends on the atom positions as parameters
plus the nuclei–nuclei interaction (Ee þEn�n). A PES can be expressed in the
neighborhood of any spatial position R0

v as

EðRvÞ ¼ E
�
R0
v

�þ g
�
Rv�R0

v

�þ 1
2

�
Rv�R0

v

�T
H
�
Rv�R0

v

�þ . . . ; ð1:44Þ

where g andH are the gradients and Hesse matrix (or Hessian), whose components
are defined as

gv ¼ @E
@Rv

����
Rv¼R0

v

and Hvm ¼ @2E
@Rv@Rm

����
Rv¼R0

v

: ð1:45Þ

While gradient calculations are typically manageable for large-scale calculations,
Hessian calculations can be enormously time consuming.

After an electronic energy is calculated, a gradient calculation can be performed
analytically or numerically. With this gradient, a cycle of procedures using any of the
multitude of optimization schemes can change the atomic positions of the molecule
Rv until the gradient has reached a small value (below the desired convergence
threshold), thereby indicating a stationary point on the PES. This process of
calculating a gradient (and then adjusting the atomic positions accordingly) from
an energy is usually referred to as geometry optimization step. Common procedures
for geometry optimizations include the steepest descent, conjugate gradient,
Newton–Raphson, or Broyden–Fletcher–Goldfarb–Shanno(BFGS) methods (see
Ref. [28] for more details), some of which require only the first derivative of the
energy or even use the Hesse matrix (see Eqs. (1.44) and (1.45)). Although each
methodhas certain benefits, all are simply algorithms to reach the desired low-energy
state faster in lieu of troublesome regions of the topology of the PES.

Stationary points define stable intermediates when located at a local minimum of
the PES. In practice, geometry optimizations are accelerated by force constants
associated with normalmodes of the species at different points of the PES, and these
force constants can be obtained from theHessian. To avoid the expense of calculating
aHessian at every geometry iteration,methods are available to construct approximate
Hessians from gradient calculations. The integrity of these Hessians is not always
ideal, often still requiring a full (numerical) calculation of the Hessian at the end of
the geometry optimization.

11) Note that this is not describing an internal coordinate systemwhere one omits six coordinates related
to system translations and rotations to result in 3N�6 coordinates.
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1.2.5.2 Transition-State Optimizations
Geometry optimizations can also be extended to seek transition states (TS),first-order
saddle points where all but one internal coordinate are at aminimum.Unfortunately,
these approaches are substantially more difficult since the local topology of a PES is
usually required to find a first-order saddle point where the TS resides. Different
automated routines have been developed to efficiently locate transition states;
however, for many methods, there is no guarantee that a TS would ever be found.

A highly effective but cumbersome approach is to explicitly calculate a PES by
manually varying specific constrained coordinates. In this approach, unconstrained
coordinates are allowed to freely relax to minimum energy positions in a standard
geometry optimization, and the result is a single data point on a PES surface. After
multiple points have been sampled, the PES can be interpolated with minimum
curvature or radial basis function algorithms.

Themost ubiquitous TS searches use the modified Newton–Raphson routine and
start fromanatomic configuration close to that of theTS. The optimization procedure
successivelymoves along the normalmode of theHessianwith the lowestmagnitude
in an attempt to find the point of maximum negative curvature. These methods are
rather efficient if the starting geometry is near the real TS and the utilized Hessian
contains only one negative mode.12)When neither of these criteria is applicable, this
procedure may fail spectacularly.

Other QM routines incorporate more information either by requiring coordinates
from the initial reactant and product configurations or sometimes by including an
initial guess for the TS as well. Such routines are quite efficient for locating transition
states involving one or two bonds breaking in molecules, but for very large systems
such as solids where atom movement influences a larger environment, alternative
methods are needed.

For instance, nudge elastic band (NEB) methods are a notable and efficient
technique to find these difficult TS without the use of a Hessian. NEB procedures
linearly interpolate a series of atomic configurations (the so-called images) aligned in
a row between the known initial and final states and then minimize their energies
(see Figure 1.3). Thismethod incorporates a limited description of the topology of the
PES and thereby reveals the TS as the maximum energy image along the minimum
energy reaction path. NEB is not the only procedure that uses a multitude of
geometries coupled to each other. However, it is by far one of the most popular
means to locate TSs for catalytic reactions happening on surfaces or in bulk
environments.

1.2.5.3 Vibrational Frequencies
Vibrational frequencies corresponding to experimental IR spectra are often evaluated
only around equilibrium structures (local minima on the PES) using the harmonic
oscillator approximation for the potential. Using generalized coordinates13) for the
atom positions Q , Eq. (1.4) becomes

12) Diagonalizing the Hessian would lead to a single negative eigenvalue.

13) For example, Cartesian or internal coordinates.
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where EeðQ0Þ is the electronic part of the energy for the system in its equilibrium
structure. The quantum mechanical harmonic oscillator problem gives the eigen-
values of previous equations:

ðE�EeðQ0ÞÞkv ¼ kþ 1
2

� �
hvv ð1:47Þ

where k is the vibrational quantumnumber14) andvv the vibrational frequency along
direction v:

vv ¼
ffiffiffiffiffi
kv
mv

s
; ð1:48Þ

with the corresponding force constant kv and effective mass mv. The sign of the force
constant shows the curvature of the PES along the particular direction (or mode).
Calculated vibrational frequencies are, therefore, often analyzed in order to ensure
that a structure optimized to either a stable intermediate or a TS. Indeed, vibrational
frequencies should be calculated at the end of every geometry optimization for this
very purpose. However, calculated frequencies are not expected to perfectly match

Figure 1.3 Schematic of the NEB method used to find a transition state between reactant and
product states.

14) Usually, the index n is used for the quantumnumber, but this index had already been used to indicate
nuclei-related expressions.
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with experimental IR frequencies since the previously described approach does not
account for anharmonicities of vibrational modes, regardless of the method used.

Equation (1.47) indicates that even in the ground-state k ¼ 0 there is a nonzero
vibrational contribution to the energy of a system. Energy from this first thermo-
dynamic correction is the zero-point vibrational energy (EZPE), defined as half of the
sum of all vibrational normal modes vv:

EZPE ¼ 1
2

X
v

hvv: ð1:49Þ

1.2.5.4 Thermodynamic Treatments of Molecules
Macroscopic energies based on microscopic contributions can be obtained through
traditional statistical thermodynamics using the ideal gas assumption. The rudi-
mentary function that describes macroscopic properties is the partition function,
which is separable into electronic, translational, rotational, and vibrational compo-
nents:

E ¼ Ee þEtrans þErot þEvib: ð1:50Þ
Each of these energy contributions in turn has internal energy components,U, and

entropy, S, which are also separable into components:

U ¼ Ue þUtrans þUrot þUvib;

S ¼ Se þStrans þSrot þSvib:
ð1:51Þ

We now discuss the different energy and entropy contribution terms as follows:15)

. Electronic contributions: The electronic part of the internal energy Ue can be
obtained by solving the electronic part of the many-body problem (Eq. (1.5)). In
situations involving electronic degeneracies (i.e., doublet, triplet, and so on states)
electronic entropy contributions come into play

Se ¼ kB lnð2Sþ 1Þ; ð1:52Þ
where S is the total spin of the molecular state.

. Translational contributions: The temperature-dependent internal energy associ-
ated with molecular translations is ð1=2ÞkBT for every translational degree of
freedom of themolecule. In Cartesian space, this leads toUtrans ¼ ð3=2ÞkBT . The
entropy of translation is

S�trans ¼ kB ln
mvkBT

2ph2

� �3=2 V�

NA

" #
þ 5

2

( )
ð1:53Þ

where V� is the molar volume of a gas at its standard state: 24.5 ‘.
. Rotational contributions: As for the translational contributions, the temperature-

dependent internal energy associated with molecular rotations is also ð1=2ÞkBT

15) In this section, all energies are in kBT (per particle).
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for each rotational degree of freedom. While single atoms receive no rotational
energy, linear molecules receive kBT , and nonlinear molecules receive ð3=2ÞkBT .
The entropy of rotation is

Srot ¼ kB ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pIAIBIC

p
s

2kBT

h2

� �3=2
" #

þ 3
2

( )
; ð1:54Þ

where s is the rotational symmetric number for the molecule�s point group, and
IA, IB, and IC are the molecule�s three principal moments of inertia.

. Vibrational contributions: Thermodynamic energy contributions frommolecular
vibrations are calculated per vibrational frequency, vv. Thus, they can be calcu-
lated only once vibrational frequencies are obtained from a Hessian calculation.
Vibrational energies must be summed over all 3N�6 molecular vibrations:16)

Uvib ¼
X
v

hvv

ehvn=kBT�1
ð1:55Þ

and

Svib ¼ kB
X
v

hvv

kBTðehvn=kBT�1Þ�lnð1�e�hvn=kBT Þ
� �

: ð1:56Þ

Using these energy contributions in addition to the calculated Ee from ab initio or
DFTmethods, the following thermocorrected energies can be obtained:

H0K ¼ Ee þEZPE; ð1:57Þ

HT ¼ H0K þUT ðþ kBT if in gas phaseÞ; ð1:58Þ

GT ¼ HT�TST: ð1:59Þ

1.2.5.5 Considering Solvation
Most chemical processes and catalytic reactions occur in the condensed phase rather
than in gas phase. However, including the electronic structure of surrounding
molecules implies more complex systems.

The methods used to model solvation can be basically categorized into two main
approaches: the explicit and the implicit treatments (see Figure 1.4). In the explicit
solvent model (see Refs. [29, 30] for further information), the solvent is described by
individual molecules. Consequently, this approach provides detailed information
about the structure of the solute/solvent interface for systems near equilibrium and
along reaction pathways (e.g., Car–Parrinello ab initio molecular dynamics
(CPMD) [31]). However, the demands of a purely quantum mechanical treatment
requires a system size limited to a relatively small number of solvent molecules.

16) For linear molecules, there are 3N�5 vibrational modes.
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An alternative approach is to treat the entire or at least parts of the solvent with
a lower level of theory than the solute, for example, with semiempirical forcefields [29,
30, 32–34]. In these methods, usually known as QM/MM simulations, the solvent–-
solvent, and solute–solvent interactions are mostly given by a sum of electrostatic and
van der Waals contributions. Further, the coupling between the quantum-mechan-
ically treated solute and the molecular-mechanically treated solvent needs particular
attention. Possible solutions are provided by a multipolar expansion of the QM wave
functions [35, 36] or a solvent-averaged potential.

Much less demanding implicit solvent approaches [37, 38] can provide a useful
correction accounting for solvation. These methods use a continuous electric field to
represent a statistical average of the dielectric effects of the solvent over all the solvent
degrees of freedom. The solute is then placed in a cavity, whose size and shape have to
be chosen properly. Different ways exist to define these cavities, for example, using
atom-centered interlocked spheres of certain radii [37, 39], the solvent-excluded
surface (SES) [40], or the solvent-accessible surface (SAS) [41] method. Due to
electrostatic interactions, the solute polarizes the solvent, which then forms the
so-called reaction field that couples back to the solute. The corresponding electro-
static potential, which is required to evaluate the interaction energy, is obtained by
solving the Poisson–Boltzmann equation (assuming a Boltzmann-type distribution
of ions within the solvent):

r eðrÞrVesðrÞ½ � ¼ �4p rf ðrÞþ
X
i

c¥i zilðrÞe�ziVesðrÞ=kBT
" #

; ð1:60Þ

where eðrÞ is the position-dependent dielectric, Ves is the electrostatic potential, rf is
the charge density of the solute, c¥i is the bulk concentration of ion-type iwith the net
charge zi, and finally lðrÞ is a factor for the position-dependent accessibility of the
solution to position r. This leads to a contribution to the overall free energy of a
system:

DGsolv ¼ DGchg þDGcav; ð1:61Þ

Figure 1.4 Illustrations of solvationmethods. (a) Explicit solvation, where solventmolecules (here
water) are treated as the molecule of interest. (b) Implicit solvation, where only the molecule of
interest is surrounded by a continuum representing the solvent.
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where the two terms account for the free energy to generate the cavity and for
charging the solvent near the solute.

In quantum mechanical calculations of a solute electronic structure, the solvent
reaction field is incorporated into the iterative cycle, resulting in the so-called self-
consistent reactionfield (SCRF) approach. Instead of solving the Poisson–Boltzmann
equation directly, different approximations exist to evaluate the solvation free energy
by analytic expressions, for instance, the generalized Born model [42, 43], the Bell
model, or the Onsager model [37, 38].

1.2.6
Model Representation

Studying surface-specific problems such as structures, adsorptions, and catalytic
reactions is a formidable task and requires one of the two surface model approaches:
the periodic slab/supercell approach and the cluster approximation. Both models
have advantages and disadvantages. The choice depends on the particular physical or
chemical question to be answered.

1.2.6.1 Slab/Supercell Approach
Although the many-body problem has been simplified by the formulation of DFT,
calculating the electronic structure of extended systems (e.g., bulk, surfaces, and
chains) with infinite number of electrons (e.g., in a solid) is of course impossible.
However, by assuming periodic boundary conditions and applying Bloch�s theo-
rem [44], the calculation of extended systems becomes possible.

The Bloch theorem states that each electronic wave function17) in a periodic solid
can be written as the product of a periodic function, un;kðrÞ, and a plane wave,
leading to

wn;k ¼ un;kðrÞeik � r; ð1:62Þ

where k is the wave vector that lies inside the first Brillouin zone (BZ). The index n,
the band index, labels the wave functions for a given k. The function un;kðrÞ has the
periodicity of the supercell and can be expanded using a set of plane waves

un;kðrÞ ¼
X
G

cn;kðGÞeiG � r; ð1:63Þ

where the wave vectors G are reciprocal lattice vectors fulfilling the boundary
condition of the unit cell, G � L ¼ 2pn.

The physical quantities of a system, such as the electron density and total energy,
are obtained by performing an integration into reciprocal space. Numerically, the
integral over the BZ can be transformed into a sum over only a finite number of k-
points, called the k-point mesh:

17) Here, we show derivation for the density functional theory, thus expanding Kohn–Sham orbitals.
However, the Bloch theorem is not restricted to DFT.
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vk: ð1:64Þ

The error introduced by this approximation can be minimized if a sufficiently
dense set of k-points is used, but the computational effort grows quickly with the
number of k-points. Therefore, it is crucial to test the convergence of the results with
respect to the number of k-points and choose an appropriate mesh size.18)

In principle, an exact representation of the electronic wave functions should
require an infinite number of plane waves. In practice, however, a finite number of
plane waves up to a certain cutoff, Ecutoff , already provides sufficiently accurate
results:19)

1
2
jkþGj2 � Ecutoff : ð1:65Þ

Periodic systems are modeled by concentrating on the smallest possible unit cell
and periodically repeating it over all space. For bulk materials, this box of atoms is
mostly set up by using the primitive unit cell of the crystal. For a surface, however, the
periodicity in direction perpendicular to the surface is broken. Surfaces are modeled
by a periodic 3D structure containing crystal slabs separated by vacuum regions (see
Figure 1.5) in order to maintain the periodicity in this direction. This so-called
supercell approach represents the surfaces periodically, and they must be separated
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Figure 1.5 (a) Illustration of the supercell
approach for surface calculations. The
periodically repeated unit cell (2Dslab) has to be
large enough to minimize interactions with

neighboring unit cells. (b) Binding energy of an
oxygen atom as a function of surface coverage
(with gas-phase 1/2 O2 as reference).

18) Different schemes have been proposed to distribute the k-points within the unit cell. The commonly
employed scheme of a homogeneous grid of k-points was introduced by Monkhorst and Pack [45].

19) In practical calculation, the cutoff energy is obtained by carefully checking the convergence of system
properties with respect to the cutoff value.
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by a vacuum wide enough to avoid unwanted interactions between slabs and their
virtual copies above and below. Furthermore, the slabmust be thick enough so that its
center reproduces bulk-like behavior to avoid unphysical interactions between the
surfaces on the top and the bottomof the slab.Depending on the system, this requires
between 5 and sometimes even more than 20 atomic layers. Semiconductors and
certain transition metals exhibit major surface properties, such as surface states or
adsorbate binding energies, with only five-layer slabs. Some simple metals (e.g., Al)
require more layers.

If the aim is to study catalytic reactions on surfaces, modifying the lateral
extension of the unit cell also allows investigation of coverage effects. The zero-
coverage limit requires rather extended unit cells to ensure that adsorbed species
interact neither directly with their images in adjacent cells nor indirectly through
changes in the electronic structure of the surface. Figure 1.5a shows the DFT-
calculated binding energy of a single oxygen atom (with respect to half an O2

molecule) on a face-centered cubic (fcc) site of a Pt(111) slab as a function of unit
cell size (or coverage). Here, negligible adsorbate–adsorbate interactions are
received with a 3� 3 unit cell.

1.2.6.2 Cluster Approach
When simulatingfinite systems such asmolecules or clusters, the cluster approach is
more suitable. In particular cases, even surfaces can be modeled as cluster where a
finite segment of the surface models the extended system (see Figure 1.6). Despite
the lack of periodicity in this approach, the finite system avoids most issues
connected with direct and indirect interactions of nearby slab images.

When modeling metallic surfaces with small clusters, most (if not all) atoms may
be surface atoms. This causes unwanted border effects and an unpredictable
behavior of the cluster that is why such clusters have to be built with special care.
The graph in Figure 1.6b shows calculated binding energies for atomic oxygen (again

Figure 1.6 (a) A well-defined, finite cluster is
used to model the surface in the cluster
approach. (b) Binding energies (with respect to
gas-phase 1/2 O2) of atomic oxygen on

differently sized and shaped clusters (Pt3, Pt6,
Pt8, Pt12, Pt6:3, Pt12:8, Pt5:10:5, Pt9:10:9, Pt14:13:8).
For each cluster, the binding energies at fcc, hcp,
bridge, and on-top sites are given.
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with half an O2 molecule as reference) on the (111) plane of differently sized and
shaped Pt clusters [46].

On clusters of fewer than 20 atoms, the atomic oxygen binding energy and
preferred adsorption site strongly depend on the system. Extending the cluster to
more than 20 atoms results in a concordance of preferred adsorption sites and similar
relative stabilities.However, convergence in binding energy and adsorption structure
requires clusters of at least 3 atomic layers and 28 atoms.When such large clusters are
used, calculated binding energies agree quite well with periodic calculations at low
adsorbate coverages. Other metal surfaces sometimes require even more extended
systems (e.g., 56 atoms for Cu(100) [47] or >100 atoms for Al(100) [48]). Although
finite systems canmimic surfaces, systematic studies on cluster size convergence are
necessary.

1.3
The Electrocatalytic Oxygen Reduction Reaction on Pt(111)

TheORR is a canonical chemical reaction due to its ubiquitous presence in corrosion,
combustion, energy conversion, and storage processes. After describing the different
aspects of the theoretical modeling of catalytic reactions, we now show how to apply
these concepts to understand one of the most fundamental reactions in electro-
catalysis. Besides its importance in basic electrochemistry, the oxygen reduction
reaction is also relevant to energy conversion in polymer electrolyte membrane fuel
cells (PEM-FCs).

In principle, gaseous H2 is oxidized at the anode and its protons migrate through
the electrolyte to the cathode where they finally react with O2 under uptake of four
electrons to form two water molecules.

Despite the apparently simple reaction mechanism shown in Table 1.1, the exact
reactionmechanism and thus the fundamental reaction steps of the ORR are still not
fully understood. Indeed, this reaction is highly complex since it occurs in a
multicomponent environment and is influenced by various environmental para-
meters: temperature, pressure, and electrode potential.

Before discussing the electrochemical ORR, we will investigate the Pt-
catalyzed water formation out of gaseous O2 and H2, which is the closest
surface science analogue to the ORR. After this, the generalization to electro-
catalysis will be undertaken, for which only a few additional processes have to
be included.

Table 1.1 The oxygen reduction reaction potentials.

Anode : 2H2 ! 4Hþ þ 4e� E� ¼ 0 V

Cathode : O2 þ 4Hþ þ 4e� ! 2H2O E� ¼ 1:229 V

Net : 2H2 þO2 ! 2H2O E� ¼ 1:229 V
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The fundamental steps for both surface science water formation and electrochem-
ical ORR were calculated with DFT.20) We considered adsorbed and nonadsorbed
binding energies for all possible intermediates separately: H, H2, O, O2, OH, OOH,
H2O2, and H2O. We determined stable surface sites and binding energies for each
intermediate on Pt(111) (see Figure 1.7). We then calculated barriers for all adsorbed
molecule dissociation processes [50, 51].We optimized transition states by a series of
constrained optimizations along their reaction paths. Table 1.2 summarizes the
corresponding binding energies and dissociation barriers. This includes values for
the systems in gas phase, solvated inwater, andfinally under ambient conditions, that
is, free energies at T ¼ 298 K.

Figure 1.7 Side and top views of the different molecules adsorbed on Pt(111).

20) DFT calculations on the water formation
mechanisms used the Jaguar code [49] spin
restricted density DFT with the B3LYP gra-
dient-corrected exchange–correlation func-
tional and included zero-point energy (ZPE)
corrections and implicit solvation when not-
ed. The 60 core electrons in each Pt atom (1s-
4f ) were treated with the Hay and Wadt core-

valencer elativistic effective core potential
(ECP), leaving 18 valence electrons to be
treated with the LACVP		 basis set. The other
elements (H and O) were described with the
all-electron 6-31G		 basis set. To represent the
Pt(111), a 35-atom Pt cluster was used, which
ensured cluster-size converged energies.
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This data affords a picture of different pathways (see Figure 1.8). In general, three
major pathways are readily distinguishable. First, Oad

2 can dissociate on the surface
generating two Oad atoms and then react with Had atoms to form water. Second, the
Oad

2 molecule can react with hydrogen to first form OOHad or then form HOOHad.
After the O�O bond in these species breaks, the remaining species further reacts to
the final product water. All pathways appear to be strongly influenced by the presence
of the electrolyte.

1.3.1
Water Formation from Gaseous O2 and H2

Since many reactions and concepts of heterogeneous catalysis in surface science
have analogues in electrocatalysis, we first discuss the Pt-catalyzed water formation
from gaseous hydrogen and oxygen. The three major reaction pathways are
separately described, and then we draw general conclusions on the overall
mechanism.

Table 1.2 Calculated binding energies and dissociation barriers for all investigated intermediates.

Binding energies (eV) Dissociation energies
(eV)

System Adsorption site DEgas DEsolv DGsolv
298K Bond DEgas DEsolv DGsolv

298K

Hg;aq
2 — — — — 4.84 4.81 4.22

Og;aq
2 — — — — 4.95 5.46 5.05

OHg;aq — — — — 4.57 4.83 4.31
OOHg;aq — — — — OO�H 2.79 2.69 2.12

— — — — O�OH 3.17 3.32 2.86
HOOHg;aq — — — — HOO�H 3.83 4.00 3.44

— — — — HO�OH 2.43 2.48 1.99
H2Og;aq — — — — 5.24 5.39 4.57
Pt�H Top 2.73 3.09 2.67 — — —

Bridge 2.64 3.43 3.07 — — —

Pt�O fcc 3.24 4.40 4.04 — — —

hcp 3.03 — — — — —

Pt�O2 Bridge 0.49 1.31 0.81 1.34 0.81 0.90
fcc 0.31 1.64 1.15 1.03 1.11 1.19
Tilted 0.06 0.85 0.36 0.22 –0.10 –0.11

Pt�OH Top 2.06 3.03 2.61 1.90 1.15 0.99
Pt�OOH No ring 1.03 2.18 1.57 OO�H 1.03 0.72 0.57

Ring 0.75 2.07 1.37 O�OH 0.74 0.62 0.59
OO�H 0.36 0.81 0.71

Pt�HOOH Bridge 0.41 1.36 0.52 HOO�H 0.94 0.96 0.78
HO�OH 0.46 0.43 0.31

Pt�H2O Top 0.60 0.83 0.56 1.29 0.86 0.73

Energies are given for the compounds in gas-phase, solvated in water, and under ambient conditions
(including thermal corrections).

24j 1 Modeling Catalytic Reactions on Surfaces with Density Functional Theory



1.3.1.1 O2 Dissociation
When O2 adsorbs on the Pt(111) surface, three stable binding geometries are found:
bridge (BE¼ 0.49 eV), fcc (BE¼ 0.31 eV), and tilted (BE¼ 0.06 eV) (see Figure 1.7).
The most stable configuration is Oad

2 bound at a bridge position, where both oxygens
use a doubly occupied p-orbital to form donor–acceptor bonds to the surface. The
second stable structure corresponds to dioxygen above a fcc21) surface-site, such that
one oxygen binds on top of a Pt atomand the other oxygen at a bridge position. Finally,
the last structure is somewhat comparable to bridge-bound Oad

2 , except that the
molecule is tilted toward the surface such that the O¼O p bond can form a
donor–acceptor bond to an adjacent Pt atom.

After adsorption, Oad
2 may dissociate with one of the three dissociation barriers

corresponding to those from the bridge (1.34 eV), the fcc (1.03 eV), or the tilted
configuration (0.22 eV). Although, tilted O2 forms the weakest surface bond, this
adsorbate structure has the lowest dissociation barrier. Binding energy alone
suggests that Oad

2 resides at a bridge surface site. However, the tilted configuration
is 0.90 eV lower than the bridge-site dissociation barrier. Thus, Oad

2 may change its
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Figure 1.8 Schematic showing three main reaction pathways for the formation of water out of
gaseous H2 and O2.

21) The fcc-site is a threefold position where there is no Pt atom in the second layer below.
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structure to the tilted configuration (which does not require much reorganization)
and then dissociate via theO2-tilted route. By doing so, the overall dissociation barrier
reduces from 1.34 eV to only 0.65 eV, which is in much better agreement with the
value of 0.38 eV measured by Ho and coworkers [52].

The products of Oad
2 dissociation are two Oad atoms located in threefold sites:

Ofcc=Ofcc, Ohcp=Ohcp, or Ofcc=Ohcp. Our simulations show dissociation results in two
Oad atoms at nonadjacent threefold positions (separated by two lattice constants),
also in excellent agreement with the scanning tunneling microscopy (STM)
experiments by Ho [53, 54]. When multiple Oad

2 dissociations are considered to
occur across the entire surface, the final structure corresponds to a pð2� 2Þ
overlayer, a result we also obtained by evaluating the surface phase diagram of
various adlayer configurations [55, 56] and which had also been observed exper-
imentally [57]. Since the O�O interactions are already rather small, for coverages
� 0:25 ML it is justified to simulate Oad atoms as independent adsorbates.
Therefore, we neglected coverage effects in our simulations. The barrier to hop
from a hexagonal close packed (hcp) to a fcc site via a bridge position is only 0.24 eV,
so we expect most atomic oxygen will eventually migrate to the most thermody-
namically stable fcc sites.

The next reaction step along the O2 dissociation pathway is the formation of
OHad, a process whose barrier is 1.25 eV. In contrast to Oad

2 dissociation, no
alternative trajectory with a lower dissociation barrier was found. This process
leads to adsorbed but mobile Had, partially hcp-bound Oad

fcc, and OHad. Hydrogena-
tion of OHad leads to a water molecule that can then desorb as a gas-phase water, the
final product of the ORR reaction. Both H2Oad and OHad adsorb on Pt(111) with
their oxygens at on-top surface sites. The binding energy to form H2Oad from OHad

and Had is the sum of breaking the Pt�OH covalent bond (2.06 eV), forming the
Pt�OH2 donor–acceptor bond (�0:60 eV), breaking the surface Pt�H bond
(2.73 eV), and forming the OH�H bond (�5:24 eV). This leads to a lowering of
the system energy by �1:05 eV. The barrier connected with the water formation out
of OHad and Had is only 0.24 eV. Finally, water desorption requires breaking the
Pt�H2O surface bond (0.60 eV), a value comparable to the experimental value of
0.52 eV [58].

The complete O2 dissociation pathway in gas phase is shown in Figure 1.9.
Energies reported so far do not include zero-point energy corrections or thermal
contributions, thus represent the case of 0 K temperature. All reaction steps are
exothermic except water desorption from the surface. The overall calculated reaction
enthalpy at 0 K is 2.50 eV (per water molecule), a value comparable to the Nernst
equation enthalpy value22) of 2.46 eV. However, the latter value is under ambient
conditions and includes the electrolyte effects we will discuss in later sections.

Only three steps of this entire process have barriers. Thehighest barrier (1.25 eV) is
the Oad

fcc þHad !OHad reaction. Dissociation of Ogas
2 in the absence of the hetero-

geneous Pt catalyst is 4.92 eV, but dissociation of Oad
2 , usually considered the rate-

determining process for the ORR reaction, is 0.65 eV. The last reaction barrier

22) Two electrons are transferred: 2e� 1:23V ¼ 2:46 eV.
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(0.24 eV) is formation of water on the surface fromOHad þHad. This calculation data
supports that the rate-determining step (RDS) should be the OHad formation.
Experimental values for the overall ORR activation range from 0.1 to 1.0 eV; however,
the value also depends on the experimental systemandmeasurement conditions [59].
The discrepancy between our calculated barrier indicates that this reaction process
may not be a relevant mechanism for the ORR.

1.3.1.2 OOH Formation
Instead of dissociating after adsorption,Oad

2 mightfirst undergo a hydrogenation step
to form adsorbedOOHad, which thenmay dissociate to formOHad andOad. As in the
O2 dissociation pathway discussed in the previous section, the generated OHad

molecule could then react with anotherHad to fromwater, which finally desorbs from
the surface. The energies along this OOH formation pathway have also been added to
the diagram shown in Figure 1.9.

As adsorbed hydrogen is extremely mobile on the Pt(111) surface,23) several
different processes for the OOH formation mechanism should be considered. Had

could approach Oad
2 roughly perpendicular to the O�O direction and then bind to an

oxygen. Electronic rearrangement from anO�Op bond to the strongerO�H s bond
causes the other O atom to form a stronger covalent surface connection.

The barrier to form OOHad along this process is 0.43 eV. However, when Had

approaches Oad
2 along the Pt–Pt bridge direction, another stable OOHad structure

forms, in which OOHad and two surface Pt atoms form a five-membered ring
structure. A strong Pt–H interaction weakens the adjacent Pt–O donor–acceptor
bond, resulting in a 0.38 eV lower barrier for the Had þOad

2 !OOHad process. The

Figure 1.9 Gas-phase Langmuir–Hinshelwood reactions.

23) Binding energies at different surface sites vary only by < 0:10 eV.
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ring structure is unstable and can easily tautomerize into the nonring OOHad

structure (see Figure 1.7). Therefore, we consider only the nonring OOHad structure
as relevant.

Once adsorbed OOHhas been formed, dissociation to OHad þOad has a barrier of
0.74 eV. The products are OHad at an on-top site and Oad in a threefold site. The
O�OH bond breaks along the O�O direction, and the single O atom must migrate
over a top site before moving into its preferred threefold site. Along the dissociation,
there is no calculated preference for Oad to move into an adjacent fcc or hcp site.
However, as discussed in the previous section, Oad at an hcp position should easily
migrate over a bridge position (0.24 eV barrier) to a fcc site. Finally, water formation
and water desorption steps are the same as those described in the previous section.

Just like the Oad
2 dissociation mechanism, every step of the OOH formation

pathway is exothermic except for the last reaction step, that is, desorption of water.
The OOHad mechanism involves three activation barriers: formation of OOHad

(0.05 eV), the dissociation of an oxygen from OOHad (0.74 eV), and the final water
surface desorption (0.24 eV). Thus, we find the O�OH dissociation is rate deter-
mining for the OOHad formation pathway, and due to an overall lower energy barrier
it is a likelier ORR mechanism than the Oad

2 dissociation (at least under gas-phase
conditions).

1.3.1.3 HOOH Formation
The third mechanism considers OOHad undergoing another hydrogenation step to
formHOOHad on the surfacewith an energy barrier of 0.47 eV. TwoOHad adsorbates
then form after HO�OH bond dissociation (0.46 eV). The remaining intermediates
have already been discussed in the previous section. The highest barrier along the
HOOHad pathway is the formation ofHOOHad in gas phase (0.47 eV), thus being the
rate-determining step. Consequently, the barrier for the RDS along the H2O2

formation pathway is 0.26 eV below the RDS of the OOH formation and 0.51 eV
lower than that of the O2 dissociation mechanism. Both the OOH formation and the
HOOH formation pathways, which have energy barriers for the RDS of 0.74 eV and
0.47 eV, respectively, now show amuch better agreement with experimental observa-
tions than the O2 dissociation with an RDS barrier of 1.25 eV. Drawing this
conclusion was possible only after investigating all three mechanisms individually.
Furthermore, we have not yet included solvation or thermal effects, and either might
certainly influence overall reaction kinetics. Therefore, we now will repeat the
previous studies in the presence of water, which is the main constituent of the
electrolyte.

1.3.2
Simulations Including Water Solvation

Electrocatalysis involves surface reactions under wet conditions. Compared to the
gas-phase water formation, which had been discussed in the previous section,
inclusion of an electrolyte will certainly alter energetics along the ORR and may
even modify the preferred reaction mechanism. Besides these purely electronic
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effects, the solvent may also play an explicit role in the reaction steps. Therefore, two
classes of reactions should be considered when an electrolyte is present. Besides
Langmuir–Hinshelwood reactions, which have already been presented, Eley–Rideal
reaction mechanisms rely on the electrolyte as a source of hydrogen atoms (see
Figure 1.10).

We already mentioned that solvation presents a formidable problem for theory.
Although results from gas-phase calculations are sometimes used to interpret
experiments performed in solution, we believe that at least some treatment of the
water solvent is required to obtain relevant results. Full quantum mechanics
simulations alone would not provide completely accurate comparisons to experi-
mental observations, but molecular dynamics simulations updated with quantum
chemical forces (via ab initio molecular dynamics) usually provide reliable accuracy
relevant to extended timescales. Unfortunately, the scaling of such methods quickly
makes simulations too large and complex to simulate, especially for those withmany
intermediates and barriers such as the ORR reaction. As described in Section 2.5.5,
an alternative approach is to treat solvation using a dielectric continuum. Although
this method lacks dynamical information, qualitatively correct electrostatic behavior
is attainable.

A self-consistent reaction field description of the water solvent augmented our
studies on the ORR reactions. The binding energies and reaction barriers of the
previous mechanisms were recalculated in the presence of water environment and
used to generate Figure 1.11. Comparing gas-phase results to solvated results often
shows large stabilizations of adsorbed species. Large stabilizations are certainly due
to a partial charge transfer between the adsorbate and the surface, which was not
observable without a polarizing environment. This results in a positive partial charge
(dþ ) for each hydrogen and a slight negative partial charge (d�) for each oxygen.
These charges interact with thewater dipoles, polarizing the solvent, and thus further
stabilize adsorbates.

We will now first discuss Langmuir–Hinshelwood-type reactions, describing the
main electronic effects introduced by the water environment, and then consider

Figure 1.10 Schematic showing the Langmuir–Hinshelwood (top) and the Eley–Rideal (bottom)
reaction mechanism.

1.3 The Electrocatalytic Oxygen Reduction Reaction on Pt(111) j29



Eley–Rideal-type reactions, where the protonations occur from the electrolyte
directly.

1.3.2.1 Langmuir–Hinshelwood Mechanisms

. O2 Dissociation: Oad
2 dissociation leads to two Oad, which is now �1:71 eV

downhill in solvent (water) rather than �1:05 eV in gas phase. The barrier for
this dissociation, however, hardly changes from 0.65 to 0.68 eV. As mentioned
before, this is certainly due to the higher degree of polarization ofOad compared to
Oad

2 . After dissociation of Oad
2 , Oad reacts with a surface hydrogen to form OHad.

Now, the reactants and products in this reaction are isoenergetic, instead of
products being favored by 0.65 eV in gas phase. The barrier to form OHad drops
from 1.25 eV in gas phase to 1.14 eV in solution. We observe a similar barrier
(1.10 eV) to form H2Oad; however, this barrier was 0.24 eV in gas phase. Despite
these changes, water solvation causes little change to the overall Oad

2 dissociation
pathway. We find that the formation of OHad is still the rate-determining step for
this mechanism, but this again does not conform to experimental expecta-
tions [60]. Water desorption from the solvated surface requires 0.83 eV, a value
that is comparable to the binding energy of a water molecule within an entire
water bilayer network.24)This shows that application of an SCRFmodel in surface
catalysis simulations is a relatively inexpensive approach to reproduce the
qualitative behavior from experiment.

Figure 1.11 Langmuir–Hinshelwood reactions in water solvent.

24) In the bilayer network, the Pt�H2O bond energy is 0.38 eV, and the two hydrogen bonds bring
0.28 eV each. In total, removing H2Oad from a water bilayer network on top of the Pt(111) surface
requires 0.94 eV [61–64].
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. OOH Formation: For the OOHad formation pathway, the initial steps are again
equivalent to the O2 dissociation, but OOHad formation is now 0.22 eV uphill in
water solvent compared to�0:60 eVdownhill in gas phase. The OOHad formation
barrier is greatly increased from 0.05 eV in gas phase to 0.94 eV in solvent. The
solvent substantially destabilizes both the transition state andOOHad.Water has a
small effect on the dissociation of OOHad (0.74 eV in gas phase and 0.62 eV in
solvent). This reaction step is exothermic by �1:94 eV, which is �0:84 eV lower
than in gas phase. Here again, OOHad formation should be the rate-determining
process for this mechanism.

. HOOH Formation: Just as the OOHad formation step was heavily influenced by
solvation, so is theHOOHad formation step.HOOHad formation in gas phase had
a barrier of 0.47 eV, which increases to 1.23 eV in solvent. Similarly, due to the
minor charge transfer between HOOHad and the Pt surface, HO�OH dissoci-
ation is hardly affected by solvation just as O�OH was not (gas-phase barrier ¼
0.46 eV; solvent-phase barrier¼ 0.43 eV). Overall, HOOHad formation is the RDS
for this mechanism.

Overall Langmuir–Hinshelwood reaction mechanisms appear to be drastically
influenced by solvation effects, particularly when Had reacts with another adsorbate.
In gas phase, we found that HOOHad formation has the lowest barriers, thus being
the overall RDS (0.47 eV). In solvent, OOHad formation is the overall RDS (0.62 eV),
and HOOHad formation is unfavorable. The key energy barriers of these ORR
mechanisms (Oad

2 dissociations, OOHad formation, and HOOHad formation) are
influenced by solvent as much as 0.89 eV, greatly altering interpretations from
available literature data on the ORR activation energy [59]. In summary, by including
the electronic effects of the surrounding water solution, we found a preference
against HOOHad formation; however, both the Oad

2 dissociation and the OOHad

formation reactions should be competitive under these simulation conditions.
Therefore, compared to the gas-phase system, considering the water environment
not only changed the energies and barriers but also led to a different reaction
mechanism to be favorable.

1.3.2.2 Eley–Rideal Reactions
Eley–Rideal mechanisms are surface reactions where a surface intermediate
reacts with the solvent. In terms of the ORR, Eley–Rideal mechanisms involve
hydrogenations from protons in the electrolyte. We use the initial thermodynamic
resting state of hydrogen gas in solution as referenced to hydrogen gas out of
convenience. This reference eschews problems and complexity with treating the
electronic structure or protons in aqueous solution, an especially problematic
simulation for theoretical methods. Indeed, a rigorous simulation for a full
electrochemical system should consider a kinetic chemical equilibrium between
Had and Hþ ; however, thermodynamic energies can still be reported. In Eley–
Rideal mechanisms, hydrogen enters the simulation in the transition state for the
hydrogenation process. Intermediates found in Langmuir–Hinshelwood mechan-
isms are exactly the same.
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Simulations on the dissociation steps of Oad
2 , OOHad, and HOOHad provide

substantially different reaction details than those previously reported, where protons
from the electrolytefirst adsorb on the surface and then further react asHad. The rate-
determining step forOad

2 dissociation in solvent phasewasOHad formation (1.14 eV);
however, in an Eley–Rideal-typemechanism, this process has no barrier partly due to
its reference at the highly acidic standard state (pH ¼ 0) of the electrolyte, whereby
protons should rapidly and easily protonate Oad species. Thus, the resulting RDS of
the Oad

2 dissociation pathway now becomes the dissociation of Oad
2 itself (0.68 eV),

which agrees with the expectations from electrochemistry. For the OOHad formation
pathway, the RDS still remains to be the O�OH dissociation (0.62 eV), and for the
HOOHad formation pathway also the HO�OH dissociation stays to be the RDS
(0.43 eV). Overall, treatment of Eley–Rideal mechanisms shows that all three path-
ways are potential candidates to be possible reactionmechanisms for theORR, with a
slight preference for the HOOHad formation pathway at zero potential (0.0 V). These
results are summarized in Figure 1.12.

1.3.3
Including Thermodynamical Quantities

As we had shown in Section 2.5, quantum mechanical electronic energies alone
should not be compared with experimental observables taken from measurements
on macroscopic systems under ambient conditions. Zero-point energies and free
energy contributionsmust be added to electronic energies of the solvated system.We
use first-order approximations for these values obtained from statistical thermody-
namics and the ideal gas approximation at room temperature T ¼ 298 K.

Figure 1.12 Eley–Rideal-type reactions in water solvent.
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1.3.3.1 Langmuir–Hinshelwood and Eley–Rideal Mechanisms
As expected, we do not find many notable differences due to free energy
contributions in terms of barrier heights. However, we find that free energy
contributions indeed make a very large difference when accounting for water
formation at the end of the ORR reactions. In gas phase, the overall ORR reaction
is exothermic by�5:00 eV (without EZPE corrections). In solvent, this value is even
more exothermic, �5:36 eV. Including free energy contributions brings this value
back even higher than the gas phase value, �4:65 eV. Thermal energy contribu-
tions also have a substantial role in favoring Had on the surface by 0.20 eV,
generally shifting reaction intermediates that include H atoms slightly higher
than were found with just solvation. We summarize this calculated data in
Figure 1.13.

. O2 Dissociation: In the Oad
2 dissociation mechanism, dissociation of Oad

2 was
�1:71 eV downhill in solvent, but it is slightly lower when accounting free
energies as well (�1:89 eV). The barrier for this process is calculated similar to
the barrier in solvation (0.68 eV). OHad formation was energetically neutral in
solvent with a barrier of 1.14 eV; however, free energy contributions make this
value 0.20 eVuphill overall with a similar barrier (1.19 eV). A similar trend is seen
with the final formation ofH2Oad. The process is overall þ 0.24 eV in solvent with
a 1.10 eV barrier. When accounting for free energies, the same reaction has an

overall DGsolv
298K of þ 0:55 eV with a barrier of 1.27 eV.

. OOH Formation: In the OOHad formation mechanism, the energy required to
form OOHad via the Langmuir–Hinshelwood-type reaction of Oad

2 and Had was

Figure 1.13 Langmuir–Hinshelwood reactions in water solvent under ambient conditions
(including thermal contributions for T ¼ 298 K).
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0.22 eV in solvent, but including thermal corrections this increases to 0.52 eV. The
barrier for this process in solvent alone was 0.94 eV, but with free energy
contributions it is slightly higher (1.09 eV). Finally, O–OH dissociation is essen-
tially the same in both solvent (0.62 eV) and after additionally considering thermal
corrections (0.59 eV).

. HOOHFormation: In the HOOHad formationmechanism, the energy to further
hydrogenizeOOHad via a Langmuir–Hinshelwood-type reaction required 0.27 eV
in solvent and 0.68 eV with thermal corrections. Comparable to the formation of
OOHad, the energy barrier to form HOOHad from OOHad and Had is slightly
higher when including thermal corrections (1.09 eV compared to 0.94 eV with
solvation only). Finally, the barrier for HOOHad dissociation is slightly lower than
in our previous simulations where we included only the water solvent but
neglected thermal corrections: 0.31 eV compared to 0.43 eV before.

It is clear that Langmuir–Hinshelwood mechanisms are affected by the motional
freedom ofHad on the surface. This stability rising from the presence of Had impacts
relative thermodynamics by making other species containing H atoms relatively less
stable by
 0:2 eV. Reaction barriers for this mechanism are not greatly impacted by
free energy effects, however.

Eley–Rideal-type reaction profiles with thermal corrections display the same trend
shown as solvation-only simulations, which are shown in Figure 1.14. We note that
our reliance on the standard state of protons (pH¼ 0) strongly impacts these reaction
profiles. After establishing the quantum mechanical energies for these processes,
however, one can implement these barriers into a kinetic master equation that

Figure 1.14 Eley–Rideal reactions in water solvent under ambient conditions (including
thermodynamic contributions for T ¼ 298 K).
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depends on the concentration of protons. This type of analysis would be yet another
step in moving up the hierarchy of multiscale modeling (see Figure 1.1).

1.3.4
Including an Electrode Potential

Realistic electrochemical systems (such as fuel cells) operate under the influence of
an external electrostatic potential difference between the working and the counter
electrode. In order to account for the presence of an electrode potential U, different
attempts exist to model and understand the structure and properties of systems
under electrochemical conditions. An overview can be found in the following
reviews [65–68], articles [69–78], and references therein. For the different works
mainly experimental input, semiempirical approaches, or quite simplified models
are used. The presence of the electrode potential is either neglected or introduced by
charging the electrode surface or applying an external electric field.Whilemost of the
theoretical studies disregard the presence of an electrode potential, some try to
consider its influence on catalytic reactions. For instance, the group of Nørskov
[74, 79] studied the hydrogen evolution reaction (HER) and oxygen reduction reaction
on different electrodes whose Fermi energies were shifted by the value of the
electrode potential. Focusing more on the atomistic structure of the interface, the
group of Neurock [76] performed ab initio molecular dynamics simulations on
charged electrodes surrounded by water. For compensation, a countercharge was
located at a certain distance from the electrode surface, trying to mimic the potential
profile within the interfacial region.

In order to account for the electrode potential, in the following this effect is
approximated by shifting energy levels by a constant value þ e �U for every process
where a hydrogen (or proton) is dissociated fromor attached to a surface species. This
influences not only the energies of particular intermediates but also their corre-
sponding transition states, that is, the dissociation or association barriers. Based on
this approach, which should be capable to reproduce the overall behavior, Figure 1.15
shows the most favorable (lowest DG298K barriers) Langmuir–Hinshelwood and
Eley–Rideal processes.

The energy plot makes apparent that both classes of reactions (LH and ER) should
be possible at electrode potentials near 1.23 eV, the reduction potential of the ORR
established by the Nernst equation. While individual Eley–Rideal reaction barriers
appear to be lower than Langmuir–Hinshelwood barriers, the energies for the Oad

and OHad species, which are influential for both classes of reactions, are almost
identical and can therefore be expected to be competitive depending on the envi-
ronmental conditions within the electrochemical system.

In summary, it appears that ORR reaction processes can be reduced to elementary
forms of Langmuir–Hinshelwood and Eley–Rideal mechanisms, and treated with
high-quality quantum mechanical approaches to obtain relevant thermodynamic
stabilities of all species. Further studying the extent that these processes are coupled
kinetically is the next logical step to provide insight into the complex ORR
mechanism.
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1.4
Conclusions

The enormous variety of possible surface reactions reveals many interesting
intricacies regarding the ORR mechanisms. Using density functional theory to
investigate different mechanisms of the ORR, in this chapter we showed the
possibilities of modern ab initiomodeling and tried to make the readers aware that
conclusions might change after including environmental effects and thus should
be drawn with special care. Among the three main ORR mechanisms (i.e., Oad

2

dissociation, OOHad formation, and HOOHad formation), we found that HOOHad

formation is the preferred process in gas phase. When including water solvation
as an environmental effect, the reaction paths were modified, leading to drastic
changes in the energetics and a nearly identical preference for the Oad

2 dissociation
and the OOHad formation mechanisms, but with a blocking of the hydrogen
peroxide pathway. Interestingly, inclusion of solvent permits different classes or
reaction mechanisms centered around electron transfers and protonations at
different electrode potentials. Eley–Rideal variants of the previously investigated
mechanisms are all substantially lower in energy at an electrode potential of 0 V.
However, inclusion of thermal energy contributions due to ambient conditions, as
well an approximate influence of the electrode potential, resulted in a picture
showing that both Langmuir–Hinshelwood and Eley–Rideal mechanisms could
be at play. Evaluation of the kinetics of all paths should further elucidate the
complicated nature of the ORR mechanism.

Figure 1.15 Selected (most favorable) reactions under ambient conditions (including solvent and
thermal corrections) for an electrode potential of 1.23 V (versus RHE).
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