Contents

Preface XV
List of Contributors XIX

1 Gecko-Inspired Nanomaterials 1
 Christian Greiner
 1.1 The Gecko and Its Adhesion Capabilities 1
 1.1.1 What are Setae? 1
 1.1.2 Walking on the Ceiling 3
 1.2 The Physics of Gecko Adhesion 4
 1.2.1 Contact Splitting 4
 1.2.2 Adhesion Design Maps 6
 1.3 Fabrication Methods for Gecko-Inspired Adhesives 8
 1.3.1 Soft-Molding 8
 1.3.2 Nanostructured Adhesive Surfaces 11
 1.3.2.1 Hot Embossing 11
 1.3.2.2 Filling Nanoporous Membranes 11
 1.3.2.3 Electron-Beam Lithography 12
 1.3.2.4 Carbon Nanotubes 13
 1.3.2.5 Drawing Polymer Fibers 13
 1.3.2.6 Hierarchical Adhesive Surfaces 14
 1.3.2.7 3-D Structured Adhesive Surfaces 16
 1.3.2.8 Switchable Adhesive Surfaces Made from Responsive Materials 17
 1.4 Measuring Adhesion 17
 1.4.1 What Actually is Measured? 17
 1.4.2 How is Adhesion Measured? 20
 1.5 What Have We Learned About Fibrillar Adhesives? 22
 1.5.1 Contact Splitting 22
 1.5.2 Aspect Ratio 23
 1.5.3 Tip Geometry 24
 1.5.4 Young’s Modulus 25
 1.5.5 Backing Layer 25
 1.5.6 Tilt Angle 26
 1.5.7 Hierarchy 27
2 Tooth-Inspired Nanocomposites

Janet Moradian-Oldak and Yuwei Fan

2.1 Introduction

2.1.1 Biologically Formed Nanocomposites

2.2 Nanocomposite Synthesis

2.2.1 Enamel

2.2.2 Enamel Hierarchical Structure

2.2.2.1 Amelogenin

2.2.2.2 Other Enamel Proteins

2.2.3 Synthesis of Enamel-Like Organized Apatite Crystals

2.2.4 Amelogenin-Based Nanocomposites

2.2.4.1 Controlled Crystallization of Apatite by Amelogenin

2.2.4.2 Biomimetic Coatings Using Simulated Body Fluid

2.2.4.3 Amelogenin-Apatite Coatings Using Electrodeposition (ELD)

2.2.4.4 Bioinspired Remineralization of Enamel

2.3 Dentin

2.3.1 Types of Dentin

2.3.2 Dentin Hierarchical Structure

2.3.3 Molecular Mechanisms in Dentinogenesis (Dentin Formation)

2.3.3.1 Collagen

2.3.3.2 Noncollagenous Extracellular Matrix Proteins

2.3.4 Collagen–Calcium Phosphate Nanocomposites

2.3.4.1 Biomimetic Collagen Mineralization Using SBF

2.3.4.2 Bioinspired Mineralization of Collagen

2.3.4.3 Collagen-Apatite Coating in Modified SBF

2.3.4.4 Collagen-Apatite Coating by Electrodeposition

2.3.5 Dentin Remineralization

2.4 Summary and Future Perspective

Acknowledgments

Abbreviations

References

3 Bioinspired Nanomaterials for Tissue Engineering

Andrew P. Loeffler and Peter X. Ma

3.1 Introduction

3.2 Biomimetic Material Properties
3.2.1 Scaffold Surface and Pore Structure 91
3.2.2 Scaffold Biodegradability 92
3.2.3 Scaffold Mechanical Properties 93
3.2.4 Scaffold Biocompatibility and Cellular Interactions 94
3.3 Nanofiber Scaffold Fabrication Methods 94
3.3.1 Electrospinning 95
3.3.2 Self-Assembly 97
3.3.3 Phase Separation 99
3.3.3.1 Predesigned Macropores 100
3.3.3.2 Solid Freeform Fabrication 101
3.4 Modification of Nanofibrous Scaffolds 103
3.4.1 Scaffold Surface Modifications 104
3.4.2 Inorganic Composite Scaffolds 105
3.4.3 Factor Delivery Scaffolds 107
3.5 Biological Effects of Nanofibers 110
3.5.1 Cell Attachment and Morphology 110
3.5.2 Proliferation 112
3.5.3 Differentiation and Tissue Formation 113
3.6 Conclusions 115
References 116

4 Nature-Inspired Molecular Machines 125
Aitan Lawit, Bala Krishna Juluri, and Tony Jun Huang
4.1 Introduction 125
4.2 Biological Molecular Machines 125
4.2.1 Kinesin and Myosin 126
4.2.2 ATPase 132
4.2.3 DNA 134
4.3 Biomimetic Molecular Machines 136
4.3.1 Rotaxanes, Catenanes, and Pseudorotaxanes 137
4.3.2 Nanocars 142
4.3.3 Polyelectrolyte Brushes 143
4.3.4 Light-Driven Molecular Motors 145
4.4 Conclusions 146
4.5 Future Perspective 147
References 147

5 Biomimetic and Bioinspired Self-Assembled Peptide Nanostructures 151
Francesco Pampaloni and Andrea Masotti
5.1 Introduction 151
5.1.1 Some Key Principles of Biological Self-Assembly 151
5.1.2 Biological Self-Assembly in Nanotechnology 152
5.2 Peptide-Based Self-Assembling Nanomaterials 152
5.2.1 Alpha-Helical Coiled-Coil 153
5.2.1.1 Self-Assembly Mechanism of Coiled-Coils 153
5.2.1.2 De Novo-Designed α-Helix Coiled-Coil Nanofibers 154
5.2.2 β-Sheet Structures 158
5.2.2.1 Amyloid Fibrils 158
5.2.2.2 De Novo-Designed β-Sheet Materials 160
5.2.2.3 Collagen-Based Assemblies 162
5.3 Matrices for Tissue Engineering and Regenerative Medicine 164
5.3.1 Peptide–Amphiphile Nanofiber Matrices 166
5.3.1.1 Molecular Structure 166
5.3.1.2 Self-Assembly and Physical–Biochemical Properties 166
5.3.1.3 Applications in 3-D Cell Cultures 168
5.3.1.4 Applications in Regenerative Medicine 169
5.3.2 Beta-Sheet Nanofiber Matrices (“Designer Peptides”) 170
5.3.2.1 Molecular Structure 170
5.3.2.2 Self-Assembly Mechanism and Biophysical Properties 172
5.3.2.3 Applications in 3-D Cell Cultures 172
5.3.2.4 Applications in Regenerative Medicine 173
5.3.2.5 Local Delivery of Molecules 174
5.3.3 Beta-Hairpin Peptides 175
5.3.3.1 Molecular Structure 175
5.3.3.2 Self-Assembly Mechanism and Biophysical Properties 176
5.3.3.3 Applications in 3-D Cell Cultures 177
5.3.3.4 Applications in Regenerative Medicine 177
5.4 Virus-Based and Virus-Inspired Nanomaterials 177
5.4.1.1 Nanomechanical Properties of Virus Capsids 178
5.4.2 Applications of Viruses in Nanotechnology 180
5.4.2.1 Virus-Based Nanostructures and Self-Organizing Assemblies 181
5.4.2.2 Virus-Like Particles Encapsulating Non-Genetic Molecular Cargos 185
5.4.2.3 Synthetic Viruses 187
5.4.2.4 Functionalization of Virus Capsids 189
5.4.2.5 Viruses as Templates for Programmed Synthesis of Nanomaterials 193
5.5 Biomimetic Nanotubes 194
5.5.1 Properties of Nanotubes 194
5.5.2 Peptide and Protein Nanotubes 195
5.5.3 Cellular Microtubules 198
5.5.3.1 Self-Assembly and Structure of Microtubules 198
5.5.3.2 Microtubule Bundles 199
5.5.3.3 Prospect: Insights from MT for Nanotechnology 199
Acknowledgments 200
Abbreviations 200
References 202
6 Bioinspired Layered Nanomaterials in Medical Therapy 213
Jin-Ho Choy, Jae-Min Oh, Soo-Jin Choi, and Hyun Jung
6.1 Introduction 213
6.2 Features of Layered Nanomaterials 214
6.2.1 Anionic Layered Nanomaterials: Layered Double Hydroxides (LDHs) 214
6.2.2 Cationic Layered Nanomaterials: Clays 215
6.3 Layered Nanomaterials in Medical Applications 218
6.3.1 LDHs 218
6.3.1.1 Biomolecule Stabilization 218
6.3.1.2 Drug-Delivery Systems 223
6.3.1.3 Enhanced Cellular Uptake 225
6.3.1.4 Targeted Cellular Delivery 228
6.3.2 Applications of Layered Aluminosilicate and Clay 232
6.4 Toxicity 239
6.4.1 Effects of LDH Chemical Composition on Cytotoxicity 240
6.4.2 Effects of LDH Particle Size on Cytotoxicity 243
6.5 Conclusions 245
References 246

7 Biological and Biomimetic Synthesis of Metal Nanomaterials 251
Jianping Xie, Yen Nee Tan, and Jim Yang Lee
7.1 Introduction 251
7.2 Synthesis of Au/Ag Nanomaterials by Whole Organisms 252
7.2.1 Living Organisms as Nanofactories 252
7.2.1.1 Bacteria 252
7.2.1.2 Plants 255
7.2.2 Biomass as Nanofactories 255
7.2.2.1 Intracellular Synthesis 256
7.2.2.2 Extracellular Synthesis 257
7.3 Synthesis of Au/Ag Nanomaterials by Biomolecule Mixtures 258
7.3.1 Intracellular Contents 258
7.3.2 Secreted Biomolecules from Organisms 263
7.4 Synthesis of Au/Ag Nanomaterials by Proteins 264
7.5 Synthesis of Au/Ag Nanomaterials by Amino Acids/Peptides 267
7.5.1 Amino Acids 268
7.5.2 Peptides 271
7.5.2.1 Combinatorial Screening of Active Peptides for Nanoparticle Synthesis 271
7.5.2.2 Artificial Peptides for Nanoparticle Synthesis 272
7.5.2.3 Peptide Films as Reactive Templates 274
7.6 Conclusions 276
Acknowledgments 276
References 276
8 Biomimetic Nanosensors and Nanoactuators 283
Mohsen Shahinpoor

8.1 Introduction 283
8.2 Three-Dimensional Fabrication of BNNs 286
8.2.1 Manufacturing Methodologies 287
8.2.2 Manufacturing Steps 287
8.3 Electrically Induced Robotic Actuation 289
8.4 Distributed Nanosensing and Transduction 293
8.5 Modeling and Simulation 297
Acknowledgments 300
References 300

9 Biomimetic Nanotechnology 303
Takahiro Ishizaki, Katsuya Teshima, SunHyung Lee, Yoshitake Masuda, Nagahiro Saito, and Osamu Takai

9.1 Introduction 303
9.2 Biocrystal Growth via Environmentally Friendly Nature-Mimetic Processing 305
9.2.1 Flux Growth of Hydroxyapatite Crystals 305
9.2.2 Gel Growth of Hydroxyapatite Precursor (Octacalcium Phosphate) Crystals 308
9.3 Biomimetic Morphology Control of Metal Oxides and Their Site-Selective Immobilization 310
9.3.1 Morphology Control and Site-Selective Immobilization of Metal Oxides 310
9.3.2 Liquid-Phase Morphology Control of a Stand-Alone ZnO Self-Assembled Film 312
9.3.3 Biomimetic Site-Selective Immobilization of Eu:Y2O3 318
9.4 Application of Biomimetic Super-Hydrophobic Surfaces to Micropatterning of Biomolecules 325
9.4.1 Biomimetic Super-Hydrophobic Surfaces 325
9.4.2 Micropatterning of Bacteria on Biomimetic Super-Hydrophobic/ Super-Hydrophilic Surfaces 326
9.4.3 Micropatterning of Cells on Biomimetic Super-Hydrophobic/ Super-Hydrophilic Surfaces 331
9.5 Summary and Outlook 335
References 336

10 Biomimetic Approaches to Self-Assembly of Nanomaterials 343
Daniel Aili and Bo Liedberg

10.1 Introduction 343
10.2 Self-Assembly 344
10.3 Polypeptide-Based Nanomaterials 345
10.3.1 De Novo-Designed Helix-Loop-Helix Polypeptides 346
10.3.2 Polypeptides with Controllable Folding Properties 347
11.3.1.3 Anisotropic Wettability of Hierarchical Structures 409
11.3.2 Adhesion Properties of Biomimetic Artificial Nanostructures 411
11.3.3 Optical Properties of Biomimetic Artificial Nanostructures 414
11.3.3.1 Structural Coloration 414
11.3.3.2 Iridescence and Chiral Reflectors 416
11.3.3.3 Antireflection Coatings 416
11.4 Applications of Biomimetic Artificial Nanostructures 419
11.4.1 Wetting Applications 419
11.4.2 Adhesion Applications 420
11.4.3 Optical Applications 421
11.5 Conclusions and Future Outlook 421
References 423

12 Natural and Modified Nanomaterials for Environmental Applications 429
Guodong Yuan
12.1 Introduction 429
12.2 Aluminosilicate Nanomaterials 431
12.2.1 Occurrence and Structure of Natural Aluminosilicate Nanomaterials 431
12.2.2 Surface Properties of Aluminosilicate Nanomaterials 434
12.2.2.1 Surface Area 434
12.2.2.2 Porosity 435
12.2.2.3 Surface Charge and Functional Groups 435
12.2.3 Surface Modification of Aluminosilicate Nanomaterials 436
12.2.3.1 Acid Activation 436
12.2.3.2 Thermal Treatment 437
12.2.3.3 Intercalation 437
12.2.3.4 Pillaring 438
12.2.3.5 Chemical Modifications of Allophane and Imogolite 439
12.3 Environmental Applications of Aluminosilicate Nanomaterials 440
12.3.1 Adsorbents of Metal Ions 440
12.3.2 Adsorbents of Anions 443
12.3.3 Adsorbents of Nonionic Organic Compounds 446
12.3.4 Adsorbents of Gases 448
12.4 Assessment of Aluminosilicate Nanomaterials for Environmental Applications 450
12.5 Summary and Future Perspectives 452
Acknowledgments 453
References 453

13 S-Layer Protein Lattices Studied by Scanning Force Microscopy 459
Dietmar Pum, Jilin Tang, Peter Hinterdorfer, Jose-Luis Toca Herrera, and Uwe B. Sleytr
13.1 Introduction 459
13.2 Description of S-Layer Proteins 460
13.2.1 Occurrence, Location, and Ultrastructure 460
13.2.2 S-Layer Fusion Proteins 461
13.2.3 S-Layer Self-Assembly 462
13.2.4 Crystal Growth at Interfaces 462
13.3 S-Layer Protein Microstructures 465
13.3.1 Photolithography 465
13.3.2 Soft Lithography: Micromolding in Capillaries 466
13.3.3 Soft Lithography: Microcontact Printing 468
13.4 S-Layer Protein Reassembly at Interphases 469
13.4.1 High-Resolution Imaging of S-Layer Lattices in Contact Mode 469
13.4.2 Force–Distance Curves 470
13.4.3 Probing the Mechanical Properties of S-Layers 470
13.4.4 Controlled Unzipping of S-Layer Protein Lattices 471
13.5 S-Layer Proteins Lattices with Functional Groups for Recognition Imaging and Molecule Templating 472
13.5.1 Principles of Single-Molecule Recognition Force Spectroscopy 472
13.5.2 Single-Molecule Recognition Force Spectroscopy Investigations on S-Layers 474
13.5.3 MAC Mode AFM Imaging 478
13.5.4 Principles of Topography and Recognition Imaging 481
13.5.5 Topography and Recognition Imaging of S-Layer 481
13.5.6 Fabrication of Molecule and Nanoparticle Arrays Templated by S-Layer Lattices 484
13.6 Reassembly of S-Layer Proteins on Solid Supports with Modified Surface Properties 488
13.6.1 Hydrophilic versus Hydrophobic Supports 488
13.6.2 Reassembly on Mica 488
13.6.3 Reassembly on Silicon Substrates 490
13.6.4 Reassembly on Silanized Silicon Substrates 491
13.6.5 Polyelectrolyte Multilayers 491
13.6.6 Dialkyldisulfide Derivatives 495
13.6.7 Chemical, Thermal, and Mechanical Stability 495
13.7 Applications 499
13.8 Summary and Conclusions 501
Acknowledgments 502
References 503

14 Nanoscale Deformation Mechanisms in Biological Tissues 511
Himadri S. Gupta
14.1 Introduction 511
14.2 Approaches to Investigating Nanoscale Deformation of Biocomposites 514
14.2.1 Whole-System (Macroscopic) Mechanical Testing 515
14.2.2 Multiscale Deformation and Structural Probes (In-Situ Methods) 515
14.2.3 Deformation of Individual Molecules and Fibrils 517
14.2.4 Modeling and Ab-Initio Simulation 517
14.3 Nanoscale Deformation Mechanisms in Mineralized Tissues 518
14.3.1 Mineralized Collagen Composites: Bone, Antler, and Mineralized Tendon 518
 14.3.1.1 Bone 518
 14.3.1.2 Deer Antler 523
 14.3.1.3 Mineralized Tendon 525
14.3.2 Anisotropy of the Nanoscale Response 526
 14.3.2.1 Nanoindentation 528
14.3.3 Modeling of Nanostructural Deformation 528
 14.3.3.1 Continuum Micromechanical Modeling 528
 14.3.3.2 Ab-Initio Modeling 530
14.4 Deformation in Hypermineralized Systems: Enamel and Abalone Nacre 531
 14.4.1 Dental Enamel 531
 14.4.2 Abalone Nacre 532
14.5 Deformation Mechanisms in Soft Collagenous Tissues: Tendons, Ligaments, and Cartilage 535
14.6 Mechanics of the All-Organic Nanocomposite of the Wood Cell Wall 539
 14.6.1 The Velcro Model of Wood Cell Deformation 540
 14.6.2 Low-Microfibril Angle Wood Tissue and Cellulose 541
14.7 Summary and Outlook 541
 14.7.1 Commonalities Across Systems 542
 14.7.2 Future Perspectives and Outlook 543
Acknowledgments 544
References 545

Index 553