Contents

Preface XIII
List of Contributors XVII

1 Gold Nanoshells in Biomedical Applications 1
Tim A. Erickson and James W. Tunnell
1.1 Introduction 1
1.2 Physical Properties of Gold Nanoshells 2
1.2.1 Overview of General Optical Properties 2
1.2.2 The Physics of Gold Nanoshells 5
1.2.2.1 The Dielectric Function of Gold 6
1.2.2.2 The Quasi-Static Approximation and Conditions for Surface Plasmon Resonance 7
1.2.2.3 Mie Theory 13
1.2.2.4 Near-Field Enhancement 13
1.2.2.5 Photoluminescence 14
1.2.3 Photo-Thermal Material Characteristics 14
1.3 Synthesis and Bioconjugation 16
1.3.1 Synthesis 16
1.3.2 Bioconjugation: Smarter Nanoshells 18
1.4 Biodistribution, Toxicity Profile and Transport 19
1.4.1 Biodistribution Studies 20
1.4.2 Transport Mechanisms 22
1.4.3 Toxicity 25
1.5 Biomedical Applications 26
1.5.1 In Vitro Cancer Detection and Imaging 26
1.5.2 In Vivo Detection and Imaging 28
1.5.3 Integrated Cancer Imaging and Therapy Agents 29
1.5.4 In Vitro Studies 29
1.5.5 In Vivo Photothermal Therapy 31
1.5.6 Drug Delivery 34
1.5.7 Tissue Welding 35
1.5.8 Biosensors 35
1.5.8.1 Absorbance-Based Biosensing 37
4 Spherical and Anisotropic Metallic Nanomaterials-Based NSET Biosensors 103
Paresh Chandra Ray, Jelani Griffin, Wentong Lu, Oleg Tovmachenko, Anant K. Singh, Dulal Senapati and Gabriel A. Kolawole
4.1 Introduction 103
4.1.1 Nanotechnology Promises on Biological Detection 105
4.2 Size- and Shape-Dependent Super Quenching Properties of Nanomaterials 106
4.3 Nanomaterial Surface Energy Transfer (NSET) 109
4.3.1 Portable NSET Probes 111
4.3.2 NSET Probe for DNA/RNA Hybridization Detection 112
4.3.2.1 Size-Dependence Sensitivity 114
4.3.3 Distance-Dependent NSET 115
4.3.4 Multiplex DNA Detection 119
4.3.5 NSET for Monitoring Mg²⁺-Dependent RNA Folding 121
4.3.6 NSET for DNA Cleavage Detection 125
4.3.7 NSET for Cancer Cell Detection 128
4.4 Gold Nanoshell-Based Biosensors 129
4.5 Problems and Challenges 131
4.6 Summary 131
Acknowledgments 132
References 132

5 Mixed-Metal Oxide Nanomaterials for Environmental Remediation 139
Dambar B. Hamal, Kennedy K. Kalebaila and Kenneth J. Klabunde
5.1 Introduction 139
5.2 TiO₂ Heterogeneous Photocatalysis for Environmental Remediation 141
5.2.1 Metal-Doped TiO₂ Mixed-Metal Oxides as UV-Light-Sensitive Photocatalysts 141
5.2.2 Metal-Doped TiO₂ Mixed-metal Oxides as Visible-Light-Sensitive Photocatalysts 146
5.3 Other Mixed-metal Oxide Photocatalysts 150
5.4 Conclusions 156
References 157

6 Building Nonmagnetic Metal@Oxide and Bimetallic Nanostructures: Potential Applications in the Life Sciences 161
Mao-Song Mo and Xu-Sheng Du
6.1 Introduction 161
6.2 Building Nonmagnetic Metal@Oxide and Bimetallic Nanostructures 162
6.2.1 Core-Shell Nanostructures and Building Strategy 162
6.2.2 Metal@Oxide Core-Shell Nanostructures 163
6.2.3 Bimetallic Nanostructures 164
6.2.3.1 Bimetallic Core-Shell Nanostructures 164
6.2.3.2 1-D Bimetallic Heteronanostructures 174
6.2.3.3 Bimetallic Alloy Nanostructures 179
6.2.4 3-D Mesoscale Bimetallic Patterning 185
6.3 Current and Future Applications in the Life Sciences 188
6.4 Summary and Outlook 191
Acknowledgments 192
References 192

7 Biofunctionalization of Spherical and Anisotropic Bimetallic Nanomaterials 197
Davide Prosperi, Laura Polito, Carlo Morasso and Diego Monti
7.1 Introduction 197
7.2 Spherical Core-Shell Bimetallic Nanoparticles 198
7.2.1 AgCore/AuShell Nanoparticles 198
7.2.2 AuCore/AgShell Nanoparticles 201
7.2.3 Silver Enhancement of Gold Nanoparticles 204
7.2.4 DNA-Assisted Synthesis of Core-Shell Nanoparticles 205
7.2.5 Biofunctionalization for the Construction of Core-Shell Bimetallic Nanostructures 206
7.3 Anisotropically Shaped Nanoparticles: Nanorods and Nanowires 209
7.3.1 Surface Modifications 210
7.3.2 NW/NR Functionalization with Protein Molecules 212
7.3.3 NW/NR Functionalization by DNA 218
7.3.4 Detection and Sensing 220
7.4 Profunctional Bimetallic Alloys 224
7.4.1 Dendrimer-Encapsulated Bimetal Nanoparticles 225
7.4.2 Surface Stabilization by Ligand Exchange 228
7.4.3 DNA Metallization 228
7.4.4 Miscellaneous 229
7.5 Outlook 234
References 234

8 Multielemental Nanorods (Nanowires): Synthesis, Characterization and Analytical Applications 241
Yang-Wei Lin, Zong-Hong Lin, Chih-Ching Huang and Huan-Tsung Chang
8.1 Introduction 241
8.2 Synthetic Strategies 243
8.2.1 Organic-Phase Synthesis 243
8.2.1.1 Bimetallic NRs 243
8.2.1.2 Semiconductor NRs 245
8.2.2 Aqueous-Phase Synthesis 248
8.2.2.1 Bimetallic NRs 248
8.2.2.2 Multisegmented NRs 250
8.2.2.3 Bimetallic/Trimetallic Oxide NRs 252
8.2.2.4 Semiconductor NRs 254
8.3 Properties 255
 8.3.1 Absorption 256
 8.3.2 Emission 258
 8.3.3 Surface-Enhanced Raman Scattering 260
 8.3.4 Catalytic Properties 262
 8.3.5 Magnetism 263
8.4 Analytical Applications 264
 8.4.1 Detection of Gaseous Molecules 265
 8.4.2 Detection of Metal Ions 265
 8.4.3 Separation and Sensing of Proteins 267
 8.4.4 DNA Detection 269
 8.4.5 Detection of Pathogens and Bacteria 271
8.5 Conclusions 271
Abbreviations 272
References 273

9 Spherical and Anisotropic Nonmagnetic Core-Shell Nanomaterials: Synthesis and Characterization 281
 Tewodros Asefa, Abhishek Anan, Cole Duncan and Youwei Xie
9.1 Introduction: Core-Shell Nanomaterials and Their Biological/Medical Applications 281
9.2 Nonmagnetic Core-Shell Nanomaterials 287
9.3 Synthesis of Cores in Core-Shell Nanostructures 288
 9.3.1 Metal Cores 288
 9.3.2 Metal Oxide Cores 289
 9.3.3 Polymeric Cores 290
 9.3.4 Semiconductor Cores 290
9.4 Deposition of Shells over the Core Nanomaterials 290
9.5 Types of Core-Shell Nanomaterial 291
 9.5.1 Metal–Insulator Core-Shell Nanomaterials 291
 9.5.1.1 Metal-Dense Metal Oxide Core-Shell Nanomaterials 292
 9.5.1.2 Metal-Functionalized Metal Oxide Core-Shell Nanoparticles 294
 9.5.1.3 Metal–Porous Metal Oxide Core-Shell 294
 9.5.1.4 Metal Core–Dendrimer Core-Shell Nanoparticles 295
 9.5.1.5 Hollow Metal–Metal Oxide Shells by Controlled Core-Dissolution 298
 9.5.1.6 Metal Core–Dendrimer Core-Shell Nanoparticles 300
 9.5.1.7 Metal Core–Semiconducting Metal Oxide Shell Nanoparticles 300
 9.5.2 Insulator–Metal Core-Shell Nanomaterials 301
 9.5.2.1 Metal Oxide–Metal Core-Shell Nanostructures 301
 9.5.2.2 Polymer–Metal Core-Shell Nanostructures 301
 9.5.2.3 Insulator–Insulator Core-Shell Nanoparticles 302
 9.5.2.4 Polymer–Metal Oxide Core-Shell Nanomaterials 302
 9.5.2.5 Polymer–Polymer Core-Shell Nanomaterials 303
 9.5.2.6 Biomolecule (Protein) Core–Polymer Shell Core-Shell Nanoparticles 304
 9.5.2.7 Metal Oxide–Metal Oxide Core-Shell Nanomaterials 305
9.5.3.5 Metal Oxide–Dye-Doped Silica and Dye-Doped Silica–Metal Oxide Core-Shell Nanostructures 305
9.5.3.6 Metal Oxide–Polymer Core-Shell Nanoparticles 305
9.5.3.7 Other Inorganic Materials Cores: Metal Oxide Shells 306
9.5.4 Semiconductor–Insulator Core-Shell Nanomaterials 307
9.5.5 Semiconductor–Semiconductor Core-Shell Nanomaterials 308
9.5.6 Semiconductor–Semiconductor–Dendrimer Core-Shell-Shell Nanoparticles 308
9.5.7 Insulator–Semiconductor Core-Shell Nanomaterials 309
9.5.8 Metal–Metal Core-Shell 310
9.5.9 Insulator–Metal Core-Shell Nanoparticles 313
9.5.10 Carbon-Containing Core-Shell Nanomaterials 313
9.5.10.1 Metal Oxide–Carbon Core-Shell Nanoparticles 313
9.5.11 Other Carbon-Containing Core-Shell Nanomaterials 313
9.5.12 Synthetic Methods to Create Core-Shell Nanomaterials, and their Characterizations 316
9.6 Applications 317
9.6.1 Applications in Biology and Medicine 317
9.6.1.1 Bioimaging and Immunoassay 318
9.6.1.2 Drug or Biomolecular Delivery Vehicles 319
9.6.2 Core-Shell Nanomaterials for Catalysis 319
9.7 Conclusions and Future Prospects 320
Acknowledgments 321
References 321

10 Spherical and Anisotropic Silica Shell Nanomaterials 331
Chih-Wei Lai, Jong-Kai Hsiao, Yu-Chun Chen and Pi-Tai Chou
10.1 Introduction 331
10.2 Silica-Coated Metal Nanoparticles 332
10.2.1 Noble Metal Nanoparticles: An Overview 332
10.2.1.1 Sol–Gel method for Silica Coating 334
10.2.2 Silica Shell for Biofunctionalization 338
10.2.3 Application of Silica-Coated Metal Nanoparticles 338
10.2.3.1 Silica Shell Modified with Oligonucleotides 338
10.2.3.2 Surface-Enhanced Raman Scattering Effect 339
10.2.3.3 Enhanced Luminescence Intensity 342
10.2.4 Coating Silica Gold Nanorods 344
10.2.5 Silica-Encapsulated Platinum 345
10.3 Silica-Coated Quantum Dots 345
10.3.1 The Advantages of Coating QDs with Silica 346
10.3.2 Different Types of Silica-Coated QDs 347
10.3.2.1 Hydrophobic QDs 347
10.3.2.2 Hydrophilic QDs 349
10.4 Silica-Encapsulated Magnetic Nanoparticles 351
10.4.1 Silica-Coated Alloy Metal Nanoparticles 354
10.4.2 Silica-Coated Magnetic Metal Oxide Nanoparticles 356
11 Spherical and Anisotropic Core-Shell and Alloy Nanomaterials: Characterization Using X-Ray Absorption Spectroscopy 377
Loka Subramanyam Sarma, Hung-Lung Chou, Ming-Yao Cheng, Fadlilatul Taufany, Feng-Ju Lai, Meng-Che Tsai, Shih-Hong Chang and Bing-Joe Hwang

11.1 Introduction 377
11.2 Nanoparticle Systems for Biomedical Applications 381
11.2.1 Bioimaging (Magnetic Resonance Imaging) 381
11.2.2 Drug Delivery 382
11.3 Characterization of Spherical and Anisotropic Core-Shell and Alloy Nanomaterials using X-Ray Absorption Spectroscopy (XAS) 383
11.3.1 XAS Fundamentals 384
11.3.2 XAS Data Collection and Analysis 386
11.3.3 Structural Characterization: XAS Methodologies 387
11.3.3.1 Particle Size, Shape and Aspect Ratio of Nanoparticles 387
11.3.3.2 Alloy Versus Core-Shell Structure, Atomic Distribution and Degree of Alloying of Nanomaterials: An XAS Methodology 389
11.3.3.3 Surface and Core Composition in Bimetallic Nanoparticles: An XAS Methodology 391
11.3.4 Review of XAS Characterization Methodologies for Nanomaterials 392
11.3.5 XAS Characterization of Surface Interactions 399
11.4 Conclusions 400
Acknowledgments 401
References 401

12 Anisotropic Hexagonal Boron Nitride Nanomaterials: Synthesis and Applications 411
Wei-Qiang Han

12.1 Introduction 411
12.2 Synthesis of BN Nanotubes 412
12.2.1 Introduction 412
12.2.2 Arc Discharge 413
12.2.3 Laser Ablation 416
12.2.4 Carbon Nanotubes-Substitution Reaction 420
12.2.5 Chemical Vapor Deposition 426
12.2.6 Solid–Gas Reaction 429
12.2.7 Low-Temperature Autoclaving 430
12.2.8 Pore-Template 430
12.2.9 Arc-Jet Plasma 432
12.3 BNNT-Based Nano-Objects 433
12.3.1 Filled BNNTs 433
12.3.2 Functionalized BNNTs 436
12.4 Porous BN and BN Mesh 439
12.4.1 Direct Pyrolyzing Borazinic Precursors 439
12.4.2 Use of Mesoporous Molds 440
12.4.3 Carbon Template-Substitution Reaction 441
12.5 BN Mono- or Few-Layer Sheets 443
12.6 Physical Properties of h-BN 446
12.7 Applications 447
12.7.1 Pharmaceutical Table Lubricant 447
12.7.2 Cosmetic Materials 448
12.7.3 BNNTs for Cancer Therapy and Diagnostics 449
12.7.4 BNNT Composites 449
12.7.5 Gas Adsorption 450
12.7.6 Electrical Nanoinsulators 452
12.7.7 Ultraviolet Lasers and LEDs 452
12.7.8 BN as Support for Catalysts 452
12.8 Concluding Remarks 453
Acknowledgments 453
References 453

13 Spherical and Anisotropic Boron Nitride Nanomaterials: Synthesis and Characterization 463
Chengchun Tang and Yangxian Li
13.1 Introduction 463
13.2 BN Nanomaterials Synthesis 464
13.2.1 Spherical BN Particles 464
13.2.2 Anisotropic BN Nanostructures 470
13.2.2.1 Multiwalled Nanotubes 470
13.2.2.2 Single-Walled Nanotubes 476
13.2.2.3 Collapsed BN Nanotubes 478
13.2.2.4 Nanowires 480
13.3 Remarks on Properties and Applications 483
13.3.1 High-Temperature Chemical Inertness 484
13.3.2 Electrical Properties 484
13.3.3 High Thermal Conductivity 485
13.3.4 Mechanical Properties 486
13.3.5 Hydrogen Storage 487
13.3.6 Life Sciences 487
13.4 Concluding Remarks 489
Acknowledgments 491
References 491

Index 499